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Abstract

Snowfall is a common weather phenomenon that can
severely affect computer vision tasks by obscuring objects
and scenes. However, existing deep learning-based snow
removal methods are designed for single images only. In
this paper, we target a more complex task – video snow
removal, which aims to restore the clear video from the
snowy video. To facilitate this task, we propose the first
high-quality video dataset, which simulates realistic physi-
cal characteristics of snow and haze using a rendering en-
gine and augmentation techniques. We also develop a deep
learning framework for video snow removal. Specifically,
we propose a snow-query temporal aggregation module and
a snow-aware contrastive learning loss function. The mod-
ule aggregates features between video frames and removes
snow effectively, while the loss function helps identify and
eliminate snow features. We conduct extensive experiments
and demonstrate that our proposed dataset is more real-
istic than previous datasets, and the models trained on it
achieve better performance in real-world snowing images.
Our proposed method outperforms state-of-the-art video
and image-based methods on both synthetic and real snowy
videos.

1. Introduction

Snowfall is a common weather phenomenon that can sig-

nificantly affect visibility in photographs, interfering with

and reducing the accuracy of computer vision tasks such as

target detection [34], tracking [14], and autonomous driving

[33]. Image and video restoration [39, 23, 48, 37, 46, 7, 5,

26, 40, 43, 42, 41, 45, 31] is a widely studied direction, but

research on image and video snow removal is still limited.

Removing snow is crucial for improving accuracy and ro-

bustness of computer vision tasks. Additionally, snow can

obstruct objects, decreasing image and video quality. Snow

removal is a challenging task that requires distinguishing

snowflake regions from the background and restoring ob-

scured scenes, complicated by the complex geometric shape

and texture of snowflakes. Moreover, snowfall often comes

with haze, which further obscures the images.

Contrast with single image, the video provides richer in-

formation about the dynamic features of the scene, i.e., a

consecutive frame sequence on the temporal dimension. Al-

though recent image snow removal algorithms [25, 11, 12,

50, 8, 10] have achieved good results, applying these al-

gorithms directly to video snow removal is inappropriate

because image algorithms ignore temporal information in

video frames and this information could be very useful to

improve snow removal outcomes. As such, it is significant

to conduct in-depth research and exploration for snow video

data. Previous studies have explored some aspects of video

desnowing, such as methods based on non-deep learning

[32, 18] or online learning [22]. However, deep learning-

based video desnowing remains an under-researched area.

A major challenge for applying deep learning methods is

the lack of high-quality video desnowing datasets. In the

era of powerful deep learning, this becomes an urgent prob-

lem that needs to be addressed. In fact, the lack of appropri-

ate datasets has significantly slowed down the progress of

deep learning-based video snow removal research, which

has been a bottleneck in this field.

To this end, we present the first high-quality annotated

video dataset for video snow removal: Realistic Video

DeSnowing Dataset (RVSD). RVSD contains a total of 110

pairs of videos. Each pair contains snowy and hazy videos

and corresponding snow-free and haze-free ground truth

videos. Unlike previous image datasets that simulate snow

using Photoshop, we use a rendering engine and various

augmentation techniques to generate snow with diverse and

realistic physical properties. This results in more realistic

and varied synthesized videos, which improve the model’s

performance on real-world data. To further enhance the

model’s performance, we also consider the effect of haze
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Figure 1: Samples of the proposed dataset (left) and previous datasets (right). Refer to the supplementary to see the videos.

in snowy conditions. Previous methods for fog synthesis

relied on mathematical models with limitations, such as re-

quiring accurate depth information and assuming fixed and

uniform haze characteristics. However, real-world snowy

conditions involve dynamic and heterogeneous haze. To

overcome these limitations, we propose a new haze model

that uses Unreal Engine 5 to render storm haze and obtain

a haze layer. We then fuse the haze layer with the input

video after data augmentation to produce more diverse and

realistic haze, better simulating real snowy conditions. We

conduct experiments to show that our proposed dataset has

more-realistic snow scenes than existing datasets, and mod-

els trained on our dataset achieve better snow removal per-

formance on real snowy images. Therefore, our dataset can

facilitate the training and evaluation of video snow removal

algorithms, and advance video snow removal research.

Trivially applying the video processing methods on our

dataset may result in suboptimal since they do not consider

snow and haze properties. Moreover, there are no exist-

ing deep learning-based methods for video snow removal.

Therefore, we propose the first deep learning-based frame-

work in this work. Our framework consists of three main

steps. First, we perform preliminary snow removal on sin-

gle frames to reduce the effect of snow occlusion on optical

flow estimation and video feature alignment. Second, we

fuse the video frames and perceive and remove the snow.

We introduce a novel “snow-query temporal aggregation

module”, which aggregates features across video frames

while perceiving and removing snow. Third, we design

a new “snow-aware contrastive loss”, which leverages the

prior knowledge that snowflakes have different shapes, mo-

tion directions, and other characteristics in different videos.

This loss function helps identify and remove snow features

more accurately. We conduct extensive experiments to show

that our proposed method outperforms the state-of-the-art

methods. Our contributions are summarized as follows:

• We propose the first high-quality video dataset

(RVSD) for video snow removal. We use the Unreal

Engine and various augmentation techniques to pro-

duce snow and haze with diverse and realistic physical

characteristics.

• Comprehensive experiments show that the visual effect

of our proposed snow removal dataset is more realis-

tic than previous datasets, and the models trained on

our proposed dataset can achieve better performance

in real-world snowy images.

• A deep learning-based video snow removal framework

is proposed. The snow-aware temporal aggregation

module and snow-aware contrastive learning loss are

introduced, to effectively remove snow. Experiments

prove that our method enables the best performance.

2. Related Work
2.1. Desnowing Datasets

There are several single-image snow removal datasets

available. Snow100K [25] first used PhotoShop to syn-

thesize snow. In order to model different types of snow,

SnowKITTI2012 [50] and SnowCityScapes [50] contains

three levels of snow, including light, medium, and heavy

snow. However, these datasets do not take into account the

veiling effect of snowy weather, the models trained on these

datasets cannot remove haze and have limited practical per-

formance in real snowy scenarios. SRRS [11] firstly simu-

lated the veiling effect inspired by the Koschmieder model,

and then used PhotoShop to synthesize the snow streaks.

CSD [12] added Gaussian blur to the above two steps to

better simulate the real snow image. Nearly all methods use

PhotoShop to synthesize snow. As a result, the shape and

style of snow are relatively homogeneous, which substan-

tially limits the model’s performance on realistic and com-

plex snowing scenes. A quick comparison of these datasets

can be found in Table 1. To the best of our knowledge, there
is no dataset for video desnowing, which significantly hin-
ders the research of video desnowing.

2.2. Image Desnowing

Early image snow removal methods tend to perform

snow removal based on physical priors. [1] performed snow

detection and removal by calculating the histogram of orien-

tations of snow streaks. [29] used features on saturation and

visibility to remove rain and snow from a single image. In

recent years, deep learning has refreshed the snow removal
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Dataset Venue Type # images Resolution Snow synthesis
Static

Haze

Dynamic

Haze
Illumination

User Study

(1 - 10)

Snow100K [25] TIP 2018 image 100K ≤ 640 × 640 Photoshop � � � 3.98

SnowCityScapes[50] TIP 2021 image 2K+2K 512 × 256 Photoshop � � � 4.18

SnowKITTI2012 [50] TIP 2021 image 1.5K+1K 884 × 256 Photoshop � � � 3.72

SRRS [11] ECCV 2020 image 15K 640 × 480 Photoshop � � � 4.20

CSD [12] ICCV 2021 image 10K 640 × 480 Photoshop � � � 4.67

Ours – video – 480p - 4K UE Rendering � � � 6.94

Table 1: Comparison with previous desnowing datasets.

Scenes # videos # frames
# frames

(512×512)

city day 40 5,121 31,020

city night 20 2,378 23,878

nature 43 3,526 32,526

other 7 407 3,012

In total 110 11,432 90,436

Table 2: Statistics of our dataset.

task. The first deep learning based snow removal method

DesnowNet [25] proposed a multi-stage, multi-scale design

to remove translucent and opaque snow streaks. JSTASR

[11] proposed a joint size and transparency-aware snow re-

moval model that can classify snow particles based on their

size and remove snow. HDCW-Net [12] used a hierarchi-

cal decomposition paradigm in which a dual-tree wavelet

transform and a wavelet loss are used. It also proposed a

discriminative feature for snow removal called contradict

channel. DDMSNet [50] introduced semantic and depth in-

formation to learn semantic-aware and geometry-aware rep-

resentations for snow removal. SnowFormer [9] used a vi-

sion transformer architecture that fully combines local and

global information, and obtains superior results on multiple

datasets.

2.3. Video Desnowing

Before the success of deep learning-based methods, tra-

ditional computer vision techniques were used for video-

based snow removal. Ren et al. [32] utilized the low-rank

assumption of the background to separate sparse and dense

snow, and addressed heavy snow in dynamic scenes. Kim

et al. [18] considered global and local motion, as well as

snowflakes of various sizes, in their snowflake removal al-

gorithm with low-rank matrix completion. Due to the rapid

improvement of deep learning models and their ability to

study complex patterns, some researchers have proposed

the use of deep learning for video-based snow removal.

[44] utilized self-adaptive snow detection and a patch-based

Gaussian mixture model, adept at removing both sparse and

dense snowflakes from videos. Li et al. [21, 22] proposed

a method for dynamic backgrounds where snow was en-

coded and removed using an online multi-scale convolu-

tional sparse coding model.

3. Realistic Video Desnowing Dataset
Previous snow and haze synthesis methods suffer from

a lack of variation and poor physical accuracy. In contrast,

our approach employs a 3D rendering engine and a range of

augmentations, together with a more realistic fusion method

to create snow and haze with more diverse, complex, and

accurate physical properties. As a result, the synthesized

video is more realistic and diverse, enabling our model to

enjoy better generalization ability to real-world data. We
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demonstrate this in Section 5.1.

3.1. Collection of Clean Videos

Unlike previous work that only considered daytime

video, we collect both daytime and nighttime videos in our

dataset, which is unlike previous works. We apply differ-

ent add-snow methods for daytime or nighttime videos to

enhance the realism of the generated results. We will dis-

cuss these methods in the next section. Our dataset covers

a variety of scenes such as buildings, streets, nature scenes,

close shots, distant views, overhead and elevation angles to

simulate the rich scenes of real snow videos. As shown in

Table 2, we have collected 110 videos in total, among which

80 videos are used for training and 30 videos for testing. To

accommodate the diverse resolutions of online videos, our

video resolutions range from 480p to 4k. This enables the

model to produce better results on videos with more sources

and resolutions.

3.2. Haze Rendering

Previous studies have employed a fog synthesis

method based on the atmospheric scattering model [20]:

Ihaze(x) = J(x)t(x) + A(1 − t(x)), where Ihaze(x) is

hazy image, J(x) is the haze-free image, A denotes the

global atmospheric light, and t(x) is the transmission ma-

trix. This model has both strengths and weaknesses. One

of the strengths is that the formula is intuitive and concise,

making it easy to embed into network design. For limita-

tions, it relies on depth information, and the generated haze

exhibits a relatively uniform pattern. More importantly,

there is a fundamental difference between snow-generated

haze on a snowy day and conventional haze. Snow haze is

often dynamic and follows the movement of snow, as illus-

trated in Figure 4. Therefore, using traditional haze synthe-

sis methods that assume a homogeneous haze pattern may
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with realistic physical characteristics. Further the snow layers are dynamically blended according to the background time

after complex augmentation. These complex operations make the results more realistic with diverse features.

Figure 4: Dynamic haze in a snowstorm.

Figure 5: Fusion weight for daytime and nighttime.

not be accurate in simulating the dynamic and varying snow

haze that occurs during a snowstorm. We propose a novel

haze model that leverages the capabilities of the Unreal En-

gine to render the haze of snowstorms and obtain different

haze layers H . The dynamic haze of the storms is then in-

tegrated with the input video following data augmentation.

As a result, our approach produces a more diverse and re-

alistic haze that more closely resembles real snow days and

nights. This enables the models trained on our data to han-

dle more diverse and dynamic snow haze. Our composite

haze model is defined as follows:

Ihaze(x) = J(x)t(x) +A(1− t(x)) + Aug(H), (1)

where Aug denotes data augmentation.

3.3. Snow Rendering

In previous snow production work [11, 25, 50, 12],

snowflakes and snow streaks were synthesized using Photo-

shop, resulting in relatively homogeneous patterns. In con-

trast, our work employs Unreal Engine to synthesize snow.

As a 3D computer graphics engine, Unreal Engine enables

the creation of snow with more realistic and complex phys-

ical features, including snowflake flip, spatial changes from

D
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Dark Area
Average V = 52

Visible Snow

Dark Area
Average V = 46
Invisible Snow

Bright Area
Average V = 85

Visible Snow

Figure 6: The visibility of daytime snow and nighttime

snow varies depending on the background.

far to near, and perspective changes, among others. We use

various 3D snow models to manipulate the physical prop-

erties of the snow, resulting in diverse and complex shapes

that more closely resemble real-life snow. More details of

the features are shown in Table 3. Once the snow layer S
is generated, it needs to be blended with the clean video.

We augment the snow layer by adjusting the color tempera-

ture, brightness, contrast, and applying random affine trans-

formations. Then we add different levels of blur, such as

Gaussian blur and motion blur. Finally, we consider the

temporal properties of the video background based on time

of day. During the day, especially when the sky is in the

background, snowflakes tend to blend with the bright sky,

resulting in snowflakes that are not easily distinguishable.

At night, snowflakes are more visible in bright places, such

as those illuminated by headlights or streetlights, while they

tend to be less visible in places without light. We show

some real samples in Figure 6. Based on this property, we

utilize Eq. (2) to perform the integration of snow layer and

video background.

α(x) =

{
σ (− (V (x)− γ)× β) , if daytime

σ ((V (x)− γ)× β) , if nighttime
(2)
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Feature Details

Snow Speed
by setting gravity intensity, wind speed, air friction coefficient and other parameters,

snow can move at different speeds

Snow Intensity
by setting the number of particles in the snow model,

our dataset contains snow of various degrees.

Snow Type

by employing various snow models and adjusting various parameters,

combined with the Unreal Engine to impart realistic physical features to the snowflakes

(such as turbulence, rotation, etc.), the resulting snow has

a highly diverse range of shapes, sizes, and characteristics.

Motion

direction

head-on, back-on, left-facing, right-facing,

and many other angles

Illumination lights has different intensities and colors, such as different warm and cold tones

Veiling effect depth-related static haze, as well as rendered dynamic complex haze.

Scenes city, street, day & night, nature

Table 3: Features of our proposed dataset.

Specifically, we first convert the RGB image to the HSV

color space, where V = max(R,G,B), represents the

largest color component. We obtain a corresponding blend-

ing weight based on the pixel’s brightness. v denotes the

value of the V channel in the HSV space, which is normal-

ized to the range of 0 to 1. γ and β are two parameters artifi-

cially adjusted based on the specific video, and σ represents

the softmax function. Figure 5 shows some examples. Our

dynamic video snow model is defined as follows:

Z(x) = Ihaze(x) + α(x)Aug(S(x)). (3)

where Aug denotes data augmentation. Z is the final output

with both snow and haze.

4. Snow-Aware Video Desnowing Network
4.1. Network Architecture

Our network architecture is composed of three main

modules: the encoder, the snow-query temporal aggrega-

tion module, and the decoder, as shown in Figure 7. To miti-

gate the impact of snow occlusion on video frame alignment

and fusion, the encoder takes single-frame images as input

and generates coarse features FC , which are then trans-

formed into coarse desnowed images by the recovery mod-

ule. However, residual snow may still remain in the video

frames due to the lack of utilization of video information.

Therefore, it is imperative to incorporate multi-frame video

information to further remove residual snow. To achieve

this, the Snow-query Temporal Aggregation Module takes

in continuous video frames and the features obtained by the

encoder. This module aligns and fuses video features, and

can perceive the location of snow, which facilitates more ef-

fective snow removal. Then this module outputs continuous

refined video features FF , which are fed into the decoder.

Finally, the recovery module is employed to obtain the final

desnowed video.

Recovery Module. To simultaneously remove snow and

snow-induced haze, we adopt the atmospheric scattering

model to decompose images containing both snow and

haze into three parts: snow feature S, the global atmo-

spheric light A, and transmission matrix T . We perform

this operation in the feature space of the image. Here,

S ∈ R
N×C×H×W , while A ∈ R

N×1×H×W and T ∈
R

N×C×H×W . N is the number of frames, C is the number

of feature channel, H and W are the height and width. The

recovery process can be formulated as:

F (x) =
E(I(x))− S(x)− (1− T (x))A(x)

T (x)
,

J(x) = M(F (x)),

(4)

where I(x) is the input snowy image, F (x) is the output

desnowed feature, E(·) is the feature extractor, M(·) is a

convolution layer that maps the feature into image space,

and J(x) is the snow-free image.

Coarse Desnowing of Single Video Frames Prior to
Alignment. Video restoration networks frequently em-

ploy optical flow or deformable convolution to integrate

information from multiple frames for feature extraction.

However, this is not entirely suitable for video snow re-

moval owing to the significant masking of the video back-

ground by snowflakes and snow lines, which disturb tempo-

ral feature aggregation. The position discrepancies between

snowflakes and snow lines in adjacent frames, especially

in heavily snowing videos, pose a challenge to alignment

methods in estimating accurate motion parameters. Thus,

coarse desnowing of single frames before temporal feature

attending is crucial for effectively integrating information

between frames in video snow removal later on. This step

does not cause any information loss for the further step. The

reason is that the desnowing inputs of the further step are

the features of original snowy video frames, instead of the

desnowed images of the first step.

Figure 9 shows the results of optical flow computation on

video frames with and without snow. Optical flow compu-

tation on snow-covered video frames shows significant er-

rors, which may mislead the alignment of video frame fea-

tures. Our idea is to obtain coarse desnowed frames before

computing optical flows. Specifically, the encoder takes a

single snowy frame as input and outputs coarse features

SC , AC , and TC . The recovery module then restores the

coarse desnowed frame feature FC and its corresponding

desnowed frame xC .

4.2. Snow-Query Temporal Aggregation

Temporal Aggregation Module. To fully utilize the fea-

tures between video frames, we use bidirectional propaga-

tion to independently propagate the frames’ features for-

ward and backward in time dimension. This technique en-

ables the information to flow in both directions, which can

help capture more spatial-temporal context and improve the

model’s accuracy. Given coarse desnowed frame xC
i and its

neighboring frame xC
i−1 and xC

i+1, we use SpyNet [30] to

estimate the optical flows Ot+1→t and Ot−1→t. To obtain

the corresponding features propagated from the neighbor-

ing frames, which are denoted as hf
t−1 and hb

t+1, we have
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where W denotes feature warping, and MSA denotes multi-

head self-attention.

Snow-Query Cross-Attention Module. The snow features

for the same video are always similar. Thus, we can fur-

ther use the existing snow features to match and guide the

Figure 9: Incorrect estimation of optical flow due to snow.
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Snow Model 2
Snow Model 3
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Snow Model 3w/o Contrastive Loss w/ Contrastive Loss

Figure 10: t-SNE visualization of features learned

with/without the contrastive loss. Our contrastive loss func-

tion effectively distinguishes different types of snow. while

without it, their feature distributions highly overlap.

network to find the remaining snow. We show this module

in Figure 8. First, we perform patch embedding for ht and

corresponding snow features SC
t . We consider each patch

of size 2×2×C as a token. Then, a linear embedding layer

is applied to project the features of each token to an arbi-

trary dimension. The key design is using snow features as

queries. The snow features can help find the residual snow

regions in the video feature. Specifically, the queries ob-

tained from the snow feature and the key obtained from the
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Figure 11: Visual results on the real-world images. The same model is trained separately on different datasets for image

snow removal. The model trained on our proposed dataset achieves the best results for snow and haze removal on real images.

video feature are multiplied to obtain a correlation matrix.

The coordinates with high correlation represent the residual

snow in the video, which enables the network to locate the

residual snow and further remove it.

CrossAttn (Qs,Kv,Vv) = Softmax

(QsKv√
d

+ p

)
Vv,

(7)

where Qs,Kv, Vv are the snow query, video key, and value

matrices. d is the dimension. p is the relative position em-

bedding.

4.3. Snow-Aware Contrastive Loss

We introduce a prior for snow-covered images: the snow

features vary across videos based on the snow’s angle and

properties (e.g., density, shape, direction, and speed), but

are consistent within the same video, as shown in Figure 7.

We design a snow-aware contrastive learning paradigm. It

uses snow features from different frames of the same video

as positive samples S+ and snow features from different

videos as negative samples S−. By pulling positive samples

closer together and pushing negative samples farther apart

in feature space, the network can more accurately identify

snow features and improve snow removal. The loss function

for contrastive learning is formulated as:

Lcont

(
S, S+, S−) =

− log

[
exp (D(S+, S−)/τ)

exp (D(S+, S−)/τ) +
∑N

r=1 exp (D(S+, S−)/τ)

]
(8)

where D(x, y) = Ψ(x) · Ψ(y). Ψ(·) is the two-layer MLP

function which implements feature projection. τ is the scale

temperature which is set to 0.1. N denotes the total number

of negative samples.

To illustrate the effect of the proposed snow-aware con-

trastive learning loss on snow feature learning, we visualize

the learned features using t-SNE for three distinct types of

snow with different motion directions and snow stripe sizes,

as shown in Figure 10. Without the proposed contrastive

learning, different snow types have highly similar and over-

lapping feature distributions. In contrast, with the con-

trastive learning loss, the features of different snow types

are clearly distinguished, demonstrating the ability of the

method to accurately identify diverse snow features. The

overall loss function is formulated as: L = L1 + λLcont,

where λ is set to 0.1.

5. Experiments

5.1. Proposed Dataset vs. Previous Datasets

Objective Evaluation. Previous work [4, 51] has demon-

strated the significant impact of training set data on the gen-

eralization performance of the model. To demonstrate that

the snow scenes in our created dataset are more realistic and

closer to real-world scenarios than those in other synthetic

datasets, we train the same model on different datasets and

test it on real snowy images. The results show that the

model trained on our proposed dataset performs better in

handling real snow, thus validating the authenticity and use-

fulness of our dataset. Figure 11 displays two samples.

In the first row, the model trained on our dataset success-

fully removes all snow residues, whereas models trained

on other datasets fails to completely eliminate snow, leav-

ing numerous snow residues in the output images. Since

the Snow100K, SnowCityScapes, and SnowKITTI2012

datasets do not include the effect of snow haze, the models

trained on these datasets cannot remove snow haze. In the

second row, the models trained on the Snow100K, SnowC-

ityScapes, and SnowKITTI2012 datasets remove slightly

larger snowflakes but preserve many smaller ones. Fur-

thermore, these models mistakenly remove white parallel-

ogram backgrounds, mistaking them for snowflakes. Con-

versely, SRRS and CSD remove smaller snowflakes but fail

to remove larger ones. In contrast, our proposed dataset

facilitates the training of a model that effectively removes

snowflakes at all sizes. It does not misidentify the white

background as snow. Since there is no ground truth for

real-world images, we conduct a user study to compare the
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Figure 12: Distributions of mean opinion scores obtained by

models trained on different datasets (testing on real-world
snow images) .

desnowing results of models which are trained on differ-

ent datasets, as shown in Figure 12. Model trained on our

dataset has the best desnowing performance on real-world

images.

Subjective Evaluation. To demonstrate that our dataset

produces snow images that are closer to real snow in hu-

man visual perception than previous datasets, we conduct a

user study to compare the perceived realism of snow gener-

ated from different datasets. The results are shown in Fig-

ure 2, dataset with higher scores indicating greater fidelity.

Thanks to our proposed complex, specially designed dataset

construction method, our dataset is scored much higher than

the other datasets.

5.2. Performance Evaluation

Implementation Details. Each input image is randomly

cropped to a spatial resolution of 256×256, and the number

of the total training iterations is 500K. During the training

phase, we adopt the Adam optimizer [19] with β1=0.9 and

β2=0.99. The initial learning rate is set to 2×10−4 and re-

duced by half at the milestone of 100K iterations and 150K

iterations. The batch size is set to 4. PyTorch [28] is used

to implement our model with 4 RTX 3090 GPUs.

Compared Methods. We compare our network against

18 state-of-the-art methods, including three single-image

desnowing models, two image adverse weather restoration

models, six image restoration methods, two video deraining

methods, and five video restoration methods. Please refer

to Table 5 for more details. Moreover, we follow [16, 15] to

employ PSNR, SSIM [38], and LPIPS [52] to quantitatively

compared different methods.

Quantitative Comparison. Table 5 reports the quantitative

results of our network and 17 compared methods. From

these quantitative results, we can find that the performance

of video-based models is generally inferior to that of single-

image models. The major reason behind is that the severe

occlusion of the video background by snowflakes hinders

the alignment and fusion of the video frames. Among all

compared methods, Restormer has the largest PSNR score

of 24.34 and the smallest 0.1164, while MPRNet has the

largest SSIM score of 0.8960. More importantly, our net-

Method Restormer TransWeather S2VD RVRT BasicVSR++ Ours

Ewarp ↓ (×10−3) 1.594 2.392 2.009 3.425 2.613 1.203
VFID ↓ 0.0938 0.1511 0.1686 0.2207 0.1539 0.0492

Table 4: Results of temporal consistency preservation.

Type Method Venue PSNR ↑ SSIM ↑ LPIPS ↓
Image

Desnowing

JSTASR [11] ECCV 2020 22.08 0.8280 0.2336

HDCW-Net [12] ICCV 2021 22.63 0.8592 0.2010

SnowFormer [8] arXiv 2022 24.01 0.8939 0.1219

Image Adverse

Weather

TransWeather [35] CVPR 2022 23.11 0.8543 0.2086

TKL [13] CVPR 2022 23.05 0.8589 0.2027

Image

Restoration

SwinIR [23] CVPR 2021 22.51 0.8562 0.2105

MPRNet [49] CVPR 2021 24.27 0.8960 0.1266

Uformer [39] CVPR 2022 23.61 0.8730 0.1706

DGUNet [27] CVPR 2022 24.18 0.8985 0.1238

NAFNet [6] ECCV 2022 24.01 0.8838 0.1472

Restormer [48] CVPR 2022 24.34 0.8929 0.1164

Video

Deraining

S2VD [47] CVPR 2021 22.95 0.8590 0.1856

RDD [36] ECCV 2022 22.97 0.8742 0.1631

Video

Restoration

EDVR [37] CVPRW 2019 17.93 0.5790 0.3771

BasicVSR [2] CVPR 2021 22.46 0.8473 0.2087

IconVSR [2] CVPR 2021 22.35 0.8482 0.2034

BasicVSR++ [3] CVPR 2022 22.64 0.8618 0.1868

RVRT [24] NeurlPS 2022 20.90 0.7974 0.2977

SVDNet (Ours) – 25.06 0.9210 0.0842

Table 5: Quantitative results on the proposed video dataset.

work further outperform these methods in terms of PSNR,

SSIM, and LPIPS scores. It improves the PSNR score from

24.34 to 25.06, the SSIM score from 0.8960 to 0.9210, and

the LPIPS score from 0.1164 to 0.0842. It demonstrates the

effectiveness of our proposed framework, which first ob-

tains a coarse snow removal result for a single frame im-

age to reduce the challenging alignment issue on the snowy

video frames, and then fully utilizes the temporal informa-

tion between video frames for video desnowing.

To further verify the temporal consistency preservation,

we utilize a widely-used metric Ewarp to compute the tem-

poral consistency,and VFID [17] to compute video restora-

tion performance. Table below shows our method has the

smallest Ewarp and VFID. Our method can achieve consis-

tent desnowing between frames.

Visual comparisons on synthetic videos. Figure 13 visu-

ally compares video desnowing results produced by our net-

work and state-of-the-art methods. We can find that exist-

ing methods tend to maintain snowflakes (e.g., TKL, Tran-

sWeather), or haze (e.g., Restomer), or both snowflakes and

haze (i.e., RVRT) in their desnowing results. On the con-

trary, our method can effectively remove both snowflakes

and haze, and better preserve background details.

Visual comparisons on real-world videos. Moreover, Fig-

ure 14 shows the visual comparisons between our network

and state-of-the-art methods in terms of input frames from

real-world snowstorm videos with both heavy snow and

haze. We can find that our method can effectively remove
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Input Frame TKL [13] TransWeather [35] Snowformer [8] Restormer [48] MPRNet [49] DGUNet [27]

S2VD [47] RDD [36] RVRT [24] IconVSR [2] BasicVSR++ [3] Ours Ground Truth

Figure 13: Visual video desnowing results produced by our network and state-of-the-art methods.

Input Frame MPRNet [49] DGUNet [27] RDD [36]

S2VD [47] IconVSR [2] BasicVSR++ [3] Ours

Figure 14: Visual comparison on real snowstorm video.

Index
Temporal

Aggregation
Snow-
Query

Contrastive
Loss PSNR ↑ SSIM ↑ LPIPS ↓

M1(basic) 24.16 0.8990 0.1125

M2 � 24.58 0.9130 0.0934

M3 � � 24.80 0.9108 0.9004

M4 � � 24.84 0.9181 0.0882

Ours � � � 25.06 0.9210 0.0842

Table 6: Quantitative results of the ablation study.

both the haze and snowflakes and betterrecover the ob-

scured background details, while compared methods tend

to main parts of haze and snowflakes.

Ablation Study. We perform ablation study experiments

to verify the temporal aggregation module, the snow-query

cross-attention module, and the snow-aware contrastive loss

of our network. To do so, we first built a basic model

(see M1 of Table 6) by removing these three major compo-

nents from our network, and then add the temporal aggre-

gation module into M1 to construct M2. Then we add the

snow-query cross-attention module into M2 to build M3,

and add the snow-aware contrastive loss into M2 to build

M4. Table 6 reports the PSNR, SSIM, and LPIPS results

of our network and four baseline networks. Specifically,

compared to M1, M2 improves the PSNR score from 24.16

to 24.58, the SSIM score from 0.8990 to 0.9130, and the

LPIPS score from 0.1125 to 0.0934. It shows that the tem-

poral aggregation module incurs a better video desnowing

performance. Then, we find that M3 and M4 have a superior

PSNR, SSIM, and LPIPS performance over M2. It demon-

strates the effectiveness of the snow-aware cross-attention

module or snow-aware contrastive loss for enhancing the

video desnowing performance. Moreover, our method has

larger PSNR and SSIM scores and a smaller LPIPS score

than M3 and M4. It shows that combing three components

together has the best performance of video desnowing.

6. Conclusion
The first contribution of our work is to synthesize the

first high-quality video desnowing dataset, which is more

realistic than previous image datasets. Then, we devise a

deep learning-based framework that incorporates a snow-

query temporal aggregation module and a snow-aware con-

trastive learning loss. Experimental results show that our

network outperforms state-of-the-art methods in terms of

video denosing on synthetic and real-world snowy videos.
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