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Abstract

Medical vision-and-language pre-training (Med-VLP)
has shown promising improvements on many downstream
medical tasks owing to its applicability to extracting generic
representations from medical images and texts. Practically,
there exist two typical types, i.e., the fusion-encoder type
and the dual-encoder type, depending on whether a heavy
fusion module is used. The former is superior at multi-modal
tasks owing to the sufficient interaction between modalities;
the latter is good at uni-modal and cross-modal tasks due to
the single-modality encoding ability. To take advantage of
these two types, we propose an effective yet straightforward
scheme named PTUnifier to unify the two types. We first unify
the input format by introducing visual and textual prompts,
which serve as DETR-like queries that assist in extracting
features when one of the modalities is missing. By doing
so, a single model could serve as a foundation model that
processes various tasks adopting different input formats (i.e.,
image-only, text-only, and image-text-pair). Furthermore,
we construct a prompt pool (instead of static ones) to im-
prove diversity and scalability, enabling queries conditioned
on different input instances. Experimental results show that
our approach achieves competitive results on a broad range
of tasks, spanning uni-modal tasks (i.e., image/text classifica-
tion and text summarization), cross-modal tasks (i.e., image-
to-text generation and image-text/text-image retrieval), and
multi-modal tasks (i.e., visual question answering), demon-
strating the effectiveness of our approach. Note that the
adoption of prompts is orthogonal to most existing Med-VLP
approaches and could be a beneficial and complementary
extension to these approaches.1

*Equal contributions.
†Corresponding authors.
1The source code is available at https://github.com/
zhjohnchan/ptunifier.

1. Introduction
Medical data is multi-modal in general, among which

vision and language are two critical modalities. It includes
visual data (e.g., radiography, magnetic resonance imaging,
and computed tomography) and textual data (e.g., radiol-
ogy reports, and medical texts). More importantly, such
images and texts are pair-collected in routine clinical prac-
tice (e.g., X-ray images and their corresponding radiology
reports). Medical vision-and-language pre-training (Med-
VLP) aims to learn generic representation from large-scale
medical image-text pairs and then transfer it to various med-
ical tasks, which is believed to be beneficial in addressing
the data scarcity problem in the medical field.

Recently, substantial progress has been made toward re-
search on Med-VLP [65, 32, 20, 43, 8]. In general, most
existing Med-VLP models can be classified into two types:
the dual-encoder type and the fusion-encoder type, where
the former encodes images and texts separately to learn uni-
modal/cross-modal representations following a shallow in-
teraction layer (i.e., an image-text contrastive layer), and the
latter performs an early fusion of the two modalities through
the self-attention/co-attention mechanisms to learn multi-
modal representations.2 For dual-encoders, the purpose of
existing studies [65, 20, 45, 59, 56, 60, 3] is to develop label-
efficient algorithms to learn effective uni-modal/cross-modal
representations since large-scale manually labeled datasets
are difficult and expensive to obtain for medical images.
The learned representations can improve the effectiveness
of uni-modal (i.e., vision-only or language-only) tasks3 and
the efficiency of cross-modal (i.e., image-to-text or text-to-
image) retrieval tasks significantly. For fusion-encoders,

2Although the terminologies “cross-modal” and “multi-modal” have been
used interchangeably in the literature, we treat them as terms with different
meanings in this paper.

3It is worth noting that most existing studies only conduct the evaluation on
the vision-only tasks and disregard the language-only tasks although the
text representations are simultaneously learned.
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(a) (b)

Figure 1: (a) Illustrations of two Med-VLP paradigms and their advantages (pointed by green arrows) and disadvantages
(pointed by red arrows) in downstream tasks; (b) The overall architecture of our proposed approach, where the backbone
models share the same parameters, and we duplicate them for illustration.

existing studies [32, 25, 43, 8, 9] aim to jointly process these
two modalities with an early interaction to learn multi-modal
representations to solve those tasks requiring multi-modal
reasoning (e.g., medical visual question answering and med-
ical image-text classification). However, it seems that “you
can’t have your cake and eat it, too.”: the fusion-encoders
can not perform uni-modal tasks effectively and cross-modal
tasks efficiently due to the lack of single-modal encoding,
while the dual-encoders underperform on multi-modal tasks
owing to the insufficient interaction between modalities as
shown in Figure 1(a).

In this paper, we aim to learn a unified medical vision-
and-language pre-trained model. Although there exist some
solutions [4, 51] to achieve a similar goal in the general
domain, we propose an architecture- and task-agnostic ap-
proach named PTUnifier, which is much simpler and lighter-
weighted. Technically, we develop the designs from the fol-
lowing perspectives: (i) Compatibility: we introduce visual
and textual prompts to make the Med-VLP model compat-
ible with different kinds of inputs (i.e., image-only inputs,
text-only inputs, and image-text pairs); (ii) Scalability: we
improve the diversity of the prompts by constructing prompt
pools for different modalities from which different inputs
are able to select their corresponding prompts, which en-
hances the capacity and makes it scalable to larger-scale
Med-VLP. In intuition, the introduced soft prompts serve as
a query bank that stores the queries for extracting the most
representative uni-modal features, the working mechanism
of which is similar to the query vectors in DETR [5]. As
a result, the proposed approach can be employed in unify-
ing Med-VLP with many existing VLP model architectures
(e.g., classic one [29] or even a single vanilla Transformer
model) and does not require extra modality-dependent ar-

chitectures, resulting in better applicability. We perform the
pre-training on three large-scale medical image-text datasets,
i.e., ROCO [47], MedICaT [53], and MIMIC-CXR [24]. To
verify the effectiveness of our approach and facilitate further
research, we construct a medical vision-language benchmark
including uni-modal tasks (i.e., image classification (IC) for
vision and text classification (TC) and text summarization
(TS) for language), cross-modal tasks (i.e., image-to-text re-
trieval (ITR), text-to-image retrieval (TIR), and image-to-text
generation4 (ITG)), and multi-modal tasks (i.e., visual ques-
tion answering (VQA)). The proposed PTUnifier achieves
excellent performance on all datasets, demonstrating its ef-
fectiveness.

2. Related Work
Vision-and-Language Pre-training (VLP) Motivated by
the success of the self-supervised pre-training recipe in natu-
ral language processing (NLP) (e.g., BERT [14]) and com-
puter vision (CV) (e.g., SimCLR [6] and MoCo [18]), there
has been an increasing interest in developing VLP methods
to address a wide range of vision-and-language-related tasks.
In general, VLP methods can be classified into two cate-
gories according to the vision-and-language interaction, i.e.,
dual-encoders and fusion-encoders. Existing dual-encoder
methods can be summarized according to the following as-
pects: (i) using medium-scale curated image-text data [48],
(ii) using large-scale noisy image-text data [23], (iii) design-
ing more fine-grained image-text contrast [62], (iv) adopting
extra single modal contrastive learning [44]. For fusion-
encoder approaches, existing studies can be further catego-

4Medical image-to-text generation refers to medical/radiology report gener-
ation in previous studies [11, 10].
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rized with respect to these three perspectives: (i) Uni-modal
encoders: different methods adopt different image features
(e.g., region features [29, 40], patch embeddings [26], and
grid features [21]) and distinct text features (e.g., statistic
embeddings [26], and dynamic embeddings [17]); (ii) Multi-
modal fusion modules: existing studies adopted the single-
stream fusion scheme [52, 30] or dual-stream fusion scheme
[54, 63]; (iii) Pretext tasks: existing studies explore a variety
of pre-training tasks, including masked language modeling
[29], masked image modeling [40, 7], image-text matching
[64]. This paper adopts the model architecture of fusion
encoders and the pretext tasks from both dual-encoder and
fusion-encoder types.

Medical Vision-and-Language Pre-Training (Med-VLP)
Being one of the applications and extensions of VLP to the
medical domain, Med-VLP aims to understand the content
of medical images and texts, which can be traced back to
[65] for dual-encoders and [32] for fusion-encoders. For
dual-encoders, the follow-up studies [20, 45, 56] explored
the global-local image-text contrastive learning to capture
more fine-grained information among medical images and
texts and have achieved state-of-the-art results in the medical
image classification task. For fusion-encoders, [25, 43, 8]
performed pre-training to improve the multi-modal reason-
ing ability of the vision-and-language models for the down-
stream task (e.g., Medical VQA). Besides, [9] integrated
medical knowledge into the pre-training procedure to im-
prove the performance on downstream medical tasks.

Unified Vision-and-Language Pre-training To unify
the dual and fusion encoders, existing studies mainly
adopted/designed specific model architectures to accommo-
date different pretext tasks. The most common scheme is to
add an extra multi-modal fusion module to the dual encoders
and perform the cross-modal pretext task (i.e., image-text
contrast) before the fusion and multi-modal pretext tasks
(e.g., MLM and ITM) after the fusion [28, 51]. Another
line of research [12, 57] resorts to multi-tasking on various
downstream supervised vision-language tasks by formulat-
ing them as sequence-to-sequence tasks. Besides, [4, 58] pro-
posed a mixture-of-modality experts (MoME) Transformer
to unify vision-and-language models by employing a set of
modality experts to replace the feed-forward networks (FFN)
in the standard Transformer. More recently, [15] proposed
an encoder-decoder generative model learned from prefix
language modeling and prefix image modeling. However,
the aforementioned studies are either architecture-dependent
or task-dependent, and they perform the unifying through
training different parts of the models when applying differ-
ent types of VLP objectives. Therefore, it is expected to
unify the existing Med-VLP types in an architecture- and

task-agnostic fashion to improve the generalization and ex-
tensionality ability of Med-VLP methods.

3. Bridging the Gap
In this section, we introduce the PTUnifier framework for

unifying the fusion-encoder and dual-encoder types. §3.1
details the problem to be addressed. This work proposes to
unify inputs using prompts (in §3.2). Thus one could jointly
train various tasks even with different input formats (in §3.3)
in either pre-training or fine-tuning.

3.1. Problem Definition

We adopt the general problem formulation for pre-
training following existing studies [29, 54]. Formally, given
a medical image I and its corresponding description text T ,
the representation learning process can be formulated as

θ∗, θ∗1 , ..., θ
∗
S = argmin

θ,θ1,...,θS

S∑
s=1

Ls(Ys,Hθs(Mθ(X)), (1)

where S refers to the number of pretext tasks; Ls are the
loss functions of pretext tasks; Ys are the corresponding
ground-truth labels; Hθs are the prediction heads with their
parameters θs; Mθ is the backbone model which is parame-
terized by θ; X represents the input to the backbone model,
which could be one of the following cases:

X =


(Xv) if image-only
(X l) if text-only
(Xv,X l) if image-text

(2)

where we suppose that we have embedded a medical image
I as Xv ∈ RDv×Nv or a medical text T as X l ∈ RDl×Nl

when dealing with vision and language modalities. The
challenge of the problem is to make the backbone model
Mθ deal with such variable-size and heterogeneous input.
After overcoming this challenge, we can perform different
types of downstream vision-language tasks (i.e., uni-modal,
cross-modal, and multi-modal tasks).

3.2. Unifying Inputs via Prompts

To unify inputs, we propose to unify the inputs via
prompts so as to perform different types of tasks. The work-
ing mechanism of the soft prompts is similar to the query
vectors in DETR [5]. In specific, we design two solutions,
i.e., a basic solution for compatibility and an advanced so-
lution for scalability. In this work, we use the advanced
solution in default if not specified.

3.2.1 Compatibility using Soft Prompts

To make the backbone model compatible with variable-size
and heterogeneous input, this work proposes a simple yet
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effective approach, namely using Prompt (PT) as a place-
holder for missing modality. Mθ naturally accepts two
inputs (visual and textual embeddings Xv,X l), which is
by definition compatible to inputs with image-text pairs.
For image-only/text-only inputs, we propose to introduce
visual/textual prompts to enable the backbone model to per-
ceive the missing input in a specific modality:

X =


(Xv,PT l) if image-only
(PT v,X l) if text-only
(Xv,X l) if image-text

(3)

where PT v ∈ RDv×k and PT l ∈ RDl×k are the visual
and textual prompts, respectively.

3.2.2 Scalability of Soft Prompts

The above solution adopts a static fashion to introduce
prompts, which might have limited diversity and there-
fore harm its capacity. Hence, we construct a pool of vi-
sual/textual prompts instead of static prompts. Importantly,
the selection of prompts is conditioned on the input embed-
dings.

Formally, we define a visual prompt pool V ∈ RDv×Nv

and a textual prompt pool T ∈ RDl×Nl . Nv and Nl are the
size of the visual/textual prompt pool, respectively. Given the
image-only input with its visual embedding sequence Xv or
language-only input with its textual embedding sequence X l,
we conduct a pooling operation (e.g., average/max pooling)
to obtain a query vector for existing modality (denoted as qv

or ql), namely, qv = pooling(Xv) and ql = pooling(X l),
respectively. To get the prompts of the missing modality,
the selection of prompts is based on the similarity scores
between the query vector and all prompts in the pool from
the missing modality:

PT l = top-k
w∈V

[
wTqv

]
,

PT v = top-k
w∈T

[
wTql

]
,

(4)

where w is an embedding vector in the prompt pool, and we
select k closest prompts as the input embedding sequence of
the missing modality.

Intuitive Explaination Without loss of any generality, we
take a text-only scenario as an example, but it also holds for
the image-only scenario. To select the best visual prompts for
the text-only input, the proposed method chooses the input-
conditioned ones compared to the given textual query vector.
As an intuitive explanation, one could treat the visual prompt
pool as a query bank that stores the queries for extracting
uni-modal features when one of the modalities is missing.

Linking to Prompts We find that the PTUnifier (especially
the static one in §3.2.1) is quite similar to the prompt tuning
[31, 36]. They both introduce special tokens or vectors as a
certain signal for training or inference. One notable differ-
ence is that in a special version of PTUnifier using prompts
pools (see §3.2.2), the selection of additional tokens/vectors
is conditioned on the input, while prompts are generally
static and constant to input.

3.3. Unifying Multiple Pre-training Objectives

Owing to the unified image and/or text input formulation,
we can adopt pretext tasks of both fusion-encoders and dual-
encoders (see Eq. 1). Following previous studies [29, 54,
65, 48], we develop two commonly used pretext tasks (i.e.,
masked language modeling (MLM) and image-text matching
(ITM)) for fusion-encoders and the image-text contrast (ITC)
pretext task for dual-encoders. To produce the prediction
for the aforementioned MLM and ITM tasks, we use two
independent prediction heads HMLM and HITM (i.e., two
two-layer multilayer perceptrons (MLP)).

Masked Language Modeling (MLM) Following
BERT [14], we randomly mask 15% of the words (denoted
as YMLM) of the input text T and recover them according
to the remaining text (TM) and the input I . The MLM
objective is given by:

LMLM = −
∑
(I,T )

log pMLM(YMLM|I, TM), (5)

where pMLM is obtained by applying HMLM followed by a
softmax operation on the corresponding representations of
[MASK] in Zl.

Image-Text Matching (ITM) aims to distinguish whether
an image-text pair is a match. In detail, a positive image-
text pair and a randomly sampled negative pair are fed into
Mθ and the concatenation of zv

[CLS] and zl
[CLS] is processed

by HMLM followed by a softmax layer to output a binary
probability pITM. Therefore, the ITM objective is given by

LITM = −
∑
(I,T )

log pITM(YITM|I, T ). (6)

Image-Text Contrast (ITC) aims to learn better uni-
modal/cross-modal representation from the instance-level
contrast. In this work, given an image-text pair, we use two
different forward procedures on the image-only input I and
the text-only input T , respectively, to obtain the image-only
representation (denoted as zv) and text-only representation
(denoted as zl). Afterward, we adopt the similarity function
s (I, T ) = zv⊤zl to compute the image-to-text similarity
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and text-to-image similarity between zv and zl. Subse-
quently, the similarities are normalized as follows:

pi2tn =
exp (s (I, Tn) /τ)∑N
n=1 exp (s (I, Tn) /τ)

, (7)

pt2in =
exp (s (In, T ) /τ)∑N
n=1 exp (s (In, T ) /τ)

, (8)

where N is the size of the mini-batch. The ground-truth
labels Y i2t and Y t2i are two N×N one-hot matrices, where
negative pairs have a probability of 0 and the positive pair
has a probability of 1. Therefore, the ITC objective is given
by

LITC =− 1

2

∑
(I,T )

log pi2t(Y i2t|I, T ) (9)

− 1

2

∑
(I,T )

log pt2i(Y t2i|I, T ). (10)

4. The Model Architecture
The previous section documents the unification at the

input and task levels. This section will introduce the overall
architecture of our work. As a pipeline, we first map visual
and textual tokens into embeddings space (Xv and X l as
specified in §4.1). Such token embeddings with or without
prompts will be jointly processed by an identical backbone
model Mθ (§4.2). An overview of the proposed approach is
shown in Figure 1(b).

4.1. Visual and Textual Embeddings

Visual embedding For an input image I , it is first seg-
mented into patches following [16]. Then the patches
are linearly projected into patch embeddings Xv =
(xv

1,x
v
2, . . . ,x

v
Nv

),xv
i ∈ RDv through a linear transfor-

mation and a special learnable token embedding xv
[CLS] is

prepended for the aggregation of visual information. There-
fore, the image embedding sequence is obtained by summing
up the patch embeddings and learnable 1D position embed-
dings Ev

pos ∈ RDv×(Nv+1):

Xv = [xv
[CLS];x

v
1;x

v
2; ...;x

v
Nv

] +Ev
pos, (11)

where [·; ·] represents the column concatenation.5

Textual embedding Similarly, for an input text T , we fol-
low BERT [14] to tokenize the input text to subword tokens
by WordPiece [61]. Afterwards, the tokens are linearly pro-
jected into embeddings X l = (xl

1,x
l
2, ...,x

l
Nl
),xl

i ∈ RD

through a linear transformation with a start-of-sequence to-
ken embedding xl

[CLS], and a special boundary token embed-
ding xl

[SEP] added. Therefore, the text embedding sequence

5We overload the notation Xv for simplicity (same for Xl).

Datasets Image # Text # Avg. Len. Avg. Sent. #

ROCO 81k 81k 20.42 1.46
MedICaT 124k 321k 40.88 2.82
MIMIC-CXR 232k 367k 36.49 5.07

Table 1: The statistics of the three pre-training datasets in-
cluding the numbers of images, texts, the average word-
based length (Avg. Len.) of texts, and the average number
of sentences (Avg. Sent. #).

is obtained by summing up the sub-word token embeddings
and text position embeddings El

pos ∈ RD×(Nl+2):

X l = [xl
[CLS];x

l
1; . . . ;x

l
Nl
;xl

[SEP]] +El
pos. (12)

4.2. The Backbone Model

Since the input image and/or text are represented as a
unified image-text sequence, the backbone model can be
any model for sequential modeling. In this work, we adopt
an attention-based Med-VLP model with the multi-modal
interaction, which can be an effective model (including uni-
modal encoders and a multi-modal fusion module) or an
efficient one (i.e., a single Transformer model), where the
attention mechanism is defined as

ATTN(Q,K,V ) = softmax
(
QKT /

√
Dk

)
V , (13)

where Q, K, and V are the query, key, and value matrix
linearly transformed from the input embedding sequence,
respectively, and Dk is the dimension of K. Formally, for
a given input (defined in Eq. 3), the whole representation
process can be formulated as

Zv,Zl = Mθ(X), (14)

where Zv = (zv
[CLS], z

v
1, z

v
2, ...,z

v
Nv

) and Zl =

(zl
[CLS], z

l
1, ...,z

l
Nl
, zl

[SEP]) are the image and text repre-
sentations from the backbone model.

5. Experimental Settings
5.1. Pre-training Datasets

In our experiments, we perform the pre-training on three
datasets, which are described as follows:

• ROCO [47]: a dataset of radiology figure-caption pairs
from PubMed Central, an open-access biomedical liter-
ature database.

• MedICaT [53]: a dataset of medical figure-caption
pairs also extracted from PubMed Central. Different
from ROCO, 75% of its figures are compound figures,
including several sub-figures.
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• MIMIC-CXR [24]: the largest radiology dataset to
date consisting of chest X-ray images (in frontal or
lateral views) and their reports from the Beth Israel
Deaconess Medical Center.

For all the datasets, we exclude those samples with a text
length of less than 3. For ROCO and MedICaT, we filter
non-radiology samples, and for MIMIC-CXR, we only keep
images in the frontal view. As for the dataset split, we adopt
the official splits of ROCO and MIMIC-CXR. For MedICaT,
we randomly sample 1,000 image-text pairs for validation
and 1,000 for testing, and the remaining image-text pairs are
used for training. Different from the texts in general-domain
VLP, medical texts are long narratives consisting of multiple
sentences. To deal with this case, we randomly sample a
sentence from the input text in each iteration. Table 1 shows
the statistics of the pre-training datasets.

5.2. Medical Vision-Language Benchmark

To evaluate the performance, we construct a medical
vision-language evaluation benchmark including three types
of tasks, i.e., uni-modal, cross-modal, and multi-modal eval-
uations. All the adopted datasets are related to radiology.

Uni-modal Evaluation requires the model to process a sin-
gle modality with vision-only or language-only inputs. For
vision-only tasks, we conduct the image classification (IC)
experiments on CheXpert [22] and RSNA Pneumonia [50].
For language-only tasks, we perform both the understanding
task (i.e., text classification (TC)) and the generation task
(i.e., text summarization (TS)) on the RadNLI [49, 42] and
MIMIC-CXR datasets, respectively.

Cross-modal Evaluation requires the model to align the
vision and language modalities. We conduct experiments
on three kinds of tasks (i.e., image-to-text retrieval (ITR),
text-to-image retrieval (TIR), and image-to-text generation
(ITG)). For ITR and TIR, we adopt the ROCO dataset and
measure both zero-shot and fine-tuned performance. During
the evaluation, we sample 2,000 image-text pairs from the
ROCO test set and report the results on the 2,000 sampled
image-text pairs due to the large time complexity of the
ranking process. For ITG, we conduct experiments on the
MIMIC-CXR dataset to evaluate its ability for radiology
report generation.

Multi-modal Evaluation requires the model to reason
over both the image and text inputs through the multi-modal
interaction. We conduct the experiments on the medical
visual question answering (VQA) task, which requires the
model to answer natural language questions about a medical
image. We adopt three publicly available Med-VQA datasets
(i.e., VQA-RAD [27], SLAKE [35], and MedVQA-2019

[1]), where VQA-RAD consists of 3,515 image-question
pairs, SLAKE contains 14,028 image-question pairs and
MedVQA-2019 contains 15,292 image-question pairs.

5.3. Implementation Details

Pre-training We adopt the classical VLP model as the
backbone model, including a vision encoder, a language
encoder, and a multi-modal fusion module. For the vision
and language encoders, we adopt base-size Transformer
encoders with 12 layers initialized from CLIP-ViT-B [48]
RoBERTa-base [38] and their hidden dimension is set to 768.
For the multi-modal fusion module, we set the number of
Transformer layers to 6, the dimension of the hidden states
to 768, and the number of heads to 12. For the visual/textual
prompt pools, the dimension and the pool size is set to 768
and 1,024, respectively, by default. For optimization, the
pre-training takes 100,000 steps with AdamW optimizer [39]
with a weight decay of 0.01. The learning rates for the vision
and language encoders and the remaining parameters are set
to 1e-5 and 5e-5, respectively. We use the warm-up strategy
during the first 10% of the total number of steps, and the
learning rate is linearly decayed to 0 after warm-up. For data
augmentation, we use center-crop to resize each image to
the size of 288×288.

Fine-tuning For all downstream tasks, we use the AdamW
optimizer with the learning rate set to 5e-6 and 2.5e-4 for the
backbone model and task-specific layers, respectively. The
fine-tuning strategies can be divided into three categories
according to the type of tasks. Specifically, for the classifica-
tion tasks (i.e., IC, TC, and VQA), we feed the concatenation
of the image/visual prompt and text/textual prompt represen-
tations to a randomly initialized two-layer MLP to predict the
labels. For the retrieval tasks (i.e., ITR and TIR), we adopt
the prediction head for the image-text contrast pre-text task
and test its zero-shot and fine-tuned performance. For the
generation tasks (i.e., TS and ITG), we feed the concatena-
tion of the sequence of image/visual prompt and text/textual
prompt representations to a Transformer decoder with its
parameters (except for the parameters of cross-attention lay-
ers) initialized from the pre-trained language encoder. For
the evaluation metrics, we follow the previous studies to
adopt AUROC for IC, accuracy for TC and VQA, Recall@K
(K=1, 5, 10) for ITR and TIR, and natural language genera-
tion (NLG) metrics (i.e., BLEU [46], METEOR [13], CIDEr
[55], and ROUGE [33]) for TS and ITG.

All pre-training and fine-tuning experiments are con-
ducted on 80GB NVIDIA A100 GPUs with mixed-precision
[41] to accelerate training and save memory. To demonstrate
the effectiveness of the proposed approach, we compare it
with previous studies, including ConVIRT [65], GLoRIA
[20], ClinicalBERT [2], IFCC [42], TransABS [37], WG-
Sum [19], R2Gen [11], R2GenCMN [10], ViLT [26], ME-
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Uni-Modal Cross-Modal
Image Text Image-to-Text Text-to-Image Multi-Modal

CheXpert PNAS RadNLI MIMIC MIMIC ROCO ROCO VQA-RAD SLAKE MedVQA-2019Methods

AUROC AUROC Acc RL BL4 R@1 R@1 Acc Acc Acc

ConVIRT ClinicalBERT TransABS R2Gen ViLT CPRD
[65] [2] [37] [11] [26] [34]Study1

87.3 81.3 72.6 43.8 8.0 11.9 9.8 72.7 82.1 -

GLoRIA IFCC WGSum M2Trans METER MMBERT
[20] [42] [19] [42] [17] [25]Study2

88.1 88.6 77.8 45.1 10.5 14.5 11.3 72.0 - 77.9

PTUnifier (ours) 90.1 90.6 80.0 46.2 10.7 21.0 20.8 78.3 85.2 79.3

Table 2: Comparisons of our proposed method with previous studies on three types of evaluations (i.e., uni-modal, cross-modal,
and multi-modal evaluations). Study1 and Study2 denote two state-of-the-art approaches of each type of tasks, respectively.
BL-4 denotes BLEU score using 4-grams and RG-L denotes ROUGE-L (same below). Dark and light grey colors highlight the
top and second best results on each metric (same below). Note that the results of image-to-text generation are replicated using
the front images only with the original reports as the reference instead of the tokenized ones.

TER [17], CPRD [34], and MMBERT [25]. Note that owing
to the fact that there are few studies researching the medi-
cal cross-modal retrieval task, we replicate two state-of-the-
art general-domain approaches on the medical image-text
dataset. Besides, for image-to-text and text-to-text genera-
tion tasks, since we only use the chest X-ray images of the
front views and different computation methods of metrics,
we replicate existing studies that release their codes.6

6. Results and Analyses

6.1. Main Results

To demonstrate the effectiveness of the proposed ap-
proach, we conduct experiments on the aforementioned med-
ical vision-language benchmark. The results of the main
experiments are reported in Table 2. There are several obser-
vations. First, our approach achieves the best performance
on all tasks. It outperforms previous studies on uni-modal
image classification (+2.0% AUROC), text classification
(+2.2% Accuracy), text summarization (+1.1% Rouge-L),
image-to-text generation (+0.2% BLEU-4), image-to-text
retrieval (+7.5% Recall@1), text-to-image retrieval (+9.5%
Recall@1), and multi-modal VQA (+3.4% Accuracy), which
confirms the validity of the proposed approach. Second, the
proposed approach outperforms those complicated meth-
ods designed for specific tasks. For example, R2Gen in-
troduced recurrent memory networks to the Transformer
decoder to augment its decoding ability; WGSum used extra
word graphs to improve the ability to detect keywords in
the findings section of radiology reports. CPRD adopted
representation distillation to alleviate the data scarcity prob-
lem in the Med-VQA task. These observations show that

6We use the original reports as the reference instead of the tokenized ones.

different pre-training ways can enable distinct abilities of the
model, and it is possible to design an appropriate approach
to exploit the knowledge shared across different tasks and
perform various tasks using a unified model. Note that the
existing studies are only designed for a single task, while
our approach generally targets all vision- and/or language-
related tasks, namely, without any tailored adaptations to a
specific task.

6.2. Ablation Study

To further illustrate the effectiveness of our proposed
approach, we perform an ablation study on the pre-training
objectives, including the ones from fusion-encoders (i.e.,
MLM and ITM) and the one from dual-encoders (i.e., ITC).

There are several observations drawn from different as-
pects. First, the objectives of fusion encoders (i.e., MLM and
ITM) guide the models (i.e., ID 3 and 5) to the more power-
ful multi-modal representations than other models without
them, which could be observed from the performance on
the downstream Med-VQA task. Second, the image-text
contrast objective of dual encoders assists the models (i.e.,
ID 4 and 5) in learning the uni-modal image representations
and the cross-modal representations, and the models pre-
trained with the ITC objective outperform those pre-trained
without the ITC objective. More importantly, the models pre-
trained with the ITC objective (i.e., ID 4 and 5) demonstrate
their great transfer ability where the pre-trained models can
achieve high performance with very little data (e.g., 1% and
10%). Third, it is interesting to note that the ITC objective
does not promote the performance of the uni-modal text
classification task. We can explain this phenomenon by the
reason that images and texts are abstracted at different levels,
where pixels of images have a lower semantic level than to-
kens of texts. Therefore, in the ITC process, the texts can be
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Uni-Modal Cross-ModalObjectives Image Text Image-to-Text Multi-Modal

CheXpert VQA-RAD
1% 10% 100% RadNLI MIMIC Open Closed Overall

ID
MLM ITM ITC

AUROC AUROC AUROC Acc BL4 CDr Acc Acc Acc

1 ✓ 66.1 79.1 81.1 77.2 6.9 11.1 57.5 79.5 70.8
2 ✓ 56.9 83.0 85.8 77.5 10.0 18.2 23.5 82.8 59.3
3 ✓ ✓ 74.5 87.2 88.4 78.3 9.9 17.1 67.0 84.6 77.7

4 ✓ 88.0 88.9 89.3 76.5 10.3 19.0 64.8 81.0 74.6

5 ✓ ✓ ✓ 88.7 89.0 90.1 80.0 10.7 21.0 68.7 84.6 78.3

Table 3: Ablation studies on the different types of objectives, including the fusion-encoders ones (i.e., masked language
modeling (MLM) and image-text matching (ITM)) and the dual-encoders one (i.e., image-text contrast (ITC)). 1%, 10%, and
100% represent the different portion of training data.

Pool Size Pool Para. MLM ITM ITC Total

0 0 1.055 0.232 1.901 3.188
512 393.2k 1.053 0.215 1.787 3.055
1024 784.4k 1.049 0.211 1.778 3.038
2048 1.5m 1.057 0.229 1.861 3.147

Table 4: Pre-training losses (including MLM, ITM, and
ITM) of our approach against differnt pool size, where the
parameters of the pool (Pool Para.) are also shown.

treated as a kind of “supervision signals” for the learning of
image encoding, yet, it is harder for the images to play such a
role in contrast. This can be observed from previous studies
[48, 23, 44], where the dual-encoders were only evaluated
on the uni-modal vision tasks or cross-modal tasks. Fourth,
performing both types of objectives promotes the model (i.e.,
ID 5) to achieve the best performance across all the tasks,
which confirms the feasibility of the research direction on
unifying the fusion-encoders and dual-encoders.

6.3. Effects of Soft Prompt Pools

To analyze the impacts of soft prompt pools, we perform
the pre-training with different pool sizes (ranging from 0 to
2048) with the results shown in Table 4, where we show the
pre-training losses since they directly reflect how well the
models perform the designed pretext tasks.

We have several observations: (i) Although enlarging
pool size leads to increasing parameter numbers, it is
demonstrated that there are not too many parameters (less
than 0.5%) introduced compared with the total parameters
(350M); (ii) All models with soft prompt pools have a bet-
ter convergence (with a lower convergence loss) than the
one without prompt pools (i.e., pool size equal to 0), which
demonstrates the effectiveness of introducing the prompt

pools; (iii) It is found that setting a proper pool size is impor-
tant, where the model achieves the best convergence when
the pool size is set to 1024. This might owe to the fact that
the pool size controls how much the querying information
is stored during the pre-training procedure, and a large pool
size with a large capacity might “absorb” too much noise in
the pre-training corpus.

7. Conclusion

In this paper, we proposed a simple yet effective scheme
to take advantage of both fusion encoders and dual encoders,
where visual and textual prompt pools are used to make our
model compatible with different kinds of inputs (i.e., image-
only, text-only, and image-text-pair), and thus different types
of objectives (e.g., MLM and ITM for fusion-encoders and
ITC for dual-encoders) can be adopted for pre-training. It is
worth noting that our proposed approach is complementary
to most of the existing Med-VLP models. Experimental re-
sults confirm the validity of our approach, where it achieves
state-of-the-art performance on the downstream tasks. Fur-
ther analyses investigate the effects of different types of
objectives. Such empirical studies might provide a valuable
reference for future research in this area.

Limitation The proposed vision-and-language approach
is orthogonal to the domains (e.g., the general domain, and
the medical domain). However, limited by GPU resources,
we do not perform the pre-training in the general domain.
Instead, we conduct experiments in the important medical
domain, which allows us pre-training the models with an
academic budget. Nonetheless, we agree that it would be
better to evaluate domain-agnostic approaches in the general
domain to verify their generalization.
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