
Frequency Guidance Matters in Few-Shot Learning

Hao Cheng1 Siyuan Yang1 Joey Tianyi Zhou2,3 Lanqing Guo1 Bihan Wen1*

1Nanyang Technological University 2Centre for Frontier AI Research (CFAR), A*STAR, Singapore
3Institute of High Performance Computing (IHPC), A*STAR, Singapore

{hao006,siyuan005,lanqing001,bihan.wen}@ntu.edu.sg zhouty@cfar.a-star.edu.sg

Abstract

Few-shot classification aims to learn a discriminative
feature representation to recognize unseen classes with few
labeled support samples. While most few-shot learning
methods focus on exploiting the spatial information of im-
age samples, frequency representation has also been proven
essential in classification tasks. In this paper, we inves-
tigate the effect of different frequency components on the
few-shot learning tasks. To enhance the performance and
generalizability of few-shot methods, we propose a novel
Frequency-Guided Few-shot Learning framework (dubbed
FGFL), which leverages the task-specific frequency com-
ponents to adaptively mask the corresponding image in-
formation, with a novel multi-level metric learning strat-
egy including a triplet loss among original, masked and un-
masked image as well as a contrastive loss between masked
and original support and query sets to exploit more dis-
criminative information. Extensive experiments on four
benchmarks under several few-shot scenarios, i.e., stan-
dard, cross-dataset, cross-domain, and coarse-to-fine an-
notated classification, are conducted. Both qualitative and
quantitative results show that our proposed FGFL scheme
can attend to the class-discriminative frequency compo-
nents, thus integrating those information towards more ef-
fective and generalizable few-shot learning.

1. Introduction

Deep learning typically relies on large-scale annotated
datasets to achieve superior results on image classification
tasks. However, the learned deep models may fail to gener-
alize under some severe conditions, e.g., few data or annota-
tions. Correspondingly, the task to classify a query sample
using only a few labeled data is known as few-shot classifi-
cation [10, 40]. The key challenge is to learn the discrim-
inative feature representation that can be generalized from
the given training set to novel testing classes. Recently, sev-
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Figure 1: Visualizations of samples with different frequency
masks on the CUB dataset [41]. Samples with the same
color box belong to the same class. It is easier to distin-
guish two classes with masked specific frequency compo-
nents. Each square on the left represents the masked status
of corresponding frequency components, i.e., the dark and
light color for masked and reserved, respectively. For each
row (column), top-to-bottom and left-to-right represent low
frequency to high frequency, respectively.

eral few-shot methods [36, 48, 58] have applied the meta-
learning framework [40] to build a discriminative feature
space by simulating numerous meta-tasks to obtain the gen-
eralized feature representation, achieving superior perfor-
mance for recognizing novel classes.

However, very recent studies [3, 17, 26, 39] report that
existing methods may fail to generalize well to novel classes
due to large domain gaps between training and testing
sets, e.g., from general to fine-grained tasks or a specific
domain. In these cases, the learned feature embeddings
based on spatial images may capture excessive domain-
variant information from the training patterns, leading to
degraded performance in the test scenario with a large do-
main gap. Several domain adaptation-based few-shot al-
gorithms [26, 37, 39, 57] have been proposed to alleviate
the domain shift issues on few-shot classification. These
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methods focus on learning a flexible feature embedding or
fine-tuning on less novel support samples to transfer knowl-
edge across domains. However, they cannot achieve stable
performance improvements for different few-shot scenar-
ios. Moreover, most domain adaption-based methods only
focused on exploiting the image spatial features.

Beyond spatial features, the frequency-domain represen-
tation plays a vital role for various computer vision tasks,
e.g., deep fake recognition [12, 24, 27], domain generaliza-
tion [19] and image classification [4, 32, 42, 50]. Different
frequency components naturally convey discriminative and
interpretive features for visual understanding [19, 32], e.g.,
the selected frequency components (FCs) of input images
can be used to interpret the learned CNN features in classi-
fication [42, 50]. In few-shot learning, Chen et al. [4] is the
first attempt to apply image frequency spectrum for classi-
fication, in which frequency information is naively concate-
nated as an extra feature, without exploiting different effects
of its FCs. Figure 1 provides an example, clearly show-
ing that certain FCs are more discriminative, thus should be
selected and highlighted for more effective classification.
However, no work to date has systematically investigated
the roles of different FCs and how to adaptively select im-
portant FCs for effective few-shot learning.

In this paper, we propose a novel Frequency-Guided
Few-shot Learning (FGFL) framework towards highly ef-
fective few-shot classification and generalization. For each
input image, FGFL adaptively generates a task-specific
class-discriminative mask in the frequency domain using
Grad-CAM [35], where the activated FCs represent the im-
portant frequency information associated with the current
task. Then we convert the masked and unmasked frequency
components output back to the spatial domain for generat-
ing the masked and unmasked images, which contain lim-
ited and rich task-specific class-discriminative information,
respectively. After that, for each image in the meta-task, we
construct its triplet with its corresponding unmasked and
masked images as positive and negative samples. We also
construct two additional few-shot tasks by regrouping the
masked and original support and query images, i.e., Tms

with masked support set and original query set, and Tmq

with original support set and masked query set. In addi-
tion, we propose two types of ranking losses, including the
triplet and contrastive loss functions at single images and
tasks (i.e., Tms and Tmq) levels, respectively, to force the
model to capture task-specific class-discriminative informa-
tion that can well generalize to the novel classes. Moreover,
the unmasked images are also added to the support set to
enhance the discriminability of feature embeddings.

The contributions of this work are fourfold. First, we
propose a Frequency-Guided Few-shot Learning (FGFL)
framework to utilize the frequency information to enhance
the performance and generalizability of few-shot methods

in the spatial domain. Second, we propose two types
of ranking loss, including the triplet and contrastive loss
functions at both sample and task levels based on origi-
nal and generated images, to force the network to focus on
class-discriminative frequency components for each few-
shot meta-task. In addition, the generated unmasked im-
ages are also utilized to augment the support set to en-
hance the discriminability of feature embeddings. Third,
we investigate the impact of frequency components on cur-
rent methods under several generalized few-shot settings,
namely cross-dataset, cross-domain, and coarse-to-fine an-
notated generalization. To the best of our knowledge, this is
the first work that exploits the effect of different frequency
components on few-shot classification and generalization
tasks explicitly. Last, experimental results and visualiza-
tions demonstrate that the proposed FGFL can improve the
performance and generalizability of few-shot methods and
achieve superior results under several few-shot settings.

2. Related Work
2.1. Few-shot Classification

Few-shot learning aims to recognize novel query sam-
ples with only a few available support samples. Recently,
existing deep few-shot methods can be divided into three
main categories. First, optimization-based meta-learning
methods [2, 11, 20, 28, 33] design a good model initializa-
tion or optimization strategy that can quickly adapt to novel
tasks. Second, metric-based methods [7, 29, 30, 36, 48,
55, 58] focus on constructing an appropriate latent space to
extract discriminative feature embeddings and then predict
based on the similarity between support and query samples.
Third, data generative and augmentation-based methods fo-
cus on generating more variant samples to learn a more ac-
curate classifier, e.g., applying data rotation or transforma-
tion [21] by self-supervised learning, synthesizing new data
with a generative model [14, 23], or using external data with
pseudo labels [18, 44, 52].

Most above-mentioned algorithms only employ spatial
images as the network input without exploiting the fre-
quency information. In our work, we investigate the effect
of the frequency information in the Discrete Cosine Trans-
formation (DCT) domain and leverage it to guide few-shot
classification in the spatial domain.

2.2. Learning in the Frequency Domain

Frequency components contain rich patterns for image
understanding and have been widely studied in several com-
puter vision tasks such as compressed sensing [43, 51, 56],
visual pre-training [47], domain transfer [19, 53], and image
classification [4, 8, 32, 42, 50]. Yang et al. [53] use the Fast
Fourier Transformation (FFT) to achieve domain alignment
by simply swapping the low-frequency spectrum between
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Figure 2: T-SNE visualization of all image features of 20
test classes in the CUB (top) and 15 test classes in the
Quickdraw (bottom) dataset. The few-shot model is trained
on the miniImageNet dataset. A cluster that is clearer and
more compact within each class is better.

Method miniImageNet CUB Quickdraw

ProtoNet [36] 79.86 66.29 64.32
ProtoNet w/ High FCs 56.47 37.96 66.26
ProtoNet w/o High FCs 77.75 67.09 65.99

Table 1: Few-shot classification results under the 5-way 5-
shot setting trained with the miniImageNet dataset. Pro-
toNet is trained on miniImageNet dataset and evaluated on
several datasets with specific frequency components.

source and target domain samples. GFNet [32] considers
the attention in the FFT frequency domain to replace the
self-attention module in the vision transformer. However,
FFT requires double the memory for complex coefficients.
Therefore, some recent works [4, 31, 50] consider apply-
ing the Discrete Cosine Transformation (DCT) to learn in
the frequency domain. For example, Wang et al. [43] first
applies the DCT to speed up the network. Instead of in-
putting RGB pixels, Gueguen et al. [16] convert the JPEG-
compressed image to its 8×8 block DCT coefficients as the
input of the neural network. FcaNET [31] adopts DCT to
generalize the compression of the channel attention mecha-
nism in the frequency domain. Specifically, Chen et al. [4]
select pre-defined channels in the DCT frequency domain
to improve the performance for few-shot classification.

In this work, we also employ the DCT to transform the
images to the frequency domain. Unlike previous work [4],
we consider the interaction between spatial and frequency
domains and learn to generate the discriminative frequency
mask to enhance learning in the spatial domain.

3. Proposed Method
In this section, we first investigate the impact of fre-

quency components in different few-shot classification sce-
narios. Then the proposed FGFL framework is described

and explained in detail, followed by the loss function of our
method and empirical validations.

3.1. Frequency Analysis on Few-shot Classification

We first investigate the impact of frequency components
on the generalized performance of current few-shot meth-
ods under different few-shot settings by removing and pre-
serving partial frequency components of each image in the
meta-task for class prediction.

To generate the frequency representation of an input
RGB image X ∈ RH×W×3, we apply the 2D-Discrete Co-
sine Transform [1] (2D-DCT) function as D = DCT(X) ∈
RH×W×3. We can then remove or preserve partial fre-
quency components of each input image, followed by an
Inverse 2D-DCT function as X̂ = IDCT(D̂) to transform it
back into the spatial domain with the original input size.

With the help of the DCT functions, we can decompose
the raw data into two parts, X = {XO, XH}, where XH

and XO represent high-frequency components (dubbed w/
high FCs), and other components (dubbed w/o high FCs).
For a given few-shot task Ttest = (S,Q) on the novel testing
set, we can reconstruct images with partial frequency infor-
mation to update the testing task as T̃test = {S̃, Q̃}. Then
we adopt the existing few-shot methods to make predictions
for each query sample X̃j with S̃.

Table 1 shows classification accuracy on different test
domains and Figure 2 plots the t-SNE visualizations of im-
age features extracted by the trained feature encoder. We
can observe that removing specific frequency components
can improve the generalized performance of few-shot mod-
els but degrade standard few-shot performance in the same
testing scenario.

To this end, frequency information plays different roles
in different classification scenarios. Through evaluation and
observation, it can be conjectured that the generalization be-
haviors of few-shot methods are relevant to frequency com-
ponents which may vary across datasets and domains. 1

3.2. Frequency-Guided Few-shot Learning

Different FCs encode specific image information, we
propose the Frequency-Guided Few-shot Learning (FGFL)
framework, which utilizes the frequency mask to guide the
training in the spatial domain. As shown in Figure 3, FGFL
has two branches with two encoders Efq and Esp for fea-
ture extraction in the frequency and spatial domains, re-
spectively. FGFL generates the frequency mask based on
the task-specific attention map for the given few-shot task,
which is then adopted to generate additional images, guid-
ing the network updates in the spatial domain. Moreover,
we propose a multi-level metric to force the network to cap-
ture specific frequency components for classification.

1More implementation details and evaluation results for all frequency
components of more few-shot methods are provided in Supplementary.
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Figure 3: Overview of our proposed Frequency-Guided Few-shot Learning framework (FGFL). We first generate the task-
specific class-discriminative frequency mask based on the classification in the frequency domain. Then we convert the masked
and unmasked frequency samples back to the spatial domain and generate two image sets (masked set Xm and unmasked set
Xum) according to the mask and unmask regions, respectively. Furthermore, we adopt novel multi-level metrics (shown in
Figure 4) on the original and generated image sets to make class predictions.

3.2.1 Task-Specific Frequency Mask Generation

To obtain a task-specific attention mask of frequency com-
ponents for each few-shot task, we first transform the input
spatial input image X to D in the frequency domain. Then
we generate the attention map by Grad-CAM [35] based on
the output feature map M ∈ RC×h×w of the last convolu-
tion layer in the frequency encoder (e.g., ResNet-12), where
C is the channel number of the feature map, h and w indi-
cate the height and width of the feature map, respectively.

For its ground-truth class c, we compute the gradient
of the score sc with respect to the feature map activation
Mk ∈ Rh×w as ∂sc

∂Mk
, where k indicates the channel in-

dex of the feature map. These gradients flowing back will
pass through a global average pooling layer (denoted as
GAP (·)) to obtain the neuron importance weights wc

k:

wc
k = GAP(

∂sc

∂Mk
). (1)

The weight wc
k reflects the importance of activation map

Mk to make the prediction of class c for the input D. We
then perform a weighted combination with a ReLU function
to integrate the positive influence of feature maps across dif-
ferent channels of M for class c as:

Ac = ReLU(
∑
k

wc
kMk), (2)

where Ac ∈ Rh×w is the heatmap reflecting frequency com-
ponents that have a positive impact on the ground-truth class
c of a given frequency input.

Note that previous works [35, 22] utilize a fully con-
nected (fc) layer to obtain the classification score sc for the

ground-truth class c with the same training and testing class
set. However, since the training and testing classes in few-
shot scenarios are non-overlap, directly applying fc layers
for gradient computation may be prone to overfitting.

To this end, we compute the cosine similarity between
each sample and class prototype as the classification score
for each given N -way K-shot task in few-shot learning,
where N and K indicates the number of selected classes
and labeled support samples from each class, respectively.
Specifically, given a few-shot task with support set Sf =

{Dm, ym}NK
m=1, and a query set Qf = {Dn, yn}Qn=1 in the

frequency domain, we compute the cosine similarity score
sc between each query sample q ∈ RC and each class pro-
totype vc ∈ RC as:

sc = p(y = c | q) = qTvc

∥q∥ ∥vc∥
, (3)

where vc = 1
K

∑K
k=1 zk is the mean feature vector of the

support features zk of the c-th class. Note that, it is easy to
prove Eq. (3) is equivalent to an fc layer when neglecting the
bias of the fc layer. Moreover, the classification weights vc

are flexible and task-dependent, i.e., only based on the cur-
rent few-shot task. Hence, the network can learn to generate
a task-specific heatmap Ac of each sample to find specific
frequency components that contribute most to the current
task, which avoids over-fitting to the training set.

We then up-sample Ac to the original size and generate
the frequency mask following previous works [45, 22] as:

Maskc = 1 − Sigmoid(Up(Ac)), (4)
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Figure 4: Illustration of the proposed multi-level metrics.
Specifically, for each image in the image set X in the meta-
task, we construct its triplet from the corresponding un-
masked and masked set Xm and Xum as the positive and
negative pair, respectively, and adopt the sample-wise triplet
loss Lsw tri to exploit the correlations them. At the task
level, we construct two additional few-shot tasks by re-
grouping the images in X and Xm. (Here we take the query
set as an example.) Then we propose a class-wise con-
trastive loss Lcw ctr between positive pairs (original support
and query samples) and negative pairs (support and query
from different sets). Moreover, we use unmasked images to
augment the support set for classification with a loss Laug .

where 1 is an all-ones matrix, Up(·) is the upsampling op-
eration, and Sigmoid(·) is applied to make it derivable and
constrains the value to the range [0, 1].

Maskc is then applied to D and converted back to the
spatial domain to generate the masked spatial image Xm

and corresponding unmasked spatial image Xum as:

Xm= IDCT(Maskc⊙D), Xum= IDCT((1−Maskc)⊙D),
(5)

where ⊙ is the dot product function. Note that Xm and
Xum are considered to contain limited and rich informa-
tion belonging to the target class since the regions on the
attention map beyond the class-aware range should be hard
to identify the true class. We can then utilize Xm and Xum

to guide few-shot learning in the spatial domain.

3.2.2 Mask-Guided Multi-Level Metrics

With the help of task-specific frequency mask generation,
we already generate additional samples (i.e., masked im-
ages Xm and unmasked images Xum). To incorporate fre-
quency information to encourage the spatial network to cap-
ture class discriminative information, we propose two rank-
ing losses at the sample and task levels, (i.e., sample-wise
triplet loss Lsw tri and class-wise contrastive loss Lcw ctr,
respectively.) to fully exploit the mask information in the

frequency signal, shown in Figure 4. Meanwhile, we also
adopt the unmasked images to enhance the few-shot clas-
sification performance with an additional classification loss
Laug .
Sample-wise triplet loss. For each original image Xi in
the meta-task, this loss aims to enhance the feature simi-
larity between Xi and its corresponding unmasked image
Xum

i , while reducing that between Xi and its correspond-
ing masked image Xm

i . Formally, we construct the triplet
for each image in the meta-task as (Xi, X

m
i , Xum

i ), where
Xi, Xum

i , and Xm
i are the anchor, positive, and negative

samples, respectively. We define Esp = fϕ(·) as the fea-
ture extractor with parameters ϕ to obtain the feature vector.
Then the sample-level triplet loss can be formulated as:

Lsw tri(Xi, X
um
i , Xm

i ) = max{d (fϕ(Xi), fϕ(X
um
i ))

−d (fϕ(Xi), fϕ(X
m
i )) + η, 0},

(6)

where d(·, ·) denotes the distance between two features and
η is the margin between positive and negative pairs.
Class-wise contrastive loss. To encourage the network to
capture class discriminative information, we construct con-
trastive pairs for each query instance in the original and
masked sets. Specifically, given masked support and query
sets Sm = {Xm

i , yi}NK
i=1 and Qm = {Xm

j , yj}Qj=1, we first
construct two additional masked few-shot tasks by regroup-
ing the masked and original sets as:

Tms = (Sm,Q), Tmq = (S,Qm), (7)

where S = {Xi, yi}NK
i=1 and Q = {Xj , yj}Qj=1 are original

support and query set, respectively.
Each masked sample consists of less class-discriminative

information. To avoid being misled by class-irrelevant in-
formation (i.e., preserved in Sm and Qm), we regard the
support and query samples from tasks Tms and Tmq as neg-
ative pairs, and those from the original task with the same
class as positive pairs. Then the contrastive loss correspond-
ing to query sample Xq ∈ Q can be written as:

Lq=− log

∑
yj=yq,Xj∈S ed(zj ,zq)/τ∑

yj=yq,Xj∈S ed(zj ,zq)/τ+
∑

Xk∈Sm
ed(zk,zq)/τ

,

(8)
where zi = fϕ(Xi) represents the feature vector extracted
by the spatial backbone. Similarly, the contrastive loss for
support sample Xs ∈ S can be written as:

Ls=− log

∑
yj=ys,Xj∈Q ed(zj ,zs)/τ∑

yj=ys,Xj∈Q ed(zj ,zs)/τ+
∑

Xk∈Qm
ed(zk,zs)/τ

.

(9)
Overall, for one episode, Lcw ctr can be written as:

Lcw ctr =
1

Q

Q∑
q=1

Lq +
1

NK

NK∑
s=1

Ls. (10)
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(a) Visualization results on
Mean Magnitude features of
Channels (MMC).

Method mini CUB

Pretrained 0.5567 1.5584
FEAT [55] 0.5386 1.5367
Ours 0.1256 1.2550

(b) Maximum Mean Discrep-
ancy (MMD) results on differ-
ent test datasets.

Figure 5: (a) MMC before and after applying the pro-
posed FGFL method. (b) MMD results of few-shot meth-
ods trained over miniImageNet. The lower MMD value in-
dicates a smaller gap and better performance. ‘Pretrained’
denotes the feature extractor (i.e., ResNet-12) pre-trained
on the training set of miniImageNet.

Augmented classification loss. To better classify samples
in the query set Q, we use generated support images Sum in
Xum to enhance the support set for classification. Specifi-
cally, we build a new support set by combining the original
support and unmasked support set as Saug = S ∪ Sum.
Hence, we conduct few-shot classification on query set Q
based on Saug and minimize the cross-entropy loss:

Laug =

Q∑
j=1

LCE (fθ (Xj ;Saug) , yj) . (11)

3.2.3 Objective, Model Training, and Inference

Combining with the standard few-shot classification, the
overall objective function is defined as:

Ltotal = Lsp
cls+Lfq

cls+λ1 ·Lsw tri+λ2 ·Lcw ctr+λ3 ·Laug,
(12)

where Lsp
cls and Lfq

cls represent the cross-entropy loss for
few-shot classification in the spatial and frequency branch,
respectively. λ1, λ2, and λ3 denote the weighting parame-
ters of the corresponding losses, respectively.

During the training phase, we first generate frequency
masks based on the frequency branch and then adopt the
proposed multi-level metrics for model training. During the
inference time, our proposed method strictly follows the in-
ductive setting. We only feed the support set into the fre-
quency branch to generate unmasked support images to re-
fine the support set for classification.

3.3. Empirical Validation

The proposed FGFL framework aims to utilize frequency
information to guide the spatial feature extractor towards
class-discriminative features and avoid over-fitting to the

training patterns, thus generalizing well to testing scenar-
ios. To validate the effectiveness of the proposed method,
we conduct experiments about learned features on two as-
pects: channel distribution shift and domain distance. 2

Mean Magnitude of Channels (MMC) Luo et al. [26]
shows the channel bias problem affects the generalizabil-
ity of few-shot methods and utilizes MMC to visualize and
measure the channel response to features, where effective
few-shot methods might have a more uniform MMC curve
in the testing set. Inspired by this work, we visualize the
MMC before and after applying FGFL over miniImageNet.
We can observe a channel magnitude change in Figure 5 (a),
which validates that our proposed method can alleviate the
channel bias problem, thus improving the performance.
Maximum Mean Discrepancy (MMD) The MMD [15] is
a distance measure between two domains based on the em-
bedding of distribution measures in a reproducing kernel
Hilbert space, which has been widely applied in transfer
learning problems. We adopt class-wise MMD to measure
the distribution gap between the training and testing sets
with different methods trained over miniImageNet. Figure 5
(b) shows different gaps between one training set and dif-
ferent testing sets. We can also observe that our proposed
method helps to reduce the domain shift.

4. Experiments

4.1. Experimental Setup

Datasets. We conduct extensive experiments on four few-
shot datasets, i.e., miniImageNet [40], tieredImageNet [34],
CUB [41], and FS-DomainNet [6].
Implementation Details. For fair comparisons with pre-
vious methods, we adopt the ResNet-12 network with
[64, 160, 320, 640] channels as our backbone in each
branch, and set the input image size as 84 × 84 for all
datasets. We combine our proposed FGFL with FEAT [55],
which adopts a linear projection layer for feature adaptation.
We randomly select 15 samples of each class to construct
the query set for 5-way 1-shot and 5-way 5-shot settings.
The backbone networks are pre-trained on the training set
following the typical classification task. The weighting pa-
rameters λ1, λ2, and λ3 are all set to 0.1 to balance the scale
between the classification loss and the corresponding losses
for all datasets. 3

4.2. Few-shot Classification

We conduct experiments on two standard few-shot set-
tings, i.e., general and fine-grained classification, shown in
Table 2. Table 2 (a) shows that our proposed FGFL can

2More details are included in Supplementary.
3More details about datasets and experimental settings are included in

Supplementary.
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Method
miniImageNet tieredImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

ProtoNet [36] † 61.83 ± 0.20 79.86 ± 0.14 66.84 ± 0.23 84.54 ± 0.16
Meta-Baseline [5] 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.29 ± 0.18
Good-Embed [38] 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.58
DeepEMD [58] 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58
FRN [46] 66.45 ± 0.19 82.83 ± 0.13 71.16 ± 0.22 86.01 ± 0.15
FEAT [55] † 66.52 ± 0.20 81.46 ± 0.14 70.30 ± 0.23 84.55 ± 0.16
BML [60] 67.04 ± 0.63 83.63 ± 0.29 68.99 ± 0.50 85.49 ± 0.34
IEPT [59] 67.05 ± 0.44 82.90 ± 0.30 72.24 ± 0.50 86.73 ± 0.34
MELR [9] 67.40 ± 0.43 83.40 ± 0.28 72.14 ± 0.51 87.01 ± 0.35
MCL-Katz [25] 67.51 83.99 72.01 86.02
CSEI [21] 67.59 ± 0.83 81.93 ± 0.36 72.57 ± 0.95 85.72 ± 0.63
Meta DeepBDC [48] 67.83 ± 0.43 84.46 ± 0.28 72.34 ± 0.49 87.31 ± 0.32
DFR [6] 68.12 ± 0.81 82.79 ± 0.56 72.38 ± 0.95 86.00 ± 0.61
Yang et al. [54] 70.19 ± 0.46 84.66 ± 0.29 72.62 ± 0.51 86.62 ± 0.33

Ours 69.14 ± 0.80 86.01 ± 0.62 73.21 ± 0.88 87.21 ± 0.61

(a) Average classification accuracy (%) on miniImageNet and
tieredImageNet datasets with the ResNet-12 as backbone.

Method Backbone
CUB

5-way 1-shot 5-way 5-shot

MELR [9] ConvNet-4 70.26 ± 0.50 85.01 ± 0.32
ProtoNet [36] † ResNet-12 72.25 ± 0.21 87.47 ± 0.13
DeepEMD [58] ResNet-12 75.65 ± 0.83 88.69 ± 0.50
FEAT [55] † ResNet-12 75.68 ± 0.20 87.91 ± 0.13
BML [60] ResNet-12 76.21 ± 0.63 90.45 ± 0.36
Good-Embed [38] ‡ ResNet-18 77.92 ± 0.46 89.94 ± 0.26
DFR [6] ResNet-12 78.07 ± 0.79 89.74 ± 0.51
VFD [49] ResNet-12 79.12 ± 0.83 91.48 ± 0.39
FRN [46] † ResNet-12 82.90 ± 0.19 92.61 ± 0.10

Ours ResNet-12 80.77 ± 0.90 92.01 ± 0.71

(b) Average classification accuracy (%) on CUB dataset.

Table 2: Comparison with state-of-the-art methods for general (a) and fine-grained (b) few-shot image classification. The
best and second best results under each setting and dataset are highlighted as Red and Blue, respectively. †: reimplemented
based on public code with our setting. ‡: reported in [48].

Cross-Dataset 
Setting

Train Scenario Test Scenario
miniImageNet CUB

Cross-Domain 
Setting 1

Cross-Annotated 
Setting

miniImageNet Quickdraw

tieredImageNet (Coarse) tieredImageNet (Fine)

Cross-Domain 
Setting 2

FS-DomainNet Quickdraw

(a)

(b)

(d)

(c)

Figure 6: Illustration of three challenging few-shot general-
ization scenarios under the 3-way 1-shot setting.

significantly improve the performance of few-shot meth-
ods and outperform state-of-the-art methods for 5-shot set-
ting on miniImageNet and 1-shot setting on tieredImageNet
datasets. Moreover, FGFL is still on par with state-of-the-
art methods under other settings. For CUB, as shown in
Table 2 (b), we can observe that FGFL can improve the per-
formance of FEAT by a large margin, i.e., 5.09% and 4.1%
for 1-shot and 5-shot settings, and is competitive with the
state-of-the-art methods.

4.3. Few-Shot Generalization

To evaluate the generalized performance of few-shot
methods, we propose three few-shot generalization settings
for cross-domain classification based on challenging test
scenarios, shown in Figure 6.

4.3.1 Cross-Dataset Generalization

In this setting, we only consider the distribution gaps of
classes between training and testing datasets with the same
style, e.g., natural images. As shown in Figure 6 (a), we
train on the miniImageNet dataset with natural images and
evaluate the fine-grained CUB dataset with various bird
species, i.e., mini → CUB.

Table 3 shows that the proposed FGFL significantly im-
proves the performance of the baseline FEAT method and
outperforms the other methods. Figure 7 (a) shows that
the proposed FGFL can force the network to capture dis-
criminative task-specific frequency components for classifi-
cation, e.g., high-frequency edge features for the first class
and low-frequency color features for the third class.

4.3.2 Cross-Domain Generalization

Unlike the cross-dataset setting, the visual similarity be-
tween the training (source) and testing (target) domains may
have a significant gap, as the target domain may contain un-
natural images, e.g., quickdraw. As shown in Figure 6 (b)
and Figure 6 (c), we split the cross-domain scenario into two
specific settings according to the number of the source do-
mains, i.e., single (e.g., miniImageNet) or multiple domains
(e.g., FS-DomainNet). For the second setting, each source
domain only contains images with the same style such as
paintings.

Results in Table 3 show that our proposed FGFL outper-
forms other few-shot methods by a large margin under two
cross-domain generalization settings, i.e., mini → Quick-
draw and FS-DomainNet → Quickdraw. Figure 7 (b) also
verifies that our proposed method can indeed learn to ex-
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Figure 7: Visualizations for few-shot generalization on three test datasets. (a), (b), and (c) represent different settings, i.e.,
cross-dataset, cross-domain, and cross-to-fine (C-to-F) annotated settings, respectively.

ploit high-frequency patterns rare in natural images to dis-
tinguish different classes on the quickdraw dataset. Another
interesting observation is that few-shot methods generally
perform better when generalizing from FS-DomainNet to
quickdraw than from miniImageNet to quickdraw. A rea-
sonable explanation is that compared to the miniImageNet
dataset with small domain variations, the FS-DomainNet
dataset includes multiple domains with obvious differences,
which enables the network to capture domain-specific infor-
mation from each meta-task for classification, resulting in
better generalization ability to the unseen domain. Further-
more, our FGFL can still boost performance in this setting,
illustrating the necessity of frequency domain information.

4.3.3 Coarse-to-Fine Annotated Generalization

Different from existing settings, we consider the annotation
difference between training and testing sets for few-shot
generalization. In practice, an image may have different
levels of class annotations due to the requirements of label-
ing tasks. For example, we only need a training set with two
labels “Furniture” and “Person” to train a powerful classi-
fier for a binary classification task. However, when we want
to use the above classifier to identify the species of furni-
ture, we need additional fine-grained labels such as “Desk”
or “Chair”. This is a practical scenario since fine-grained
labeling requires a high cost of human collaboration. We
conduct experiments on tieredImageNet with hierarchical
annotations to evaluate the generalization performance un-
der this setting, shown in Figure 6 (d). All competing meth-
ods are trained on the coarse-annotated training set with 20
super-classes and evaluated on the fine-annotated testing set
with 160 sub-classes same as the standard few-shot setting,
denoted as tiered(C) → (F).

As shown in Table 3, all methods perform worse than
general classification results in Table 2. The reason is that
the model tends to overfit the general features of high-level
class prediction tasks while ignoring within-class differ-
ences. We observe that our proposed FGFL can still out-

Method Cross-Dataset Cross-Domain Cross-Annotated

mini → CUB mini → Q F → Q tiered(C) → (F)

MatchingNet [39] 51.37 - - -
GNN [13] 62.25 - - -
GNN + FT [39] 66.98 - - -
Meta DeepBDC [48] 77.87 - - -
FEAT [55] † 62.28 55.96 77.23 64.67
ProtoNet [36] † 66.29 64.32 74.43 64.08
BML [60] † 71.22 75.47 65.38 52.63
DeepEMD [58] † 77.34 58.04 78.52 65.87

Ours 81.35 76.34 89.34 67.84

Table 3: Few-shot generalization results under the
5-way 5-shot setting. mini, Q, F, and tiered(C),
(F) denote miniImageNet, QuickDraw, FS-DomainNet,
tieredImageNet with coarse-grained or fine-grained annota-
tions. †: reimplement based on public code with our setting.
tieredImageNet with coarse-grained (super-classes) or fine-
grained annotations (sub-classes). †: reimplemented based
on public code with our setting.

Model miniImageNet

5-way 1-shot 5-way 5-shot

Baseline 66.52 ± 0.20 81.46 ± 0.14
+Lsw tri 67.38 ± 0.80 83.61 ± 0.61
+Lcw ctr 68.44 ± 0.81 85.60 ± 0.60
+Laug 69.14 ± 0.80 86.01 ± 0.62

Table 4: Ablation studies for our proposed FGFL frame-
work over miniImageNet.

perform all methods. Figure 7 (c) shows that our method
can focus on specific frequency components (e.g., low and
middle FCs corresponding to color and shape spatial fea-
tures), which is discriminative for class prediction.

4.4. Ablation Study

We perform ablation studies to investigate the effective-
ness of the key components of FGFL on miniImageNet un-
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der the 5-way settings with ResNet-12 as the backbone. As
shown in Table 4, each proposed loss contributes to perfor-
mance improvement. Moreover, we find that Lsw tri and
Lcw ctr significantly improve the performance (1.92% and
4.14% for 1-shot and 5-shot, resp.), indicating that the pro-
posed multi-level metrics can better utilize the frequency in-
formation to improve the generalizability of the model and
avoid over-fitting to spatial features, leading to further im-
provements over spatial masks. Results also show that the
two losses play different roles and complement each other,
which further proves that our proposed method can utilize
frequency information from different levels to help with
classification. Noted that the performance gain under the
5-shot setting is much higher than the 1-shot setting. One
plausible reason is that more supervised information intro-
duced by support samples helps to generate a more precise
frequency mask, which helps reduce the intra-class varia-
tion to learn a strong classifier, aligning with our idea.

5. Conclusion

In this paper, we proposed a novel Frequency-Guided
Few-shot Learning (FGFL) framework for few-shot classifi-
cation and generalization. Specifically, the frequency masks
generated by the classification gradients in the DCT domain
can emphasize the class-discriminative frequency compo-
nents in the current meta-task. Our proposed multi-level
metrics, including sample-wise triplet loss and class-wise
contrastive loss, can better utilize the frequency information
at sample and task levels and encourage the model to cap-
ture more task-relevant frequency information to help the
classification in the spatial domain. Besides, we systemat-
ically investigated the effects of frequency information on
few-shot generalization behaviors. Extensive experiments
demonstrated that FGFL achieves competitive results with
state-of-the-art methods on the standard few-shot settings,
and significantly improves the generalized performance on
unseen testing domains.
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