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Abstract

Charts are a powerful tool for visually conveying com-
plex data, but their comprehension poses a challenge due
to the diverse chart types and intricate components. Ex-
isting chart comprehension methods suffer from either
heuristic rules or an over-reliance on OCR systems, re-
sulting in suboptimal performance. To address these is-
sues, we present ChartReader, a unified framework that
seamlessly integrates chart derendering and comprehension
tasks. Our approach includes a transformer-based chart
component detection module and an extended pre-trained
vision-language model for chart-to-X tasks. By learning the
rules of charts automatically from annotated datasets, our
approach eliminates the need for manual rule-making, re-
ducing effort and enhancing accuracy. We also introduce
a data variable replacement technique and extend the in-
put and position embeddings of the pre-trained model for
cross-task training. We evaluate ChartReader on Chart-to-
Table, ChartQA, and Chart-to-Text tasks, demonstrating its
superiority over existing methods. Our proposed framework
can significantly reduce the manual effort involved in chart
analysis, providing a step towards a universal chart under-
standing model. Moreover, our approach offers opportuni-
ties for plug-and-play integration with mainstream LLMs
such as T5 and TaPas, extending their capability to chart
comprehension tasks.1

1. Introduction
The adage, “a picture is worth a thousand words,” under-

scores the immense value of charts found on various web-
sites and articles, which often depict knowledge that can-
not be conveyed through words alone. Chart derendering,
which refers to the conversion of charts into tables (i.e.,
Chart-to-Table [11, 41, 42]), is widely viewed as essential
in facilitating a range of downstream tasks, such as chart
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1Code is at https://github.com/zhiqic/ChartReader

The football club with the highest revenue from 
broadcasting is Real Madrid, while Bayern Munich 
holds the top position for revenue from 
commercial sources.

Q1: Which football club generates the most 
revenue from broadcasting? A1: Real Madrid.
Q2: Which football club earns the highest revenue 
from commercial activities? A2: Bayern Munich.

(C) Chart-to-Table Task
Category Highest Revenue Club

Broadcasting Real Madrid

Commercial Bayern Munich

(A) ChartQA Task

(B) Chart-to-Text Task

Figure 1. Illustration of chart derendering and comprehension
tasks. The Chart-to-Table task aims to transform a chart into a
machine-readable table, while ChartQA and Chart-to-Text tasks
involve answering questions and summarizing the content of the
chart, respectively. [Best viewed in color].

question-answering (ChartQA [27, 45, 66]) and chart sum-
marization (Chart-to-Text [7, 15, 48]). As shown in Fig-
ure 1, the Chart-to-Table task aims to recognize the chart as
a machine-readable table, while ChartQA and Chart-to-Text
tasks involve answering pre-set questions and summarizing
the content of the chart, respectively. The interdependence
and mutual value of these research tasks have also been em-
phasized in earlier studies [22, 58, 61], underscoring their
critical role in chart comprehension research.

Despite the critical role of chart comprehension, existing
research has failed to address the three sub-tasks separately,
let alone propose a universal solution. As depicted in Fig-
ure 2, charts come in various types, each designed to con-
vey domain-specific knowledge, and can exhibit intricate
components, texture variations, and speckled backgrounds.
Confronted with such complex charts, existing chart com-
prehension methods face two main problems.

Firstly, existing chart derendering approaches [4, 11, 18,
41, 42] (i.e., Chart-to-Table) resort to heuristic rules that
demand extensive domain knowledge and effort to formu-
late. For example, ChartOCR [42], a pioneering method,
requires chart classification to identify categories first and
then detects different components using various pre-defined
heuristic rules. To avoid complicated rule-making, some
methods even try only one set of limited chart types, such as
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Figure 2. Demonstrates the complexity of charts in EC400K [42], which can vary in type, design, and visual properties. Charts can contain
intricate components, texture variations, and speckled backgrounds, posing challenges for chart comprehension. [Best viewed in color].

bar [13, 50] and line [30, 43] charts. These limitations im-
pede the ability to extract data for unknown categories. As a
result, many latest methods [40, 45] even use tables directly
from ground truth to complete the answers and summary
tasks. It is evident that these studies are challenging to au-
tomate and struggle to extract data from real-world charts.

On the other hand, current chart comprehension meth-
ods, such as Chart-to-Text [7, 15, 48] and ChartQA [29,
36, 44, 45, 54], often heavily rely on off-the-shelf OCR sys-
tems or pre-extracted tables from the ground truth. By treat-
ing chart derendering as a black box, these methods neglect
the visual and structural information of the charts, result-
ing in the following issues: (1) Chart-to-Text and ChartQA
tasks devolve into text-only quizzes [39, 44], as they can-
not extract visual semantics from chart derendering. This
explains why OCR-based and end-to-end methods, such
as LayoutLM [64], PresSTU [31], PaLI [8], CoCa [65],
Donut [32], and Dessurt [14], have shown suboptimal re-
sults in chart understanding. (2) Chart-to-table tasks do not
benefit from chart comprehension tasks. Due to the lack of
understanding to the visual semantics in charts, existing sys-
tems, such as those using OCR systems [39, 42], struggle
to accurately convert charts to tables. Overall, we contend
that the problems with chart comprehension arise from an
over-reliance on predefined rules and a lack of a universal
framework to support multi-tasking.

In light of the previous analysis, it seems that a visual-
language model is a promising direction for building a uni-
versal framework. However, while Pix2Struct [35], a pre-
training strategy for visually-situated language, has shown
superior performance over OCR-based models [2, 5, 37,
60], it is not suitable for chart derendering. Moreover,
despite recognizing this issue, Metcha [40] had to rely
on Pix2Struct as a backbone due to the lack of better
visual-language models. Nonetheless, neither Pix2Struct
nor Metcha address the two issues identified earlier: 1) ex-
cessive reliance on heuristic rules in table derendering, and
2) heavy reliance on existing OCR systems despite attempts
to incorporate additional chart comprehension tasks.

To overcome these concerns, we introduce ChartReader,
a unified framework that seamlessly integrates chart deren-
dering and comprehension tasks. Our approach comprises
a rule-free chart component detection module and an ex-

tended pre-trained vision-language model for chart-to-X
(text/table/QA) tasks. Unlike heuristic rule-based meth-
ods, our approach leverages a transformer-based approach
to detect the location and type of chart components, en-
abling automatic rule learning by processing existing an-
notated datasets. To enhance cross-task training, we ex-
tend the input and position embeddings of the pre-trained
model and introduce a data variable replacement technique.
Specifically, we standardize chart-to-X (table/text) tasks as
question-answering problems, allowing us to solve multi-
ple chart understanding tasks effectively. Additionally, the
model generates the data variable instead of the actual value
to avoid errors and hallucinations, which improves the con-
sistency in multi-task training. Our approach represents a
step towards a unified chart understanding model, as vali-
dated through experiments. The proposed framework has
the potential to reduce the manual effort involved in chart
analysis, paving the way for more efficient and accurate
chart comprehension.

To summarize, our contributions are: 1) a unified frame-
work that seamlessly integrates chart derendering and com-
prehension tasks; 2) a rule-free chart component detection
module that leverages a transformer-based approach to au-
tomatically learn the rules of charts; 3) extending the input
and position embeddings of the pre-trained LLMs and em-
ploying a data variable replacement technique to improve
cross-task training; 4) validating our approach through ex-
periments, demonstrating significant improvement over ex-
isting methods in chart understanding tasks.

2. Related Works
This section reviews related works on chart understand-

ing, including chart derendering, question-answering, and
summarization, highlighting the differences from previous
work and the impact on visual-language research.
Chart Derendering, also known as Chart-to-Table, in-
volves identifying the constituent components of an image
of a chart, such as bars, pies, and legends, to extract the
underlying data represented by the chart. Traditional meth-
ods [4, 18, 25, 49, 52, 53] relied on hand-designed rules
based on edges and colors, which were time-consuming and
not easily generalized to new chart types. Deep-learning
based approaches [11, 41, 42] utilizing object detection and
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text recognition networks have been shown to detect chart
components accurately with better generalizability. How-
ever, some recent work [39] has attempted to use pre-trained
large-scale language models (LLMs) for plot-to-table tasks,
without recognizing the structure and components of the
chart. Despite the progress made, the flagship methods,
ChartOCR [42] and CHARTER [53], still rely heavily on
type-specific rules and different networks for each chart
type. In contrast, our approach is an end-to-end framework
that integrates component detection and utilizes fine-tuned
LLMs to eliminate heuristic rules and tackle various chart
comprehending tasks.
Chart Question-Answering, or ChartQA, is the task of
answering questions related to charts by utilizing both vi-
sual and textual information. Early methods [28] relied
on relation networks to represent relationships between im-
age objects or between visuals and questions, while dy-
namic encoding was introduced [26] to handle out-of-
vocabulary candidate answers. Later approaches [27, 66]
have leveraged multi-modal models that use LSTM [21] and
DenseNet [23] to extract visual and text features and fuse
embeddings to answer questions. Recent methods, such
as OpenCQA [29], CRCT [36], ChartQA [44], PlotQA-
M [45], and STL-CQA [54], have incorporated transform-
ers to capture complex visual and text information when
answering questions. Furthermore, some methods [40, 44]
have attempted to use pre-trained LLMs for chart and lan-
guage data modeling, but they often disregard chart charac-
teristics and rely solely on ground-truth tables. In contrast,
our work unifies chart summarization and derendering tasks
into the ChartQA task, using a single sequence-to-sequence
framework that elegantly combines chart characteristics and
meaningful aspects of different tasks into LLMs.
Chart Summarization, refers to Chart-to-Text, aims to
generate natural language summaries from visual charts.
Traditional approaches [17, 46, 51] employed templates
to provide brief descriptions of the chart’s appearance,
while others [16, 20] used heuristics or planning-based
methods to create multimedia presentations. Recently,
Natural Language Generation (NLG) techniques based on
heuristic rules have been used, including statistical analy-
sis [12, 55, 62] to infer insights and encoder-decoder ar-
chitectures [7, 15, 48] to generate template-based captions.
However, these methods have a common limitation in that
they rely on predefined template-based approaches, which
may lack generality and variation in grammatical style and
lexical choices. In contrast, our research proposes a univer-
sal sequence-to-sequence chart understanding framework
that utilizes data-driven models to generate more diverse
and informative summaries.
Advancements in Vision-Language Model. Recently,
vision-language pretrain model has primarily focused on
natural images, relying on visually-grounded reasoning [9,

38, 56, 59, 63] and synthesized datasets [1, 10, 24, 57] for
evaluation. However, these works do not capture the com-
plexities of real-world visual language, especially in chart
understanding tasks. While OCR-based and end-to-end
methods, such as LayoutLM [64], PresSTU [31], PaLI [8],
CoCa [65], Donut [32], Dessurt [14], and Pix2Struct [35]
have been developed for visually-situated language, they do
not specifically address the challenges posed by chart un-
derstanding. Despite the widespread use of the encoder-
decoder framework, it still requires specific design consid-
erations, such as determining which inputs are valuable and
eliminating artificial rules. Without these modules, exist-
ing models, such as LaTr [5], GIT [60], DocFormer [2],
and SelfDoc [37], cannot be directly applied to chart under-
standing. Our work achieves impressive results by unifying
data extraction and understanding in an encoder-decoder
framework, without requiring predefined heuristic rules or
limitations.

3. ChartReader Framework
Our unified framework aims to support various chart

analysis tasks, including chart-to-table, chart-to-text, and
chartQA. As shown in Figure 3, it consists of two main
components: (1) a rule-free chart component detection mod-
ule, and (2) an extended pre-trained vision-language model
for chart-to-X (text/table/QA) tasks. We will delve into the
functions of each module in detail in the upcoming sections.

3.1. Chart Component Detection
We exploit a transformer-based approach to detect

the location and type of chart components without re-
lying on heuristic rules. Our approach consists of three
main steps: 1) center/keypoint detection, 2) center/keypoint
grouping, and 3) component position/type prediction.
Overcoming Heuristics. The motivation behind this is to
overcome the limitations of heuristic rule-based methods in
handling various chart styles that heavily rely on domain-
specific knowledge and complex rule definitions. By pro-
cessing annotated existing datasets, our model can automat-
ically learn the rules of charts. Furthermore, the optimized
framework can seamlessly be applied to other downstream
chart understanding tasks. As illustrated in Figure 4, our
updated model relies on center and key points inferred from
existing datasets instead of heuristic rules to locate chart
components and overcome the effects of style variations.
We convert the upper left and lower right corners and po-
sition centers of each component into the center and key
points, respectively. Although our approach still requires a
large amount of annotated data, we do not need to design
specific rules for each chart type. Our approach represents
a step towards a unified chart understanding model and has
been validated through experiments.
Step-1: Center/Keypoint Detection. We detect the centers
pc ∈ C and keypoints pk ∈ K of chart components us-
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Figure 3. illustrates the components of our proposed unified framework for various chart analysis tasks, including chart-to-table, chart-
to-text, and chartQA. The framework is comprised of two main modules: (1) a transformer-based chart component detection module that
eliminates the need for manual rule-making, and (2) an extended pre-trained vision-language model that enables chart-to-X (text/table/QA)
tasks. The combination of these two modules enables seamless integration and efficient execution of chart comprehension tasks.

ing the Hourglass network [47] without the corner pooling
layer to improve generalization across chart styles. The lo-
cation l̂ocp ∈ R2 and component type ŷp ∈ {1, ..., T } for
all centers and keypoints are predicted using the focal loss
Lfocal [34] and the smooth L1 loss [19]. We use the cen-
tral pooling layer for all component types, rather than dif-
ferent pooling strategies for each component type [42], to
effectively detect center and keypoint of chart components
in various styles.
Step-2: Center/Keypoint Grouping. For each detected
center and keypoint, we extract the features of their cor-
responding positions to obtain initial embeddings. To bet-
ter determine the chart component, we introduce a type to-
ken ϕpc

and ϕpk
and use multi-head attention to obtain the

weights of the center point pc and keypoint pk as,

G(pc, pk) = (WC [hpc
, ϕpc

])
T
WK [hpk

, ϕpk
] , (1)

where hpc and hpk
respectively represent the hidden fea-

tures of the center point and keypoint. The matrices WC
and WK are projection matrices of the hidden features of
the center point and the key point. We use fixed sinusoidal
features to encode the absolute x- and y-axis positions and
add ϕpc

and ϕpk
to the embedding before multiplication.

After obtaining the weights of G using Eqn. 1, we compute
the final grouping score by normalizing the weights with a
softmax function over the entire set of keypoints as,

attn(pc, pk) =
exp (G(pc, pk))∑
k̄∈K exp(G(pc, pk̄))

, (2)

where the softmax function sorts keypoints k̄ ∈ K from the
same component and filters the most relevant ones (i.e., pk)
for each center point pc. This approach enables effective
grouping of centers and keypoints to their corresponding
chart components.
Step-3: Component Position & Type Prediction. We pre-
dict the position and type of each chart component by opti-
mizing the center point position using the grouping score

and keypoint positions from the Hourglass network. We
compute the weighted average of the keypoint positions
l̂ocpk

for each center point pc using the grouping score as,

l̂ocpc
=

∑
k∈K

attn(pc, pk)l̂ocpk
. (3)

To ensure that the predicted positions are close to the ground
truth positions locpc , we use the location loss Lloc, which is
defined as,

Lloc =
∑
c∈C

|l̂ocpc
− locpc

|. (4)

This supervises the optimization process and helps to accu-
rately predict the position of each chart component.

To predict the type of chart component, we compute a
weighted sum of the keypoint embeddings using the group-
ing score as,

h̄pc
=

∑
k∈K

attn(pc, pk)WK[hpk
, ϕpk

]. (5)

The resulting center point embedding h̄pc is then passed
through an MLP layer to obtain the predicted probability
distribution over all component types, which is then com-
pared with the ground truth component type labels ypc

using
the cross-entropy loss LCLS as,

LCLS = −
∑
c∈C

ypc log(softmax(h̄pc)). (6)

This supervises the optimization process and helps to accu-
rately predict the type of each chart component.

3.2. Chart Derendering and Comprehension
We propose a unified chart understanding framework

that handles Chart-to-X (text/table/QA) tasks as chartQA
tasks, as illustrated in Figure X. To improve cross-task train-
ing, we extend (1) the input and position embeddings of the
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Figure 4. demonstrates the conversion of chart components into
center and key points, which are inferred from existing datasets
and used to locate chart components in our updated model. This
approach eliminates the need for heuristic rules and allows the
model to overcome the effects of style variations. Specifically, we
convert the upper left and lower right corners of each component
into center and key points, respectively. [Best viewed in color].

pre-trained model and (2) employ a data variable replace-
ment technique.
Motivation & Reasoning. Our approach is motivated by
two main reasons: Firstly, we treat both the chart-to-X
(table/text) tasks as question-answering problems. Specif-
ically, for chart-to-table, the combination of axis labels and
legends forms the question, and the extracted components
serve as the answer. Similarly, chart-to-text is treated as a
Q&A task to fill in blank templates generated by removing
redundant information. By standardizing these previously
independent tasks as Q&A tasks, we can effectively train
and solve multiple chart understanding tasks. Secondly, re-
cent advancements in these tasks have adopted sequence-
to-sequence models. To address all of them in one frame-
work, we extend pre-trained LLMs to diverse chart com-
prehension tasks. However, integrating these tasks is chal-
lenging, and thus, we conduct numerous experiments to de-
termine how to extend input and position encoding. Addi-
tionally, we propose a data variable replacement technique
to enhance the consistency of multi-task training. Our find-
ings provide possibilities for extending pre-trained LLMs to
chart comprehension, and it can be seamlessly extended to
mainstream LLMs such as T5 and TaPas.
Positional & Input Embedding. To support tasks such as
Chart-to-Table, Chart-to-Text, and ChartQA, we have ex-
tended the input and positional embeddings from natural
language to chart-style data. The fused embedding zk at the
k-th position of the sequence is defined as,

zk = LN(zposk + (ztokenk + ztypk + zlock + zappk )), (7)

where LN() denotes layer normalization [3]. Firstly, the po-

sitional embedding zposk is set to zero, as modern vision-
language pre-trained models use relative position embed-
dings. Secondly, the input embedding includes the type
ztypk , location zlock , and appearance zappk of chart compo-
nents, as well as the token ztokenk obtained from other tex-
tual information in the dataset.

Specifically, the ztokenk is generated by tokenizing the
concatenation of textual words and is denoted as,

xtoken =
{[S], [w1], ..., [wm],[SEP], [y1pc

], w1,1

, ..., w1,m, [y2pc
], . . . , [yNpc

], wrN ,1, ..., wrN ,m, ..., .

}
,

where [S] is used to distinguish between questions and an-
swers, and [SEP] indicates the presence of chart context.
To incorporate information about chart components, a spe-
cial token [yipc

] is introduced to represent the chart compo-
nent type yipc

∈ {1, ..., T } (such as [Axes]; see Figure 4).
Other textual tokens obtained from each chart component
are denoted as {w1,1, ..., w1,m}.

To capture semantic information about the chart, we
incorporate a learnable one-hot embedding ztypk for chart
component type. The location of the k-th token within the
chart is denoted by xloc

k , which is a 4-dimensional feature
based on the relative bounding box coordinates as,

xloc
k = (xmin

k /Wim, y
min
k /Him, x

max
k /Wim, y

max
k /Him),

where (xmin
k , ymin

k ) and (xmax
k , ymax

k ) represent the coordi-
nates of the top-left and bottom-right corners of the bound-
ing box of the k-th token, while Wim and Him represent the
width and height of the chart, respectively. To take into ac-
count the appearance of each chart component, we concate-
nate the features of the center and corresponding keypoints
to obtain the final appearance embedding zappk .
Data Variable Replacement Technique. We enhance the
training process by incorporating the data variable substi-
tution technique. Its pseudo-code is presented in Alg. 1.
During training, the model generates the corresponding data
variable instead of the actual value, avoiding errors and hal-
lucinations that can result from treating data records as reg-
ular tokens. For example, numerical values in the table cells
are replaced with data variables such as “product1,” “prod-
uct2,” etc. This approach improves the accuracy and factual
consistency of generated summaries, tables, and answers,
particularly when multiple data records are involved.

To supervise the use of data variables, we introduce a
new loss term that penalizes the model for generating tokens
that do not match any data variable. The loss term uses a
function D(x) that returns the data variable that matches the
token x if any and null otherwise. The loss term is defined
as follows,

Lvar = − 1

T

T∑
t

Nt∑
i

∑
j∈V

ID(xi)=vj logPi,j(t), (8)
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Algorithm 1 Data Variable Replacement Technique
1: Input: Data D, Labels Y , Model M ,
2: Output: Trained model M
3: Initialize model parameters θ
4: Choose hyperparameter α
5: for each epoch do
6: for each x, y in D,Y do
7: Replace numerical values in x with data variables to

create x′

8: Get model prediction M(x′)
9: Calculate Lans based on M(x′) and y

10: Calculate Lvar using Equation (8)
11: Total loss L = Lans + αLvar

12: Update θ using gradient descent on L
13: end for
14: end for
15: procedure INFERENCE(x)
16: Replace numerical values in x with data variables to create

x′

17: Get model prediction M(x′)
18: Replace data variables in M(x′) with original values
19: return M(x′)
20: end procedure

where T is the length of the generated output, Nt is the
number of tokens in the t-th output, and Pi,j(t) is the prob-
ability of generating the i-th token as the j-th data variable
at the t-th time step. ID(xi)=vj is an indicator function that
equals 1 if D(xi) = vj , and 0 otherwise.

The final optimization is to optimize the sum of the two
losses, with α as a hyperparameter that balances the two
losses,

L = Lans + αLvar, (9)

where α is a hyperparameter that balances the two
losses. The loss Lans may be slightly adjusted depending on
the specific chart understanding task.2 In summary, our ap-
proach using data variable substitution can simultaneously
support chart-to-text, chart-to-table, and chartQA tasks. The
introduced loss term also ensures the correct use of data
variables during training.
4. Experiments

We conducted experiments on multiple chart understand-
ing tasks, including Chart-to-Table, ChartQA, and Chart-to-
Text, as shown in Table 1.

4.1. Evaluation Tasks and Datasets
Chart-to-Table Task. To evaluate the effectiveness of our
approach in the Chart-to-Table task, we used the EC400K
dataset [42]. This dataset contains 386,966 real-world chart

2For Chart-to-Text, Lans is the cross-entropy loss between generated
and reference summaries. In Chart-to-Table, it’s the cross-entropy loss
based on chart structure and cell value matching. In ChartQA, it’s the
cross-entropy loss between predicted and reference answers.

Table 1. Datasets used for multiple chart understanding tasks, in-
cluding Chart-to-Table, ChartQA, and Chart-to-Text.

Tasks Datasets #Charts #QAPs

Chart-to-Text C2T [48] 83K -
Chart-to-Table EC400K [42] 387K -
ChartQA FQA [28] 180K 2.4M
ChartQA PlotQA [45] 224K 28M
ChartQA ChartQA [44] 22K 33K
ChartQA DVQA [26] 300K 3.5M

images from public Excel sheets and provides both bound-
ing box locations and numerical readings of the charts. The
EC400K dataset offers a wide variety of chart types and
styles, surpassing previous datasets used in chart compre-
hension research. This enables us to validate the perfor-
mance on diverse and challenging real-world chart data.
ChartQA Task. We evaluated our approach for ChartQA
on four datasets: FQA [28], DVQA [26], PlotQA [45], and
ChartQA [44]. The FQA dataset includes charts with tem-
plates for binary answer questions and has two validation
sets and two non-publicly available test sets. DVQA is a
synthetic dataset that provides precise location and appear-
ance of visual elements and metadata, including two test
tasks: Test-Familiar and Test-Novel. PlotQA is a large and
publicly available dataset for chart comprehension tasks,
containing charts generated from real-world data. It pro-
vides two benchmarks, PlotQA-V1 and PlotQA-V2, with
the latter including the former as a subset. ChartQA is a
recent open-domain chart Q&A dataset, evaluated on two
subsets: augmented and human, where the augmented set
is machine-generated and more extractive, while the human
set is human-written and requires more complex reasoning.
Chart-to-Text Task. For the Chart-to-Text task, we used
the C2T [48] dataset, which contains two subsets: Pew and
Statista. The Pew subset consists of chart images from
Pew Research Center with automatically extracted sum-
maries, while the Statista subset consists of chart images
from Statista with human-written summaries. This dataset
provides a diverse set of chart styles and textual summaries,
enabling the development of effective chart-to-text models.
Evaluation Metrics. We adopted task-specific metrics in
our study. The Chart-to-Table task employed the metrics
used in ChartOCR[42] to ensure fairness. For ChartQA,
we used standard accuracy with a relaxed correctness cri-
terion [44, 45] that permits a maximum of% numerical er-
ror. Additionally, BLEU4 was used to evaluate the Chart-
to-Text task.

4.2. Training Details for Each Task
In this section, we provide an overview of the training

details for our method on different tasks. In training, we first
independently train the chart component detection mod-
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Table 2. Performance comparison of different methods on the ChartQA task. The table shows the results of our proposed models, TaPas
(Ours) and T5 (Ours), on four datasets: FQA, DVQA, PlotQA, and ChartQA. Our T5-based model achieved state-of-the-art performance
on all datasets, outperforming previous methods by a large margin. The relaxed correctness criterion permits a maximum of 5% numerical
error. TF and TN stand for Test-Familiar and Test-Novel, respectively, for the DVQA dataset.

FQA DVQA PQA ChartQA

Methods Val1 val2 Test1 Test2 TF TN Test V1 Test V2 Val Test

IMG+QUES [26] 59.41 57.14 - 56.04 21.06 21.00 - - - -
PReFIL [27] 94.84 93.26 94.88 93.16 69.66 69.53 57.91 10.37 4.53 4.80
CRCT [36] 94.61 85.04 94.23 84.77 - - 76.94 34.44 - -
PlotQA [45] - - - - 57.99 59.54 53.96 22.52 36.15 38.00
TaPas [44] 90.32 90.43 89.52 89.57 48.82 48.68 15.09 12.90 39.68 41.28
V-TaPas [44] 91.46 91.45 90.68 90.64 94.43 94.54 65.30 42.50 42.60 45.52
T5 [44] 87.97 87.83 87.56 87.57 89.01 89.01 72.62 56.22 40.15 41.04
VL-T5 [44] 88.60 88.49 88.20 88.18 93.75 93.75 75.90 56.02 38.43 41.56
TaPas (Ours) 91.12 91.40 91.15 91.25 92.20 94.30 74.20 56.20 48.30 50.20
T5 (Ours) 95.50 95.80 94.40 93.40 95.40 96.50 78.10 59.30 49.50 52.60

ule, then integrate it with LLMs via extended embeddings,
forming an end-to-end training paradigm. The chart compo-
nent detection model was trained on 8×A6000 GPUs, while
all other experiments based on pre-trained LLMs were fine-
tuned using 64 GCP-TPUv3. Next we will introduce the
training details of each task.
Chart-to-Table Task. We trained the chart component de-
tection module on the EC400K dataset[42], which is cur-
rently the largest dataset for Chart-to-Table tasks. Ground
truth labels for the position of the center and key points were
derived from the bounding boxes labeled in the original
dataset. During training, we used the Adam optimizer[33]
with a learning rate of 2.5e-4 and reduced the learning rate
to 2.5e-5 for the last 5,000 batches, with a batch size of
32. Soft-NMS[6] was used to merge key points from the
heatmap. The hyper-parameters were set using a validation
set, and early-stopping was used for end-to-end training.
Although we did not fine-tune the chart component detec-
tion module on other tasks, the final model trained on other
chart understanding tasks can still be used for extracting
tabular data in Chart-to-Table tasks. The remaining settings
were the same as in the previous work, ChartOCR [42].
ChartQA Task. We performed fine-tuning for the ChartQA
task on different datasets. For FigureQA, we used binary
cross-entropy loss and the Adam optimizer with a base
learning rate of 5e-4. The learning rate decayed by a fac-
tor of 0.7 from the 15th to 25th epoch. For DVQA, we
used multinomial cross-entropy loss and the Adam opti-
mizer with a base learning rate of 7e-4. The learning rate
decayed by a factor of 0.6 from the 15th to 25th epoch. For
PlotQA, we used binary cross-entropy loss and the Adam
optimizer with a base learning rate of 5e-4. Negative exam-
ples were generated by randomly assigning wrong answers
to questions, and the model was trained for 20 epochs with
a linear learning rate scheduler.

Chart-to-Text Task. We fine-tuned the model for 10,000
steps with a learning rate of 2e-5, a batch size of 16, and a
maximum sequence length of 512.

Table 3. Comparison of ChartReader with previous state-of-the-art
methods on EC400K for Chart-to-Table task. The reported GPU
hrs refer to the total amount of GPU processing time used for eval-
uating on 8 ×A6000 GPUs, which is roughly equivalent to 8 times
the running time, including time for IO and data preprocessing.
Bold denotes the best performance.

Methods Bar Pie Line GPU hrs

Revision [52] 0.58 0.84 - -
Faster-RCNN [41, 11] 0.80 - - -
Rotation-RNN [41] - 0.80 - -
ChartOCR [42] 0.92 0.92 0.96 57h
Ours 0.95 0.95 0.97 22h

4.3. State-of-the-Art Comparisons
Results of Chart-to-Table Task. In Table 3, we report the
results of our proposed method on the EC400K dataset [42]
for the Chart-to-Table task. Our approach achieved state-
of-the-art performance, surpassing previous methods such
as RotationRNN and Faster-RCNN, which rely solely on
image classification and object detection. The comparison
highlights the superiority of our key point detection ap-
proach over bounding box detection. Our approach also
outperformed earlier attempts such as Revision and Char-
tOCR, which heavily rely on hand-crafted heuristic rules.
Notably, ChartOCR represents the current state-of-the-art
in the Chart-to-Table task. Our superior performance can be
attributed to two factors. Firstly, we eliminated the need for
heuristic rules and learned to recognize chart components
by grouping center points and key points. Secondly, the
recognized chart components are further utilized in subse-
quent chart-to-table and chartQA tasks, allowing our model
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to better understand the structure and semantic information
of charts, leading to improved numerical evaluation perfor-
mance. Moreover, our method achieved this superior per-
formance with significantly less GPU hours compared to
ChartOCR, as shown in Table 3. Specifically, our method
only required 22 GPU hours, while ChartOCR used 57 GPU
hours. This indicates that our method not only outperforms
previous approaches but also does so with more efficient use
of computing resources.

Results of ChartQA Task. Table 2 shows the results of
our proposed models, TaPas (Ours) and T5 (Ours), on
all datasets in the ChartQA task. Our approach utilizes
the structural and semantic information of charts to an-
swer questions, making it highly suitable for complex chart
understanding tasks such as ChartQA. Specifically, our
T5-based model outperformed the previous state-of-the-art
method, PReFIL, on the FQA dataset by a small margin,
and achieved state-of-the-art performance on the other three
datasets. Our model benefits from joint training on chart
comprehension and extraction tasks, enabling it to bet-
ter understand the semantic and structural information of
charts. Our T5-based model achieved state-of-the-art per-
formance on the DVQA and PlotQA datasets, outperform-
ing previous methods, including the current state-of-the-
art method, V-TaPas, on both test sets. Additionally, our
T5-based model achieved state-of-the-art performance on
the ChartQA dataset, outperforming previous methods by a
large margin, indicating good generalization to unseen data.

Table 4. Results of Chart-to-Text task on the Pew and Statista
datasets. Our T5-based model achieved state-of-the-art perfor-
mance on both datasets, outperforming previous state-of-the-art
methods.

Methods Pew Statista

T5 [40] 10.5 35.3
PaLI-17B (res. 224) [40] 10.0 40.2
PaLI-17B (res. 588) [40] 11.2 41.4
Pix2Struct [35] 10.3 38.0
MATCHA [40] 12.2 39.4
T5 (Ours) 14.2 44.2

Results of Chart-to-Text Task. Table 4 shows the re-
sults of our T5-based model on the Chart-to-Text task.
Our model achieved the best performance on both datasets
(Pew and Statista) and outperformed previous state-of-the-
art methods PaLI-17B (res. 224) and Pix2Struct. We at-
tribute our superior performance to the ability to generate
diverse and informative summaries. Additionally, our T5-
based model outperformed PaLI-17B (res. 588) on both
datasets, despite having a smaller model size, demonstrat-
ing that our approach can achieve good performance even
with a smaller model size.

5. Ablation Study
Chart Component Detection. We compare our full model
with two variants that lack key point detection or group de-
tection. The full model outperforms the ablated models on
all three chart types, and key point detection improves per-
formance on line charts, while the group module is more
effective for bar charts. These results highlight the impor-
tance of both components for accurate chart component de-
tection.

Table 5. Ablation study on chart component detection, comparing
the performance of the full model with two variants that do not
have either key point detection or group detection. The full model
outperforms the ablated models on all three chart types, highlight-
ing the importance of both components for accurate chart compo-
nent detection.

Methods Bar Pie Line

w/o Key Point 0.83 0.73 0.63
w/o Group 0.77 0.81 0.52
Ours 0.95 0.95 0.97

Input Encoding. We conducted an ablation study on in-
put encoding methods, comparing full model performance
with different ablated versions on PlotQA-V1 and PlotQA-
V2 datasets. Table 6 shows that the full model outperforms
all ablated versions, with location and appearance embed-
dings contributing the most to performance. This indicates
that spatial and visual information is crucial for chart com-
prehension tasks.

Table 6. Ablation study on input encoding for the PlotQA-V1 and
PlotQA-V2 datasets. The table shows that the full model outper-
forms all ablated versions, and the location and appearance em-
beddings contribute the most to the overall performance.

Ablation Token PlotQA-V1 PlotQA-V2

w/o type 60.20 48.20
w/o location 64.20 51.20
w/o appearance 59.10 45.20
w/o CCD 52.30 40.20
Ours (TaPas) 74.20 56.20

Impact of Hyperparameter α on Data Variable Replace-
ment. We conducted an ablation study to determine the op-
timal value of α in the Data Variable Replacement Tech-
nique. As shown in Table 5, the optimal α varied from 0.2
to 0.7 depending on the dataset complexity. Table 8 com-
pares numerical value accuracy with and without data vari-
able replacement (α set to 0 vs. optimal α). Figure 5 shows
the performance variation with α for the T5 model.
Multi-Task Training. We conducted ablation experiments
to evaluate the effectiveness of a multi-task training ap-
proach on the ChartQA task. Our model, trained on the
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Figure 5. The impact of the hyperparameter α on model performance in chart understanding. The experimental results indicate that
the weight of the α parameter increases as the number of open-ended questions grows, as the model needs to use variable replacement
techniques more frequently to avoid errors caused by random guessing of unknown markers. Appropriate selection of the α parameter is
crucial for achieving high performance and training efficiency of pretrained models.

Table 7. Impact of hyperparameter α in Data Variable Replace-
ment Technique. The QA and Text tasks are divided into sub-
datasets of varying difficulty levels, and the ”Rate” column shows
the fusion weight used for multi-task training.

FQA DVQA PlotQA CharQA C2T

α 0.3 0.2 0.6 0.7 0.5
Rate 5% 5% 20% 40% 30%

Table 8. Ablation for Data Variable Replacement on FQA Val1,
DVQA TF, PQA TestV1, ChartQA Val for chartQA task, and Pew
metric for C2T on Chart-to-Text.

FQA DVQA PQA ChartQA C2T

TaPas (α = 0) 90.5 86.6 58.6 41.2 10.2
TaPas (optimal α) 91.1 92.2 74.2 48.3 12.8

T5 (α = 0) 92.8 91.3 74.5 43.2 11.6
T5 (optimal α) 95.5 95.4 78.1 49.5 14.2

C4+ pre-training dataset with all three chart-related tasks,
achieved the highest performance on both validation and
test sets, as demonstrated in Table 9. These results high-
light the significance of incorporating multi-task training.
Training Task Sequence. We analyzed the optimal se-
quence for training QA or Text tasks in Table 10. Train-
ing QA task last improved performance, especially with
QA dataset included. Similarly, training Chart to Text task
last resulted in better performance. Multi-task training pro-
duced even better performance due to complementarity be-
tween QA and Text tasks.

6. Conclusion
In this paper, we propose ChartReader, a framework that

integrates chart derendering and comprehension tasks us-
ing a transformer-based chart component detection module
and a pre-trained vision-language model. Our approach
enhances accuracy and eliminates manual rule-making.
Through experiments, we outperform existing methods in
Chart-to-Table, ChartQA, and Chart-to-Text tasks. Our
framework reduces manual effort in chart analysis and fa-
cilitates a universal chart comprehension model.

Table 9. Results of ablation study on the effect of pre-training
dataset on the ChartQA task.

Model PT EF MT Val Test

T5 C4+(PQA) CQA ✗ 38.4 39.2
T5 C4+(PQA) CQA ✔ 42.3 41.5
T5 C4+(PQA+CQA) CQA ✗ 39.2 39.5
T5 C4+(PQA+CQA) CQA ✔ 45.5 43.2
T5 C4+(PQA+CQA+C2T) CQA ✗ 41.2 42.2
T5 C4+(PQA+CQA+C2T) CQA ✔ 49.5 52.6

Table 10. Ablation for Pretraining Task Sequence. This table
shows the details of the combined pretraining dataset and the train-
ing steps involved in the different tasks, including QA, Text, and
Chart to Text tasks. The table also includes the fusion weights
used for combining the different datasets within the QA task.

ChartQA Chart-to-Text

Experimental Setting Val Test Pew Statista

QA->Text 46.2 47.2 13.4 43.2
Text->QA 48.2 51.6 12.7 41.2
QA by difficulty 48.3 51.2 - -
QA with random order 47.5 50.4 - -
Mixed training 49.5 52.6 14.2 44.2
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Elmqvist. Datasite: Proactive visual data exploration with
computation of insight-based recommendations. Information
Visualization, 18(2):251–267, 2019. 3

[13] Siri Chandana Daggubati, Jaya Sreevalsan-Nair, and Komal
Dadhich. Barchartanalyzer: Data extraction and summa-
rization of bar charts from images. SN Computer Science,
3(6):1–19, 2022. 2

[14] Brian Davis, Bryan Morse, Brian Price, Chris Tensmeyer,
Curtis Wigington, and Vlad Morariu. End-to-end document
recognition and understanding with dessurt. In Computer
Vision–ECCV 2022 Workshops: Tel Aviv, Israel, October 23–
27, 2022, Proceedings, Part IV, pages 280–296. Springer,
2023. 2, 3

[15] Seniz Demir, Sandra Carberry, and Kathleen F McCoy. Sum-
marizing information graphics textually. Computational Lin-
guistics, 38(3):527–574, 2012. 1, 2, 3

[16] Massimo Fasciano and Guy Lapalme. Intentions in the co-
ordinated generation of graphics and text from tabular data.
Knowledge and Information Systems, 2(3):310–339, 2000. 3

[17] Leo Ferres, Gitte Lindgaard, Livia Sumegi, and Bruce Tsuji.
Evaluating a tool for improving accessibility to charts and
graphs. ACM Transactions on Computer-Human Interaction
(TOCHI), 20(5):1–32, 2013. 3

[18] Jinglun Gao, Yin Zhou, and Kenneth E Barner. View: Vi-
sual information extraction widget for improving chart im-
ages accessibility. In Proceedings of the IEEE International
Conference on Image Processing, pages 2865–2868. IEEE,
2012. 1, 2

[19] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 4

[20] Nancy L Green, Giuseppe Carenini, Stephan Kerpedjiev, Joe
Mattis, Johanna D Moore, and Steven F Roth. Autobrief: an
experimental system for the automatic generation of brief-
ings in integrated text and information graphics. Interna-
tional Journal of Human-Computer Studies, 61(1):32–70,
2004. 3

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 3

[22] Danqing Huang, Jinpeng Wang, Guoxin Wang, and Chin-
Yew Lin. Visual style extraction from chart images for chart
restyling. In Proceedings of the International Conference on
Pattern Recognition, pages 7625–7632. IEEE, 2021. 1

[23] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 3

[24] Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. Clevr: A diagnostic dataset for compositional
language and elementary visual reasoning. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 2901–2910, 2017. 3

[25] Daekyoung Jung, Wonjae Kim, Hyunjoo Song, Jeong-in
Hwang, Bongshin Lee, Bohyoung Kim, and Jinwook Seo.
Chartsense: Interactive data extraction from chart images.
In Proceedings of the CHI Conference on Human Factors in
Computing Systems, pages 6706–6717, 2017. 2

[26] Kushal Kafle, Brian Price, Scott Cohen, and Christopher
Kanan. Dvqa: Understanding data visualizations via ques-
tion answering. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 5648–
5656, 2018. 3, 6, 7

22211



[27] Kushal Kafle, Robik Shrestha, Scott Cohen, Brian Price, and
Christopher Kanan. Answering questions about data visual-
izations using efficient bimodal fusion. In Proceedings of the
IEEE/CVF Winter conference on applications of computer
vision, pages 1498–1507, 2020. 1, 3, 7

[28] Samira Ebrahimi Kahou, Vincent Michalski, Adam Atkin-
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