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Abstract

The diversity in length constitutes a significant charac-
teristic of text. Due to the long-tail distribution of text
lengths, most existing methods for scene text recognition
(STR) only work well on short or seen-length text, lack-
ing the capability of recognizing longer text or perform-
ing length extrapolation. This is a crucial issue, since the
lengths of the text to be recognized are usually not given in
advance in real-world applications, but it has not been ad-
equately investigated in previous works. Therefore, we pro-
pose in this paper a method called Length-Insensitive Scene
TExt Recognizer (LISTER), which remedies the limitation
regarding the robustness to various text lengths. Specifi-
cally, a Neighbor Decoder is proposed to obtain accurate
character attention maps with the assistance of a novel
neighbor matrix regardless of the text lengths. Besides, a
Feature Enhancement Module is devised to model the long-
range dependency with low computation cost, which is able
to perform iterations with the neighbor decoder to enhance
the feature map progressively. To the best of our knowl-
edge, we are the first to achieve effective length-insensitive
scene text recognition. Extensive experiments demonstrate
that the proposed LISTER algorithm exhibits obvious supe-
riority on long text recognition and the ability for length ex-
trapolation, while comparing favourably with the previous
state-of-the-art methods on standard benchmarks for STR
(mainly short text)".

1. Introduction

Scene text recognition (STR) is a popular topic in the
computer vision community [40, 41, 42, 34, 54, 18, 36,
48, 5], which aims at extracting machine-readable sym-
bols from scene text images. Recently, a variety of works
have pushed forward the recognition performance from
the perspective of arbitrary-shaped text [42, 28, 57], com-
bining language models [42, 54, 18, 36, 47], etc. How-
ever, sequence length, as a vital characteristic of text, is

Uhttps://github.com/AlibabaResearch/AdvancedLiterateMachinery
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Figure 1. Different attention mechanisms for STR. « in green is
the attention maps produced by: (a) complicated RNN in a serial
way (Transformer decoder does similar), (b) pre-defined learnable
limited queries in a parallel way, (c) the proposed novel neighbor
matrix in a serial but simple and efficient way.

rarely discussed. In fact, instances of long text occur fre-
quently in websites, compound words, text lines, codes and
multi-lingual scenarios [7]. As revealed in previous stud-
ies [19, 49], existing methods cannot handle images with
long text very well. We regard it as a key issue worthy of
in-depth investigation. Concretely, we ought to systemati-
cally analyze the performance of existing methods on text
of different lengths and explore an effective way to realize
length-insensitive STR.

According to our observation, decoders in scene text
recognition models are directly associated with the objec-
tive of text prediction, thus they are highly likely to play an
important role in length-insensitive STR. In previous works,
there are three types of text decoders: CTC [20, 40]-based
decoder, serial attention decoder [42, 33, 5], and parallel
attention decoder [49, 54, 18]. The CTC-based decoder
makes dense prediction on the feature sequence, and then
re-organizes the text by a pre-defined rule. It is efficient,
robust to long text recognition, and can be applied to multi-
line recognition [53, 50], but has some trouble in feature
learning [30, 22]. The serial attention decoder (Fig. 1(a))
adopts RNN or the Transformer decoder to predict charac-
ters step by step, which is slow in inference, and may en-
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Figure 2. Performance of recent STR methods on images with dif-
ferent text lengths. (a) Accuracy distribution over length. (b) A
case of attention map visualization of ABINet [18]. (c)Length dis-
tribution in the synthetic training set.

counter the attention drift problem [11, 49, 7], especially
for long text. The parallel attention decoder (Fig. 1(b))
takes pre-defined limited queries to obtain character atten-
tion maps in a parallel way, which is efficient as CTC
and effective for short text recognition. Thus, it has at-
tracted considerable attention from the community recently.
However, it appears to be sensitive to text length [19, 49].
In principle, each pre-defined query embedding requires a
large amount of training data with the corresponding text
lengths to learn well. Text of lengths unseen during training
are difficult, if not impossible, to be well recognized.

To verify this, we simply evaluate the performance of
several representative attention-based methods [18, 48, 36]
on a scene text image dataset> where text lengths distribute
uniformly. As shown in Fig. 2(a), the previous methods
work very well for short text, but degrade dramatically as
the text length becomes larger than 14. Fig. 2(b) shows
the character attention maps where the latter maps are dis-
tracted, and the latter characters are also mis-recognized.
Combining with the long-tailed length distribution of the
training set [23, 21] (Fig. 2(c)), we conjecture that the par-
allel attention-based methods overfit on the text images of
seen lengths seriously. In brief, the three existing decoders
are not able to actualize effective length-insensitive STR.

On the other hand, the long-range feature modeling is
crucial to the effectiveness of STR models. Recently, Trans-
former layers [44] have been proved strong for global con-
text modeling [54, 18, 15, 48, 43, 5]. However, there are
also concerns about the large computation cost [17, 5]. The
computation complexity (O(N?)) increases incontrovert-

2The details of this dataset will be described in Sec. 4.1.

ible. Image patches or token features, including the noisy
background, are all fed into the Transformer layers, which
is a little bit redundant and expensive for GPU memory [58],
especially for a large input size. Besides, the absolute posi-
tional encoding in Transformer layers also restricts the abil-
ity for length-insensitive STR.

Aware of the challenges above, we propose a Length-
Insensitive Scene TExt Recognizer (LISTER), which in-
corporates a novel robust Neighbor Decoder (ND) and a
lightweight Feature Enhancement Module (FEM). In ND,
the attention mechanism is still utilized to ensure the effec-
tiveness. Like the serial attention-based decoder, we regard
the decoding process as a linked list data structure, so each
character can be aligned by its previous neighbor regardless
of its absolute position in the string. However, ND relies on
a novel neighbor matrix where the next neighbor (charac-
ter) locations of all the points in the feature map are indi-
cated in a soft way, as shown in Fig. 1(c), which is simple
but effective for length-insensitive text decoding. To model
the long-range feature dependency with low computation
cost, we propose to feed only the aligned character features
to the Transformer layers and then enhance the whole fea-
ture map in FEM. The self-attention layers adopt the sliding
window [6] to fit arbitrary-length sequences. Our contribu-
tions are summarized as follows:

1) A length-insensitive scene text recognizer, LISTER,
is proposed with neighbor decoder as its core module.
To the best of our knowledge, it is the first attempt to
realize effective length-insensitive text recognition.

2) We propose a Feature Enhancement Module that en-
hance the whole feature map by Transformer layers
with low computation cost.

3) Through extensive experiments, we prove that LIS-
TER is on par with the previous state-of-the-arts on the
common STR benchmarks, while outperforming them
on long text. Besides, LISTER also achieves excellent
performance in terms of length extrapolation.

2. Related Works

We review previous arts on scene text recognition (STR)
based on the aspects related to our contributions [59, 32].
STR decoders. Text decoder is an essential component
in a standard STR pipeline [2]. The CTC [20]-based
decoder was adopted in various networks and applica-
tions [40, 31, 53, 50, 22, 16] due to its good balance be-
tween accuracy and efficiency. However, it was pointed
out that the CTC loss misleads the feature alignments and
representations[22]. The serial attention mechanisms in
STR [42, 27, 11, 28, 9, 29, 33, 43, 5] were inspired by
the attention-based encoder-decoder framework in machine
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Figure 3. An overview of LISTER. (a) The model architecture. The Neighbor Decoder is the core component for length-insensitive STR,
which takes F as input and outputs string predictions p@ and character features g(. The Feature Enhancement Module enhances F'(*)
into %Y with aid of g(i) with low computation cost. (b) The neighbor matrix generated by the Neighboring Navigator, which indicates
the next neighbor of each character explicitly. (c) The feature map enhancer. The contextualized character features (in orange) are put back

to F9, then spread over F® by a convolution block.

translation [4] and the Transformer decoder [44]. Although
the auto-regressive way achieved improved accuracy, the
inference speed was also concerned since heavy computa-
tion remains in each decoding step. As a result, the par-
allel attention mechanism has become popular in recent
years [49, 54, 46, 18, 38, 51, 48, 36]. It is efficient, but sen-
sitive to text length for long text sequence [19]. It is urgent
to have a robust, effective and efficient decoder.

Transformer in STR. The Transformer [44] architecture
has been widely used in STR. Some works [54, 33, 18] used
convolution layers and Transformer encoder layers as the
image feature encoder. Recently, researchers built the back-
bone on the pure ViT [14, 1, 48, 43, 5] and achieved im-
pressive performance. SVTR [15] used stacked local and
global mixing blocks that contain shift-window attention
and standard self-attention layers. Also, the Transformer
decoder was directly taken as the text decoder in some
arts [33, 43, 5]. However, it is non-trivial to reduce the sig-
nificant computation cost caused by the Transformer layers.
ABINet++ [17] replaced the Transformer units with stacked
convolution layers directly. There are some works [24, 56]
that proposed to use key frame proposals for efficient video
understanding. Inspired by them, we only feed the key char-
acter features into the Transformer layers. Then the whole
feature map is enhanced efficiently.

Problem of text length in STR. A key feature of the
STR task is that text with arbitrary-length should be rec-
ognized. However, most prevoius arts [40, 42, 54, 18, 48]
resized the input image to a fixed size and restricted the
maximum length of text, which were unable to recognize
unseen-length text absolutely. Meantime, for text with
rarely-seen length, serial and parallel attention-based math-

ods [42, 54, 18, 43, 36] are both more prone to make er-
rors [49, 19]. Tan et al. [43] designed an ensemble model
with patches of different resolutions to adapt to different
degrees of stretching in fixed-size images. ABINet++ [17]
took as input images with a fixed bigger size, aggregated
the horizontal features, and enriched the query vectors with
content to alleviate the multi-activation phenomenon for
long text. In this work, we propose to build a text recog-
nizer that is robust to text length.

3. Methodology

The proposed Length-Insensitive Scene Text Recognizer
(LISTER) is able to read both short and long text images,
and support iterative feature map enhancement. As shown
in Fig. 3(a), LISTER consists of three parts: a feature ex-
tractor, a Neighbor Decoder (ND) and a Feature Enhance-
ment Module (FEM). A text image is first fed to the feature
extractor, then the encoded feature map Fc(g)th is passed
to the length-robust ND to obtain the character attention
mapsA(©), align the character features ¢(*) and get predic-
tions p(®) (decoding iter 0). We further enhance the fea-
ture map by capturing the long-range dependency of the
aligned character features in FEM. The enhanced feature
map Fc(;)th (¢ >0 means the feature map is enhanced ¢
times) is also used in ND (decoding iter 1, - - -).

3.1. Feature Extractor

We adopt a convolution-based network, FocalNet [52],
to extract visual features that does not acquire position en-
codings, which gets rid of the constraint of fixed image size.
Similar to SVTR [15], we use strided depth-wise convolu-
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tion and point-wise convolution to obtain image patch em-
beddings. Through the feature extractor, we obtain a feature
map Fég)th with rich local neighboring reception, where

¢ is the number of feature channels.

3.2. Neighbor Decoder

The attention-based neighbor decoder is able to trans-

late feature maps into arbitrary-length text robustly. Its
attention mechanism consists of three simple modules, as
shown in Fig. 3(a). We first flatten Fc(Qth(z' > 0) as
F(z) c R(hw)xc.
Neighboring Navigator navigates each feature point in
F(®) where its next neighbors are. Here we demand that
the next neighbors of a character-related point should be the
points related to the next character. To this end, the neigh-
bor matrix [V is designed to indicate the next neighbors, as
shown in Fig. 3(b): Ny, is the probability of the k-th point
being the next neighbor of the j-th.

Note that we append an [EOS] token to F) 5o that the
last character has the special token as its neighbor. The re-
sulted full feature sequence is:

HO = [ﬁ‘(i);eEos] € RSx® (1)

where [-] is the concatenation operation, egog is the learn-
able embedding of the [EOS] token, and S = hw + 1. Then
the neighbor matrix is obtained by a bilinear layer:

NO — o <k (H“‘)Wq) W, (H<”Wk)T + br> )

where N € RS*S W, W), and W, are learnable weights
with shape ¢ X ¢, b, € R, and ¢ is the softmax function.

First Character Locator generates the attention map of the
first character. The query is a function of the global feature:

¢\ = GAP(FYW, 3)

where GAP(-) is the global average pooling. Then the at-
tention map of the first character is:

, I
Ay =0 (‘i} (H“)Wk)) e RS )

c

Character Aligner produces all the character attention
maps. Ideally, if the (j — 1)-th character has been located
at the J-th feature in H (9, the next character can be located
by looking up the neighbor matrix N(?) based on the index
J, which is argmaxNﬁz).
idea in a soft way. Given NV and Aéi), A;i)(j > 0) are
calculated recurrently like a linked list:

In real case, we implement the

AV =AW NO 5)

The attention map generation is going on until
A >e0<e<) (6)

which means the end of decoding. ¢ is a hyper-parameter
set to 0.6 empirically (the accuracy is insensitive to €). As-
suming that . — 1 recurrences is performed, we obtain
AU ¢ REXS which have L — 1 real character attention
maps and one [EOS] attention map. Since ), A(()f)k =1,
ST NS = 1, we can easily deduce that 37, A;l,)c =L
Hence, A is a matrix of probability distributions, which
meets the demand of been taken as the character attention
maps here.

Although Eq. (5) is performed in a serial way, it is still
fast due to the low complexity of attention calculation. We
will discuss it in the experiments. In fact, Eq. (5) is promis-
ing to run in parallel, since A;Z) can also be calculated by
only Aéz) and N(@): Agﬁ = ASZ)N(N.

The aligned character features are:

g = AD O ¢ RExe (7

Finally, we get the text prediction by a linear layer followed
by a softmax function.

3.3. Feature Enhancement Module

Long-range feature modeling is important in scene text
recognition. The proposed Feature Enhancement Module
(FEM) captures the long-range dependency of the aligned
character features, and then utilizes them to enhance the
previous feature map F() into F+1 with low computa-
tion cost. We do not use language embedding to be elegant.

Specifically, the character features ¢(*) are fed into a few
transformer layers 7 with sliding windows [6], to satisfy the
original intention of processing arbitrary-length sequence:

g =T(g") e RE*® (8)

Fig. 3(c) illustrates the feature map enhancer. The con-
textualized character features §(*) are put back to the previ-
ous feature map, according to their attention maps:

GO = HO) 4 AOT 50 ©

To further spread the long-range contextual information
over the entire feature map, GUFY s reshaped to the size
h x w x c (the [EOS] feature is dropped), and a convolution
block is simply exerted:

F(i+1) _ C (G«(’L+1)) c chhxw (10)

The enhanced feature map Ft1) will also be decoded
by the proposed neighbor decoder. The FEM+ND process
can be performed iteratively to have finer and finer features.
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3.4. Training and Evaluation

For each decoding iteration, the training objectives are
three-fold as in Eq. (11), where \; and )5 are set to 0.01 and
0.001 respectively. The recognition loss LEQC is the cross-
entropy loss.

LD = £ + ML, + roLl (11)

To satisfy Eq. (6) at the end of decoding, we design an end-
ing location loss as in Eq. (12), where A%)_
map for the [EOS] token.

1 1s the attention

£@

€0s

= —logAY | ¢, (12)

Besides, to avoid the multi-activation phenomenon [17], the
minimum entropy regularization is also used to make each
attention map focus more on the core character region [10]:

LY =— Llog +S ZZA;k)logA (13)

For the model where FEM is iterated several times, the
final objective takes the average loss.

During the inference, we propose an Attention Sharp-
ening (AS) strategy to strengthen the ability for length ex-
trapolation. Noted that an imprecise attention map may not
lead to an prediction error for its corresponding character
directly, but could influence the latter ones by attention er-
ror accumulation. Considering that an imprecise attention
map usually has higher entropy, we propose to sharpen the
character attention map when it is used for the next attention
map generation. To this end, Eq. (5) is re-writen to:

APV = A NO (14)
<) exp (osz;’f)Ls) -1
AD = . (15)
Yo, €exp (ajAjth) - S

a; =min (1 +X(j —1), ) (16)

where )\ and p are hyper-parameters set to 2 and 16 (insen-

sitive) empirically. The resulted A Z, 1s a sharpener distri-
bution that could alleviate the accumulated attention errors.
Finally, the prediction of the last iteration is adopted.

4. Experiments

4.1. Datasets

Common Benchmarks. We simply use the common
benchmark datasets (CoB) following ABINet [18], to make
fair comparison. The two widely-used synthetic datasets,
MIJSynth (MJ) [23] and SynthText (ST) [21], are used to

Table 1. Architecture variants of LISTER.

Model | Depths Dimensions FEM
LISTER-T* | [2,2,6,2] [64.128.256,512]  x
LISTER-T | [2.2,6,2] [64,128,256,512] v
LISTER-B* | [2,2,9,2] [96, 192, 384, 768] X
LISTER-B [2,2,9,2] [96, 192,384, 768] v

train our model. Six real datasets are usually used to eval-
uate STR models, including 3 regular datasets (IIITSK [35]
(3000), IC13 [26] (857) and SVT [47] (647)) and 3 ir-
regular datasets (IC15 [25] (1811), SVTP [37] (645) and
CUTE [39] (288)).

More challenging datasets. Following PARSeq [5],
3 challenging datasets are also taken for model evalua-
tion: COCO-Text [45] (9.8k), ArT [12] (35.1k) and Uber-
Text [55] (80.6k).

Based on the length distribution of the synthetic training
set, text of length longer than 16 is assumed as long here.
Long text images account for 0.3% in the 6 test sets of CoB,
1.1% in ArT, 0.5% in COCO-Text, and 1.9% in Uber-Text.

Text of Uniformly-distributed Lengths. The existing
popular benchmarks do not have enough long text images to
evaluate length-insensitive text recognition well. Hence, we
collect a new scene text dataset as the new test set, named
Text of Uniformly-distributed Lengths (TUL), where text
of lengths 2-25 distributes uniformly, with 200 images and
200 different words for each length. To be clear, we only
consider 36 characters here, including 26 English letters
and 10 digits. The images are randomly sampled from the
Out of Vocabulary Scene Text Understanding competition
dataset® [19]. Images with very poor quality are filtered.
We suggest that models evaluated on TUL should not be
trained on real training set [5, 3], since there may be some
overlaps between the real training data and TUL.

4.2. Implementation Details

For the feature extractor, the large receptive version of
FocalNet [52] is used except that the image width is only
4x downsampled. For FEM, 8 heads are used in the self-
attention layers with a window size of 11. Tab. 1 lists de-
tails of different LISTER variants. Throughout the exper-
iments, we use the tiny version and 2 iterations of FEM
(1 Transformer layer & 1 Convolution block) by default,
unless some specifications. The number of classes is 37,
including 26 lower-case letters, 10 digits and an end-of-
sequence token.

For training, the model is initialized by using the trun-
cated normal distribution. The AdamW optimizer is used
with weight decay of 0.05, and the initial learning rate is
le — 3 which starts with 5000 warm-up steps and decays
to 5e — 7 by a cosine scheduler. The image augmentation

3https://rrc.cve.uab.es/?ch=19&com=introduction
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Table 2. Comparison with other methods. The results of some methods on TUL are evaluated based on their publicly-released models.
LISTER-T*" is trained without £\, LISTER-B#

ent*

adopts the 3-scale ensemble strategy during inference.

Common Benchmarks (CoB)

Method MIT5K ICI3 SVT | ICI5 SVIP CUTE [ AvG | LUL | Params (M)

SRN [54] 94.8 955 915 | 827 85.1 87.8 90.4 - 54.7

ABINetyision [18] 94.6 949 904 | 81.7 84.2 86.5 89.8 | 56.1 23.5

VisionLAN [51] 95.8 95.7 91.7 | 83.7 86.0 88.5 91.2 - 32.8

SVTR-L [15] 96.3 972 91.7 | 86.6 88.4 95.1 92.8 - 40.8

MGP-STR yision [48] 96.4 96.5 932 | 863 89.5 90.6 92.7 | 50.6 85.5

PARSeqy [5] 95.7 96.3 92.6 | 85.1 87.9 914 92.0 - 23.8

PARSeq4 [5] 97.0 97.0 93.6 | 86.5 88.9 92.2 93.2 - 23.8

PTIE [43] 96.3 972 949 | 87.8 90.1 91.7 93.5 - 459

ABINet [18] 96.2 974 935 | 86.0 89.3 89.2 92.6 | 57.7 36.7

MGP-STR [48] 96.4 973 947 | 87.2 91.0 90.3 93.3 | 50.8 148.0

MATRN [36] 96.6 979 95.0 | 86.6 90.6 93.5 93.5 | 60.5 44.2

LISTER-T*f 95.7 963 91.8 | 84.7 86.0 87.8 91.5 | 76.6 13.5

LISTER-T* 96.0 963 927 | 84.9 86.4 85.1 91.7 | 76.8 13.5

LISTER-B* 96.3 96.7 924 | 85.7 86.4 89.6 922 | 79.2 35.7

LISTER-T 96.5 97.7 935 | 86.5 87.8 87.9 92.8 | 77.0 19.9

LISTER-B 96.8 97.7 935 | 87.2 89.5 89.6 933 | 79.2 49.9

LISTER-B# 96.9 979 938 | 875 89.6 90.6 935 | 79.5 49.9

Table 3. Comparison on more challenging datasets. very flexible and convenient since the input image size is
2415}11110?[18] 251‘31‘ Cgclo gze; IZZ(Z; unconstrained. we do not need to train an ensemble model.
e . . . .

MATRN [36] 689 640  40.1 | 50.0 4.3. Comparison with State-of-the-arts
MGP-STR [48] | 69.2 65.4 40.9 | 50.7 .
PARSeq [5] 69.1 60.2 399 | 497 We compare our LISTER with ot.her methods on TUL
PARSeq 4 [5] 707 64.0 20 | 518 and the common benchmarks respectively.
LISTER-T 69.0 641 480 | 55.0 Results on TUL. To compare the performance for length-
LISTER-B 70.1 65.8 49.0 | 562 insensitive text recognition, we evaluate several represen-
LISTER-B" 70.9 66.0 505 574 tative methods that are strong on the common benchmarks

technique in ABINet [18] is used. The height of images
are set to 32, while the aspect ratios are randomly changed
ranging from % to 4 times. In the batch training, the batch
width is the maximum width of the batch samples. Shorter
images are filled with zero pads. Correspondingly, padding
masks are exerted throughout the model. To be efficient, we
empirically restrict the maximum width to 256 and 416 for
different settings. There is no restriction on the maximum
text length. We train our model for 10 epochs with a batch
size of 512 using one A100-80GB card.

For both training and evaluation, images with the widths
w < 128 are finally resized empirically* to avoid the side
effect of some narrow text images. When comparing with
PTIE [43] that proposed a strong ensemble way during eval-
uation, we also try a multi-scale ensemble strategy to im-
prove the performance further. The input images are resized
to 3 different scales’, then fed to the model. The result with
the highest probability is taken as the final prediction. It is

4h =32, =w x 0.33 + 85
5The other 2 scaling ops: w’ = w X 0.26 + 95, w’ = w x 0.21 4121

recently, on the collected TUL. As shown in Tab. 2, the to-
tal accuracies of them lag far behind the more lightweight
LISTER-T* (improved by 16.3% at least). The main reason
lies in that they are poor for long text images, which is seen
clearly in Fig. 2. As the model size increases and FEM is
used, LISTER-B gets a further improvement of 2.5%.
Results on Common Benchmarks. LISTER also does
well on the common benchmarks where most texts are
short. As shwon in Tab. 2, LISTER-T* gets 91.7% with
only 13.5M parameters. Enhanced by FEM, LISTER-T gets
92.8% with 19.9 M parameters, reaching a good balance be-
tween accuracy and model size. By scaling up, LISTER-B
achieves an accuracy of 93.3% that is nearly on par with
the previous state-of-the-arts: MGP-STR [48] and MA-
TRN [36] employed the external language priors to promote
the final performance, while PTIE used the multi-resolution
patch ensemble strategy. Through the simple 3-scale en-
semble strategy (LISTER-B#), we obtain consistent gains,
and achieves an average accuracy of 93.5%.

Results on Challenging Datasets. As shown in Tab. 3,
LISTER-B outperforms others significantly on Uber-Text.
One key factor may be the higher ratio of long text in Uber-
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Figure 4. Comparison of different decoders on TUL. (a) The ac-
curacy distribution over different word lengths. (b) The decoding
time distribution. (Best viewed in color.)

Table 4. Results of different decoders.
MACs Time Params
(G) @ms) M

Decoder | CoB | TUL

CTC 902 | 729 | 059 13.7 12.8
PAT 914 | 61.6 | 0.60 13.8 13.0
SAT 913 | 66.5 | 0.73 18.1 15.4
ND 91.7 | 768 | 0.61 157 13.5

Text. However, LISTER-B does not get a better accuracy
than PARSeq4 on ArT where most cases have curved and
rotated text. It is mainly owed to the fact that the height
of extracted feature map is squeezed to 1 in our implemen-
tation, which is unfriendly to irregular-shape text. So we
build another variant, LISTER-B”, whose feature extractor
outputs feature maps with height = 4. As can be seen,
LISTER-B” gets further improvement and catches the best.

4.4. Impact of Neighbor Decoder

The proposed neighbor decoder (ND) plays the key role
for length-insensitive text recognition. We conduct exper-
iments on several popular decoders to compare their per-
formance comprehensively: CTC, parallel attention (PAT),
serial attention (SAT) and ND. The implementation of PAT
is based on SRN [54], and SAT is based on Aster [40] that
does not need additional pre-defined positional query em-
beddings. To be fair, the experiments share all the settings
except for the decoders, and SAT does not incorporate the
internal language model. The speed is measured on TUL by
one Nvidia V100 GPU card.

The results in Tab. 4 and Fig. 4 reveal that ND gets the
best accuracies on both the common benchmarks and TUL
with a little bit more cost. PAT does well on the common
benchmarks where short text accounts for the most, but gets
much worse on TUL. The accuracy decreases dramatically
as the text length increases beyond 16. SAT has a slightly
better accuracy on TUL with the cost of non-negligible
MAGC:s, latency and parameters. The attention-based RNN
decoder still cannot adapt to long text well. CTC is poor at
the common short text recognition, but more robust to text

wwwloudbillboardscom

(@) (b)

wwwloudbillboar 'sccom

Figure 5. Visualization of the attention maps for (a) parallel atten-
tion decoder and (b) the neighbor decoder. The character in yellow
means it is missed, that in red means it is redundant or an error.

Table 5. Ablation study on the FEM module. TrFE denotes that the
Transformer layers are placed in the end of the feature extractor.

No. No. No. Params MACs
TrFE Iters Trans Conv CoB  TUL ™M) G)
v - - - 92.0 76.8 19.9 1.62
0 - - 91.7 76.8 13.5 0.61
1 2 2 926 772 | 262 1.03
2 0 1 920 76.5 16.7 0.85
2 1 0 922 764 16.7 0.76
2 1 1 928 77.0 19.9 1.05
2 2 2 927 778 | 26.2 1.45

lengths, which owes to the essence that it conducts the de-
coding by dense predictions and re-ordering the characters
by a general rule [20].

As for the decoding time, ND is slightly slower than
CTC and PAT, but faster than SAT. Assuming that the
growth rate of the time complexity O(N) is 7, we find that
7 of ND (0.122ms) is much less than that of SAT (0.340ms),
as shown in Fig. 4(b). It is because the calculation in each
attention generation step is very simple.

Character attention maps of a long text image are visu-
alized in Fig. 5. Obviously, the attention maps of the latter
characters are vague for PAT, which leads to missing, re-
dundant or error character predictions. For ND, the atten-
tion map is focusing and clear, which is promising to obtain
the exact character features.

4.5. Effects of Feature Enhancement Module

The proposed FEM module is responsible for the long-
range dependency modeling with low computation cost. We
study the effects of different iterations, the number of Trans-
former layers and convolution blocks, and where the Trans-
former layers should be placed.

From Tab. 5, we find that increasing iterations of FEM
leads to better performance with the increasing computation
cost (1/2/2 VS 2/2/2). The Transformer layer and the convo-
lution block are both indispensable for FEM (by comparing
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Figure 6. Some recognition cases. The character in red means it is
redundant or an error.

Table 6. The results of the ability for length extrapolation on TUL.

Decoder | FEM AS ‘ Seen Unseen Total
CTC - - 82.9 56.2 72.9
ND - - 85.5 47.1 71.1
ND - v | 8538 58.4 75.5
ND v v | 859 61.4 76.7

2/0/1, 2/1/0 and 2/1/1). More Tansformer layers or convo-
lution blocks contributes more on TUL (2/1/1 VS 2/2/2),
which indicates that the long-range dependency in long text
images is still important.

Some works [54, 18, 15] modeled the long-range depen-
dency using Transformer layers in the latter part of their
feature extractor. To explore the effects of them and ours
fairly, we design a new setting: the Transformer layers are
placed in the tail of the feature extractor too, without the
FEM module. The first line in Tab. 5 shows that it does not
work as well as FEM, but forwards with more computation
cost. It may be because that too much noisy background
features are also modeled in the Transformer layers, which
is lack of the focusing on the key character features.

With iterations of FEM, the word prediction is refined.
Surprisingly, FEM can edit the initial predicted wrong
string by not only replacing characters, but also inserting
and deleting. Fig. 6 shows some cases. This problem was
pointed in SRN [54], and explored by LevOCR [13] inter-
pretatively.

4.6. Ability for Length Extrapolation

An essential evidence for length-insensitive text recog-
nition is the ability of length extrapolation, which means
that the model should be able to recognize text of lengths
unseen during training. To verify it, we filter the synthetic
training set by a simple rule: images with text lengths > 16
are dropped. Then we train the models using the filtered
training set. Note that we only train our LISTER and the
CTC-based method for comparison. The PAT-based and
SAT-based decoders are proven to perform poorly on long
text images even under the training of full data in Fig. 4.
The maximum width is increased to 416.

By the experiments, we conclude that ND have stronger
ability for length extrapolation than CTC. As shown in
Tab. 6 and Fig. 7, ND surpasses CTC on both seen- and
unseen-length text. FEM brings a further improvement.

0.9

0.8 /A\\

0.7
0.6 ND*
051 — D
0.4 ND + FEM
0.31 —— CTC Decoder Seen Lengths | Unseen Lengths
5 10 15 20 25

Figure 7. Results about length extrapolation. ND* is the Neighbor
Decoder version without attention sharpening.

BT oo d o ae T /e ey W MABNERSSUMMERNIGHTS.CON

ND: thatcherfercussion ND: wwwmagnerssummernightscom
CTC: thatcherifercussion CTC: nwwmagnerssummernightscon

LANUSORE RN ..t to-sovernment

ND: languagesregional ND: governmenttogovernment
CTC: lanquagesregional CTC: govermmenttogovemment

Figure 8. Recognition cases of unseen lengths in the length ex-
trapolation study. CTC is prone to make errors on similar-shape
characters or be interrupted by special characters. Note that we do
not use FEM on these cases to be fair.

wwwgovuksuptorternern wwwgovuksupportinternal
(a) (b) (©)

Figure 9. Visualization of (a) the neighbor matrix, and attention

maps of (b) ND without AS and (c) ND with AS, for an unseen-

length sample.

Some recognition cases are shown in Fig. 8.

A key factor for ND is the Attention Sharpening (AS)
strategy. Without AS, ND does much worse than CTC on
the unseen-length text. By visualization as in Fig. 9, we
find that the neighbor matrix has no significant problems be-
cause the latter characters can still locate its next neighbor
accurately. However, the latter attention maps of ND with-
out AS (Fig. 9(b)) are vague, suffering a lot from the error
accumulation. The little error in an early attention map will
be enlarged as the attention map generation goes on. After
using AS, the attention map (Fig. 9(c)) becomes clear and
focusing, and the accuracy on the unseen-length text images
increases by 11.3% notably.

4.7. Resizing or Padding?

Most previous works adopted direct resizing to prepro-
cess the images. Some arts pointed out that the input im-
ages should be resized rather than padding in their frame-
work [42, 43]. However, direct resizing causes image dis-
tortion inevitably [8], especially for the long text images.

For our framework, things have changed. As shown in
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Table 7. Comparison on the ways of image preprocessing.

Decoder | Padding Resizing | CoB TUL
PAT - 128 912 554
ND - 128 91.2 58.7
ND - 256 909 659
PAT v - 91.4 61.6
ND v - 91.7 76.8

Table 8. Comparison with other methods on scene-zh.

SAR [28] | SRN [54] | SVTR-L [15] | LISTER-B
62.5 60.1 72.1 73.0

Table 9. Results of different decoders on scene-zh.
Short Medium Long Total
(59267) (3869) (510) (63646)
PAT 67.9 51.9 5.1 66.4
CTC 66.9 53.5 35.1 65.8
ND 68.8 55.7 38.6 67.8

Decoder

Tab. 7, padding is always better for both PAT and ND. It
may owe to the local-aware feature extractor that does not
model the global dependency frequently like RNN or the
global self-attention layer, so our feature extractor is not that
easy to overfitting on the length.

4.8. Results on Chinese Text

Instances of long text may frequently occur in some non-
Latin scenarios, such as Chinese. To demonstrate the supe-
riority of ND in text images with real length distribution,
we further conduct experiments on a Chinese scene text
datase [7] (scene-zh), where a highly imbalanced length dis-
tribution prevails (1-77). The experiment settings follows
Du et al. [15] to be fair, except that the maximum image
width is extended to 448, and we do not restrict the maxi-
mum text length, which is an advantage of LISTER.

Our LISTER-B achieves state-of-the-art accuracy, as
shown in Tab. 8. We also compare our ND with PAT and
CTC on the short, medium and long text respectively. Ac-
cording to the length distribution, we manually regard texts
of lengths < 12 as short, that > 25 as long, and others as
medium. From Tab. 9, we conclude the same as discussed
from Tab. 4, which confirms the strong ability of our length-
insensitive text recognizer again, and the rationality of the
collected TUL dataset. From another perspective, LISTER
is promising to adapt to multi-lingual text recognition.

Although CTC decoder is also robust to text length, it has
two problems revealed in Fig. 10. On the one hand, similar-
shape characters are prone to be confused, as pointed in
Fig. 8 as well. On the other hand, the congested successive
same characters may be aggregated to only one due to the
strict rule for character decoding (See the last case). Our
ND is both robust to text length as CTC, and effective on
character feature extraction.

l?ﬁ 1506360898913562656702
Th: 1506360898913562656702
1fi: 150636089891356666622

Lb R
sﬁ 11 na ﬁ&. W IALE NO.11951
ND: B i 3C B AL fb A i i b SC A fno. 11951
CTC: mr‘jxﬁnmﬁiﬂ, W ST AE fno.11951
PAT: I 1 3C B AL S A i Bt SC Ak fino. 11951
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Figure 10. Recognition cases in scene-zh. in red means the

character is missed.
5. Conclusion

We have presented a length-insensitive scene text recog-
nizer, LISTER, which is robust to text length. As the core
component, the attention-based neighbor decoder is able
to obtain accurate attention maps through a novel neigh-
bor matrix for text of arbitrary lengths robustly. To model
the long-range dependency with low computation cost, we
propose a Feature Enhancement Module where only the
aligned features are fed to the Transformer layers. Exten-
sive experiments have proved the effectiveness of LISTER
on both short and long text images, as well as the capability
of performing length extrapolation. In the future, we will
explore a more efficient and robust way of image feature
encoding for length-insensitive STR.
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