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Abstract

We introduce a Parametric Information Maximiza-
tion (PIM) model for the Generalized Category Discov-
ery (GCD) problem. Specifically, we propose a bi-
level optimization formulation, which explores a param-
eterized family of objective functions, each evaluating a
weighted mutual information between the features and
the latent labels, subject to supervision constraints from
the labeled samples. Our formulation mitigates the
class-balance bias encoded in standard information max-
imization approaches, thereby handling effectively both
short-tailed and long-tailed data sets. We report ex-
tensive experiments and comparisons demonstrating that
our PIM model consistently sets new state-of-the-art per-
formances in GCD across six different datasets, more
so when dealing with challenging fine-grained problems.
Our code: https://github.com/ThalesGroup/
pim-generalized-category-discovery .

1. Introduction

Deep learning methods are driving progress in a wide
span of computer vision tasks, particularly when large la-
beled datasets are easily accessible for training. Obtaining
such large datasets is a cumbersome process, which is often
a limiting factor impeding the scalability of these models.
To alleviate this limitation, semi-supervised learning (SSL)
has emerged as an appealing alternative, which leverages
both labeled and unlabeled data to boost the performance
of deep models. Despite recent success, SSL approaches
work under the closed-set assumption, in which the cate-
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gories in the labeled and unlabeled subsets share the same
underlying class label space. Nevertheless, this assumption
rarely holds in real scenarios, where novel categories may
emerge in conjunction with known classes, which typically
results in significant drops in the performances of standard
supervised deep learning models. Thus, the ability to detect
whether the input of a deep learning model belongs or not
to a set of known classes seen during training is essential
for robust deployment in a breadth of critical application ar-
eas, such as medicine, security, finance, agriculture, market-
ing and engineering [4, 34]. Thus, devising novel learning
models that can address the realistic open-set scenario is of
paramount importance.

Novel category discovery (NCD) [18, 1] tackles this
problem by exploiting the knowledge learned from a set
of relevant known classes to improve clustering into un-
known categories. Nevertheless, NCD assumes the two
sets of classes to be disjoint, which means that the unla-
beled dataset contains only instances belonging to the set of
novel categories. Generalized category discovery (GCD)
[42] considers a more general scenario, where unlabeled
data contain instances from both seen and novel classes.
This scenario is particularly challenging, as learning is per-
formed under class distribution mismatch, and the unla-
beled data may contain categories never encountered in the
available labeled set.

Contributions: In this work, we address the generalized
category discovery task from an information-theoretic per-
spective. Our contributions are summarized as follows:

• We introduce a Parametric Information Maximization
(PIM) model for GCD. Specifically, we propose a bi-
level optimization formulation, which explores a pa-
rameterized family of objective functions, each evalu-
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ating a weighted mutual information between the fea-
tures and the latent labels, subject to supervision con-
straints from the labeled samples. Our formulation
mitigates the class-balance bias encoded in standard
information maximization, deals effectively with both
short-tailed and long-tailed data sets, and is model-
agnostic (i.e., could be used in conjunction with any
feature extractor).

• We report extensive experiments and comparisons
demonstrating that PIM consistently sets new state-
of-the-art performances across six different datasets,
with larger gaps on the more challenging fine-grained
benchmarks. It outperforms both specialized GCD
methods and standard information-maximization ap-
proaches.

2. Related work
Semi-supervised learning (SSL) has been widely ex-

plored in the machine learning and computer vision com-
munity. This learning paradigm aims at leveraging large
unlabeled datasets that contain the same set of classes as
the labeled samples. Due to their satisfactory performance,
consistency-based approaches have gained popularity re-
cently, such as Mean-Teacher [39], MixMatch [5], UDA
[45] or FixMatch [37]. An interesting alternative is self-
training, which relies on the generation of pseudo-labels
from a small amount of labeled data [36, 49], or in solv-
ing surrogate classification tasks [15, 46]. Nevertheless, the
main limitation is that most existing SSL models rely on
the closed-set assumption, as they do not consider unlabeled
data points sampled from novel semantic categories.

Novel Class Discovery (NCD), which was formalized
in [18], relaxes the closed-set assumption, as it focuses on
discovering new categories in the unlabeled set by leverag-
ing the knowledge learned from the labeled set. AutoNovel
[17] (also referred to as RankStats) resorts to ranking statis-
tics as an efficient approach for NCD. First, a good em-
bedding is learned in a self-supervised manner for learning
the early feature representation layers, which is followed
by a supervised fine-tuning step with labeled samples for
learning high level feature representations. Finally, to de-
termine whether two instances from the unlabeled set are
from the same category, a robust ranking statistics approach
is introduced. The authors of [48] proposed a method based
on dual ranking statistics, coupled with mutual knowledge
distillation. OpenMix [51] showed that mixing up both la-
beled and unlabeled data prevents the representation learn-
ing model from overfitting the labeled categories. Other
methods [23, 50] adopted contrastive-learning strategies for
the task of novel category discovery. UNO [14] uses a
cross-entropy loss to train the model with both the labeled
and unlabeled data. Despite the good performance in dis-

covering new categories, these methods assume that the
test dataset contains instances drawn solely from the novel
classes. A recent work by [47] presented a method based on
a mutual-information measure, which is different from the
discriminative and constrained mutual information we in-
troduce in this work. The mutual information in [47] eval-
uates the relation between the old and novel categories in
the label space, arguing that maximizing such a measure
promotes transferring semantic knowledge. In our case, we
introduce a parametric, bi-level optimization of the mutual
information between the feature and label spaces, on both
labeled and unlabeled samples.

Generalized Category Discovery (GCD) extends NCD
by allowing both the old and new classes to coexist in
the unlabeled dataset, which we tackle in this work. This
pragmatic yet challenging scenario was recently introduced
in [42] and triggered several other recent studies of the
GCD problem. In [42], the authors proposed to fine-tune
a pre-trained DINO ViT [11] with one supervised and one
self-supervised contrastive term. Then, they used a semi-
supervised clustering for label assignment. Note that, while
UNO [14] and RankStats [17] are originally investigated for
the NCD task, they are adapted for GCD in the recent study
in [42], yielding UNO+ and RankStats+, respectively. An-
other recent approach, referred to as ORCA [10], addressed
a similar problem, naming it open world semi-supervised
learning. ORCA consists of controlling the intra-class vari-
ance of the seen classes to align and reduce the learning gap
w.r.t. novel categories.

Maximizing the mutual information. Our discrimi-
native partitioning approach (PIM) is built on the general
and well-known InfoMax principle [32], which prescribes
maximizing the mutual information (MI) between the in-
puts and outputs of a system. Several variants of this gen-
eral principle have been recently used in machine learn-
ing and computer vision tasks, including deep clustering
[22, 28, 21], few-shot learning [8, 43, 6], representation
learning [40, 20, 2, 25], deep metric learning [7] and do-
main adaptation [35, 31, 3]. To the best of our knowledge,
addressing the GCD problem from an information-theoretic
perspective remains unexplored.

The pioneering discriminative clustering model in [28]
and the recent transductive few-shot method in [8] are
closely related to our work, as they both maximize the mu-
tual information between the features and the latent labels.
However, as we shall see in our experiments, the direct
application of information maximization [28, 8] to GCD
may not be highly competitive. First, the standard mutual-
information objective has a strong encoded bias towards
balanced partitions, via its marginal-entropy term, which
might be detrimental to performances. In this work, we
introduce a parametric family of mutual-information objec-
tives, which we tackle with a bi-level optimization formu-
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lation, thereby estimating automatically the weight of the
marginal-entropy term. Our parametric information maxi-
mization effectively deals with both short-tailed and long-
tailed data sets, mitigating the class-balance bias. Secondly,
the InfoMax models in [28, 8] were designed in the sce-
nario where the unlabeled set contains examples from the
classes seen in the available labeled set. Finally, in [28, 8],
the mutual-information objective is defined over the set of
unlabeled samples. In contrast, we propose a constrained
mutual-information formulation defined over both labeled
and unlabeled samples, thereby capturing the distribution
of the whole data set in the context of GCD. As we will
see in our experiments, our parametric, bi-level information
maximization substantially outperforms [28, 8] in the GCD
scenario.

3. Generalized Category Discovery problem
Problem definition. Assume we are given a dataset D
composed of two subsets so that D = DL ∪ DU . First,
DL = {(xi,yi)}Ni=1 refers to a labeled subset containing
N images from a set of known classes in YL. For each
image xi in DL, we have access to its corresponding one-
hot vector label yi = (yi,k)1≤k≤Kold , where Kold = |YL|
is the number of classes in YL. yi,k = 1 if xi belongs
to class k, and 0 otherwise. Now, let DU = {xi}Mi=1 de-
note the unlabeled subset, which contains M images from
a set of classes YU composed of known classes, as well as
novel classes, i.e., YL ⊂ YU . Note that, during inference,
K = |YU | is the total number of classes, which contains
both known and novel categories. Given this setting, the
Generalized Category Discovery (GCD) task introduced in
[42] consists in partitioning the images in the unlabeled set
into separate clusters at test time. Each obtained cluster is
supposed to represent a separate known or novel category.
In other words, the GCD problem amounts to jointly solv-
ing (i) a semi-supervised classification task for the known
classes; and (ii) a clustering task for the novel classes.
Notation. Let us denote gθ : D → Z ⊂ RD as the trained
encoder responsible for mapping an input image xi into a
feature vector zi of dimension D, with θ the set of train-
able parameters and Z the set of all embedded features,
for both the labeled and unlabeled samples. We now de-
fine a soft partitioning model fW : Z → [0, 1]K , which
is parameterized by weight matrix W = (wk)1≤k≤K ,
where wk = (wk,n)1≤n≤D denote its trainable parame-
ters. For each input feature map zi, fW outputs a softmax
prediction vector pi = (pi,k)1≤k≤K of dimension K, de-
fined on the standard (K − 1)-probability simplex domain
∆K−1 = {pi ∈ [0, 1]K | pT

i 1 = 1}. Note that, similarly
to the prior work in [42], we assume the number of clusters
during the partitioning task to be known.

Let Z ∈ RD denote a random variable representing the
feature map. Z follows P(Z), which denotes the distribu-

tion of the set of embedded features Z . Hence, each feature
map data point zi is a realization of Z. Furthermore, let
Y ∈ Y = {1, . . . ,K} be the random variable following the
dataset label distribution P(Y ).

4. Background on information maximization

Marginal distributions. Let π = (πk)1≤k≤K , where
πk = P(Y = k;W ) denote the marginal distributions
that one can approximate by the soft1 proportion of points
within each cluster, via Monte-Carlo estimation, as follows:

πk =

∫
z

P(Z = z)P(Y = k|Z = z;W )dz

≈ 1

|Z|
∑
i∈Z

P(Y = k|Z = zi;W ) =
1

|Z|
∑
i∈Z

pi,k
(1)

Mutual Information. The mutual information between
the labels and the features maps can be written as follows:

I(Y, Z) = H(Y )−H(Y |Z), (2)

with H(Y ) referring to the entropy of the marginal distribu-
tions P(Y = k;W ), and H(Y |Z) referring to the entropy
of the conditional probability distribution P(Y |Z;W ).

Marginal entropy. The marginal entropy term, H(Y ),
could be estimated using the soft marginal distribution ap-
proximation in (1), as follows:

H(Y ) = −
K∑

k=1

P(Y = k;W ) logP(Y = k;W )

= −
K∑

k=1

πk log πk

(3)

The class-balance bias in InfoMax approaches [8, 28]. It
is common in the literature to maximize the unsupervised
mutual information in Eq. (2), which is often defined over
unlabeled samples. This is the case, for instance, of the dis-
criminative clustering in [28] (RIM) or the transductive few-
shot inference in [8] (TIM). A closer look at the marginal-
entropy term in (3) enables to write it, up to a constant, as
a Kullback-Leibler (KL) divergence between the marginal
probabilities of predictions and the uniform distribution:

H(Y )
c
= −DKL(Y ||UK), (4)

1We use the term soft because the proportions are directly estimated on
the softmax predictions, instead of using hard labels.

1731



where c
= stands for equality up to additive and/or non-

negative multiplicative constant, and UK is the uniform dis-
tribution over K classes. Thus, maximizing H(Y ) pushes
the marginal distribution towards the uniform distribution,
as made explicit by the previous equation, thereby encod-
ing a strong bias towards balanced partitions. Note that this
standard mutual information objective lacks a mechanism to
explicitly control the weight of the marginal entropy. There-
fore, this term has the potential to harm the performance
in the case of imbalanced scenarios, where the underly-
ing class distribution is no longer uniform. Based on the
above-identified limitation of the mutual information, we
introduce a parametric family of mutual-information objec-
tives, which we tackle with a bi-level optimization formula-
tion, thereby estimating the relative weight of the marginal-
entropy term.

Beyond discriminative InfoMax clustering approaches
[28, 22], it is worth noting that standard generative clus-
tering objectives, such the ubiquitous K-means and it prob-
abilistic generalizations [24], also have a well-known bias
towards balanced partitions [24, 9]. We note that, in the
context of GCD, the study in [42], which introduced the
task, used K-means clustering.

5. Proposed bi-level and constrained InfoMax
Constrained mutual information We propose to max-
imize a constrained version of the mutual information pre-
sented in (2), integrating supervision constraints on the con-
ditional probabilities pi of the samples within the labeled
set. Our constrained information maximization reads:

max
W

H(Y )−H(Y |Z) s.t. yi = pi ∀zi ∈ ZL (5)

where ZL denotes the set of embedded features for the la-
beled samples. It is straightforward to notice that by plug-
ging the equality constraints in (5) into the mutual informa-
tion, one could write the objective as follows:

min
W

K∑
k=1

πk log πk − 1

|Z|
∑
i∈Z

K∑
k=1

hi,k log pi,k, (6)

where hi,k = yi,k if zi ∈ ZL and hi,k = pi,k otherwise.
That is, for yi = pi ∀zi ∈ ZL, the objectives in (5) and
(6) are equal to each other. Interestingly, the terms corre-
sponding to hi,k = yi,k in (6) yield the standard cross-
entropy (CE) loss for the labeled samples. This CE loss
could be viewed as a penalty function for imposing con-
straints yi = pi ∀zi ∈ ZL, as it reaches its minimum
when these constraints are satisfied. Therefore, we do not
need to impose explicitly the equality constraints in (5). No-
tice that, for the labeled samples, CE in (6) replaced the
conditional entropy term in the mutual information. This is
reasonable as CE enables to jointly impose the supervision

constraints while encouraging implicitly confident predic-
tions, as it pushes them toward one vertex of the simplex.
Both CE and conditional entropy reach their minima at the
vertices of the simplex.

Bi-level optimization To mitigate the bias of the mutual
information towards balanced partitions, we propose to ex-
plore a family of weighted versions of the objective in (6),
which we parameterize with a variable parameter λ and
tackle as a bi-level optimization problem:

F (W , λ) =

K∑
k=1

πk log πk︸ ︷︷ ︸
H(Y )

− 1

|ZL|
∑
i∈ZL

K∑
k=1

yi,k log pi,k︸ ︷︷ ︸
CE

− λ

|ZU |
∑
i∈ZU

K∑
k=1

pi,k log pi,k︸ ︷︷ ︸
∝H(Y |Z)

(7)
where ZU denotes the set of embedded features for the un-
labeled samples (i.e., Z = ZU ∪ ZL). Variable λ ∈ (0, 1]
controls the effect of the unsupervised loss terms in Eq. (7),
i.e., confidence vs. class balance. Therefore, as we will see
in our experiments, learning λ from the labeled set, via a bi-
level optimization, yields highly competitive performances
in the GCD setting, more so when dealing with long-tailed
(imbalanced) data sets. Our bi-level formulation reads:

min
W

F (W , λ) s.t λ ∈ argmax
λ∈(0,1]

AL(λ), (8)

where F is the upper-level objective and AL is the lower-
level objective defined by the clustering accuracy2 on the
set of labeled samples:

AL(λ) =
1

|ZL|

|ZL|∑
i=1

1{ŷi(λ)=yi}, (9)

and ŷi(λ) are the one-hot vector predictions on labeled sam-
ples maximizing parametric mutual information:

G(W , λ) =

K∑
k=1

πk log πk−
λ

|Z|
∑
i∈Z

K∑
k=1

pi,k log pi,k (10)

To tackle our problem, we explore a finite set3 λ of
uniformly-spaced values of variable λ in (0, 1]. For each of
these values of λ, we optimize G(W , λ) in Eq. (10) w.r.t to
linear-classifier parameters W via standard gradient steps,
thereby obtaining predictions ŷi(λ). Note that, although

2We used the Hungarian algorithm to align labels of the most consistent
Kold clusters (among the total K clusters) with the Kold class labels.

3In our experiments, we used 19 values of λ in [5e−2, 1], i.e. the
cardinalty of set λ is 19.

1732



we explore several values of λ, this remains computation-
ally efficient as the feature encoder parameters are fixed and
only classifier parameters W are updated. For initializing
W , which could be viewed as class prototypes, we use the
K-means++ algorithm. This process yields a prediction of
the optimal λ as: λopt = argmaxλ∈λ AL(λ). Finally, the
partitioning solution of our GCD problem in Eq. (8) is ob-
tained by optimizing the upper-level objective F (W , λopt)
via gradient steps.

6. Experiments

6.1. Experiments setting

Datasets. We evaluate and compare our approach to GCD
state-of-the-art approaches across six different natural im-
age datasets. More concretely, this includes three well-
known generic object recognition datasets, CIFAR10 [30],
CIFAR100 [30] and ImageNet-100 [12], as well as the re-
cent semantic shift benchmark suite (SSB) [41]. The lat-
ter is composed of three fine-grained datasets, CUB [44],
Stanford Cars [29] and Herbarium19 [38], which bring an
additional challenge to the performance of the baselines.
CUB and Stanford Cars contain fine-grained categories,
which are arguably harder to distinguish than generic ob-
ject classes. Herbarium19 is a long-tailed dataset, which
reflects a real-world use case with severe class imbalance
along with large intra-class and low inter-class variations.

We follow the original GCD setting [42] by splitting the
original training set of each dataset into labeled and unla-
beled subsets. More precisely, half of the image samples be-
longing to the Kold known classes is assigned to the labeled
subset, whereas the remaining half is assigned to the unla-
beled subset. The latter also contains all the image samples
from the remaining classes present in the original dataset,
which we consider as the novel classes. In this way, the un-
labeled subset is composed of instances from K different
classes. Table 2 provides, for each dataset, the number of
classes as well as the number of samples, within the labeled
and unlabeled subsets.

Evaluation protocol. We follow the evaluation proto-
col presented in GCD [42]. In particular, for the parti-
tioning task, we first employ the Hungarian algorithm to
find cluster-to-class assignment jointly on all samples, both
within the known and novel classes. Then, we use this op-
timal label-assignment solution to estimate the overall par-
titioning accuracy (ACC) for all classes (ALL), for known
classes (OLD), and for novel classes (NEW)4. In the evalua-

4Note that our partially supervised strategy already enables to correctly
align beforehand the clusters corresponding to the known classes with real-
class labels (See Eq. 7). W.r.t this interesting property, the standard clas-
sification accuracy metric could also be directly employed to estimate the
OLD Acc of our method.

tion, we also report the estimated number of classes K̂ in the
unlabeled set and the corresponding error Err = |K̂−K|

K ,
with K the real number of classes for each dataset.

Implementation details:

• Encoder gθ: As in [42], we employ the vision trans-
former ViT-B-16 [13] as our backbone encoder gθ
(i.e. the feature extractor). It is first pre-trained on
the unlabeled dataset ImageNet [12] with DINO [11]
self-supervision. Then, it is fine-tuned on each GCD
dataset of interest with a semi-supervised contrastive
loss composed of an unsupervised noise contrastive
term [16] and a supervised contrastive term [26]. It is
empirically demonstrated in [42] that this pre-training
procedure achieves robust feature representations. The
ensuing feature dimension is 768 per input image.

• Partitioning model fW : Our partitioning model fol-
lows the architecture of a standard linear classifier. We
first initialize prototypes W with the centroids pro-
duced by the semi-supervised K-means (ssKM) clus-
tering modelon the entire feature map set Z . The
maximum number of clustering iterations for ssKM
is set to 100. Then, we train fW with the standard
Adam optimizer [27], with a learning rate of 0.001
and a weight decay of 0.01, for 1000 epochs during
the partitioning task, but only for 500 epochs during
the search for K̂, in order to reduce the computational
cost. We set the training batch size equal to the size of
the dataset, which is quite feasible in terms of memory
and computation, since our approach requires only the
pre-computed feature maps.

• Conditional entropy weight λ: During the search
of the number of classes, we simply set λ = 1 for
the unsupervised discriminative clustering step. How-
ever, during the partitioning task where the number of
classes is fixed, i.e. with K assumed to be known or
equal to K̂, we automatically select the optimal value
for λ in the interval (0, 1], as previously detailed in
Sec. 5.

6.2. Main results

In this section, we perform a comprehensive empirical
evaluation of our method and compare it to GCD [42], as
well as to several adapted state-of-the-art approaches. In
particular, RankStats+ and UNO+ are the adapted versions
from RankStats [17] and UNO [14], which were originally
developed for the NCD task. Furthermore, we report the
results obtained when applying K-means [33] on the raw
extracted features from DINO. The scores for K-means,
RankStats+, UNO+ and GCD [42] are reported from [42].
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CUB STANFORD CARS HERBARIUM19

APPROACH INFOMAX ALL OLD NEW ALL OLD NEW ALL OLD NEW

K-MEANS 34.3 38.9 32.1 12.8 10.6 13.8 12.9 12.9 12.8
RANKSTATS+ [17] (TPAMI-21) 33.3 51.6 24.2 28.3 61.8 12.1 27.9 55.8 12.8
UNO+ [14] (ICCV-21) 35.1 49.0 28.1 35.5 70.5 18.6 28.3 53.7 14.7
ORCA [10] (ICLR-22) 27.5 20.1 31.1 15.9 17.1 15.3 22.9 25.9 21.3
ORCA [10] - VITB16 38.0 45.6 31.8 33.8 52.5 25.1 25.0 30.6 19.8
GCD [42] (CVPR-22) 51.3 56.6 48.7 39.0 57.6 29.9 35.4 51.0 27.0

RIM [28] (NEURIPS-10) (SEMI-SUP.) ✓ 52.3 51.8 52.5 38.9 57.3 30.1 40.1 57.6 30.7
TIM [8] (NEURIPS-20) ✓ 53.4 51.8 54.2 39.3 56.8 30.8 40.1 57.4 30.7

PIM (PROPOSED) ✓ 62.7 75.7 56.2 43.1 66.9 31.6 42.3 56.1 34.8
CIFAR10 CIFAR100 IMAGENET-100

APPROACH INFOMAX ALL OLD NEW ALL OLD NEW ALL OLD NEW

K-MEANS 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3
RANKSTATS+ [17] (TPAMI-21) 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8
UNO+ [14] (ICCV-21) 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9
ORCA [10] (ICLR-22) 88.9 88.2 89.2 55.1 65.5 34.4 67.6 90.9 56.0
ORCA [10] - VITB16 97.1 96.2 97.6 69.6 76.4 56.1 76.5 92.2 68.9
GCD [42] (CVPR-22) 91.5 97.9 88.2 70.8 77.6 57.0 74.1 89.8 66.3

RIM [28] (NEURIPS-10) (SEMI-SUP.) ✓ 92.4 98.1 89.5 73.8 78.9 63.4 74.4 91.2 66.0
TIM [8] (NEURIPS-20) ✓ 93.1 98.0 90.6 73.4 78.3 63.4 76.7 93.1 68.4

PIM (PROPOSED) ✓ 94.7 97.4 93.3 78.3 84.2 66.5 83.1 95.3 77.0

Table 1. Generalized Category Discovery partitioning. Partitioning ACC scores across fine-grained and generic datasets.

CIFAR10 CIFAR100 IMAGENET-100 CUB SCARS HERBARIUM19

|YL| 5 80 50 100 98 341
|YU | 10 100 100 200 196 683

|DL| 12.5K 20K 31.9K 1.5K 2.0K 8.9K
|DU | 37.5K 30K 95.3K 4.5K 6.1K 25.4K

Table 2. Composition of the datasets used.

We have also evaluated ORCA with its original ResNet ar-
chitecture [19] by using the code provided by the authors5,
as well as with the more competitive ViT-B-16 architecture
[13], as both GCD [42] and our method use this architec-
ture.

In order to highlight the superior performance of the
proposed approach in comparison to previous mutual-
information strategies, we have also adapted the InfoMax
approaches RIM [28] and TIM [8], previously discussed
in Sec. 2, to this novel setting. Specifically, TIM and the
semi-supervised version of RIM were originally designed
to deal with semi-labeled datasets, where both the labeled
and unlabeled sets contain examples from the same classes.
Thus, we have expanded the number of prototypes in RIM
and TIM, and their resulting prediction output vector from
Kold to K. For the sake of fairness, we use the same train-
ing hyper-parameters and initialization prototypes as in our
approach, as detailed in Sec. 6.1. Furthermore, we also

5https://github.com/snap-stanford/orca

applied RIM and TIM on top of the same fixed feature ex-
tractor, similarly to ssKM in GCD [42] and our approach.

We first focus on the partitioning task (Tab. 1), which eval-
uates the label assignment performance, ACC, on the unla-
beled samples. Following the original GCD setting [42], we
assume the real number of classes, K, to be known.

Comparisons with the state-of-the-art in GCD. Overall,
one could observe that PIM significantly outperforms state-
of-the-art methods UNO+, RankStat+ and GCD [42], with
a consistent performance improvement ranging from 3% on
CIFAR10 to up to 11% on CUB, when considering all cate-
gories. Considering ORCA, the improvement gain brought
by our method is particularly significant on the fine-grained
datasets. It ranges from 9.3% on Stanford Cars to up to
24.7% on CUB. In contrast, the performance differences
are less remarkable across the general datasets. In particu-
lar, PIM does not outperform ORCA-ViTB16 in the simpler
CIFAR-10 dataset, but brings 8-9% in performance gains
in CIFAR-100 and ImageNet-100, which are arguably more
complex datasets. These results suggest that our approach is
more suitable in scenarios where the total number of classes
is relatively large, potentially presenting a severe degree of
class imbalance.

Comparisons with adapted RIM [28] and TIM [8]. The
results obtained by the adapted semi-supervised RIM, TIM,
and our approach PIM show the overall superiority of mu-
tual information based methods compared to GCD [42]. In
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addition, one may observe that RIM and TIM yielded very
similar results. This behaviour could be explained by the
fact that these two adaptations to the GCD problem amount
to use the same fixed loss function, and the slight perfor-
mance differences might be due to the classifier choice for
the conditional model. Indeed, RIM uses a multiclass logis-
tic regression, whereas the soft-classifier of TIM measures
the l2 norm between prototypes (i.e. classifier weights) and
uses L2-normalized embedded features. Last, and more im-
portantly, we can observe that methods based on the stan-
dard mutual information yielded performances lower than
the proposed approach. We hypothesize that the reason for
these differences is two-fold: (i) RIM and TIM compute
the marginal entropy term exclusively over the unlabeled
data, while we compute it over the entire distribution. In
other words, PIM maximizes the mutual information over
the whole dataset, which enables to better capture the entire
data distribution; (ii) thanks to the proposed bi-level opti-
mization process, the optimal lambda parameter for each
dataset can be estimated automatically (as detailed in Sec-
tion 5). We stress that our hypothesis is supported by em-
pirical evidence in Section 6.3.
Interval error estimates to assess the test uncertainty.
Figure 1 plots additional results with error bars (conven-
tional 95% confidence intervals) for ALL ACC on fine-
grained datasets for GCD, adapted RIM and TIM, as well as
our approach PIM which are all applied on top of the same
fixed feature extractor. We used the arbitrary five different
seed values {1, 2, 3, 4, 5} to initialize models weights. One
may observe that there are no error bar overlaps between
PIM and the other methods, which suggests statistically sig-
nificant differences with the state-of-the-art.
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Figure 1. Error bars (conventional 95% confidence intervals) for
All ACC on fine-grained datasets using the arbitrary five different
seed values {1, 2, 3, 4, 5}.

6.3. Ablation studies

Along the following ablation studies, we focus our atten-
tion on the challenging fine-grained datasets, as these pro-
vide good illustrations of the interest of each of our techni-
cal choices.

6.3.1 Automatic finding of optimal λ: Handling both
short-tailed and long-tailed datasets

We now motivate the interest of estimating the most appro-
priate λ value for each dataset by using the proposed auto-
matic finding strategy presented in Sec. 5. λGT in Figures
(a), (b), (c) is the λ value obtained when using the ground-
truth labels, i.e. the value that provides the maximum per-
formance on the unlabeled set, and λ̂ in Figures (d), (e) and
(f) is the estimated optimal value. Interestingly, Figures 2
(a), (b) and (c) show how the performance ALL ACC could
vary significantly depending on the selected λ, hence mo-
tivating the interest of finding an optimal λ value for each
dataset. Figures 2 (d), (e) and (f) validate our hypothesis:
Selecting the λ value that maximizes the Lab ACC on the
labeled data in our unconstrained conditional version also
maximizes the ACC on all the unlabeled data (ALL ACC)
when using the constrained version instead, showing the
correlation between both. In regard to the classes frequen-
cies observed on each dataset (See Figures 2 (g), (h) and (i)),
it is also interesting to note that a small λ value provides
better results on a dataset with uniform class distributions
such as CUB, whereas a higher λ value is more appropriate
on the imbalanced dataset Herbarium19. Indeed, λ controls
the relative effect of the marginal entropy term in (7). Thus,
these results show that automatically selecting λ can miti-
gate the class-balance bias encoded in the standard mutual
information by giving more importance to the conditional
entropy term in long-tailed (imbalanced) scenarios.

6.3.2 Effect of each loss term

We now evaluate the contribution of each term in our learn-
ing objective (7). In particular, Tab. 3 highlights the effect of
the conditional entropy, the marginal entropy and the con-
straint penalty (i.e. replacing conditional entropy with CE
on the labeled points). From these results, we can draw
three different observations: 1) Minimizing only the con-
ditional entropy term yields degenerated solutions, as ex-
pected. 2) Maximizing the marginal entropy term and en-
forcing the proposed constraint prevent these undesired de-
generated solutions. 3) Maximizing the marginal entropy
term on the entire dataset, and hence maximizing as well
the mutual information on the entire dataset, as we propose,
further enhances the performance.
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Figure 2. λ effect analysis on fine-grained datasets. The first row represents the ACC on all the unlabeled points depending on λ value.
The second row represents the ACC on the labeled points depending on λ value. The third row represents the frequency of examples per
class, in a sorted order.

CUB STANFORD CARS HERBARIUM19

LOSS TERMS USED H(Y ) ON S.T. yi = pi ∀zi ∈ ZL ALL OLD NEW ALL OLD NEW ALL OLD NEW

−H(Y |Z) NOT USED ✗ 6.1 0.0 9.1 2.5 0.0 3.6 4.0 4.0 4.1
−H(Y |Z) NOT USED ✓ 38.6 46.2 34.8 29.8 51.3 19.5 34.6 45.4 28.9

H(Y )−H(Y |Z) ZU ✗ 53.7 55.5 52.9 37.4 49.5 31.6 35.2 39.0 33.2
H(Y )−H(Y |Z) Z = ZL ∪ ZU ✗ 56.6 66.4 51.7 40.8 60.2 31.5 36.1 41.0 33.4
H(Y )−H(Y |Z) ZU ✓ 58.3 72.8 51.1 41.4 66.6 29.2 40.1 57.3 30.8
H(Y )−H(Y |Z) Z = ZL ∪ ZU ✓ 62.7 75.7 56.2 43.1 66.9 31.6 42.3 56.1 34.8

Table 3. Effect of the loss terms and the constraint on the predictive performances (ACC) of PIM on fine-grained datasets.

6.4. Towards a practical setting

6.4.1 Estimating the number of classes

In order to find the number of classes, we follow the strat-
egy proposed in GCD [42], which we refer to as Max-ACC
(GCD), but we replace the K-means clustering stage with
the unconstrained (i.e. unsupervised) version of our method
PIM, referred to as Max-ACC (PIM). The results from these
methods are reported in Table 4. Overall, the proposed com-
bination Max-ACC (PIM) is more appropriate than Max-

ACC (GCD) [42] on both generic and fine-grained datasets,
except on CIFAR-100 where Max-ACC (GCD) [42] finds
the real number of classes.

6.4.2 Performance when the number of classes is un-
known

While we followed the standard practices for the partition-
ing task in the experiments of Section 6.2, we argue that
having access to the number of expected classes is an unre-
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CUB STANFORD CARS HERBARIUM19 MEAN

K̂(Err) K̂(Err) K̂(Err) (Err)

GROUND TRUTH 200(-) 196(-) 683(-) (-)

MAX-ACC (GCD) [42] 231 (16%) 230 (15%) 520 (24%) (18%)

MAX-ACC (PIM) 227 (14%) 169 (13%) 563 (18%) (15%)

CIFAR10 CIFAR100 IMAGENET-100 MEAN

K̂(Err) K̂(Err) K̂(Err) (Err)

GROUND TRUTH 10 (-) 100 (-) 100 (-) (-)

MAX-ACC (GCD) [42] 9 (10%) 100 (0%) 109 (9%) (6%)

MAX-ACC (PIM) 10 (0%) 95 (5%) 102 (2%) (2%)

Table 4. Estimation of the number of classes in the unlabeled set
using Brent’s algorithm as in [42]. Max-ACC (GCD) [42] results
are reported from [42].

alistic assumption. Thus, we now relax this assumption by
repeating the partitioning experiments with the estimated
value of K̂ (See Tab. 4) instead of the real value K. For
the GCD method [42], we used the code provided by the
authors6, except on CIFAR-100, for which we directly re-
port the scores from Tab. 1 because K̂ = K. These results,
which are reported on Tab. 5, demonstrate the superiority
of our method even in this more challenging scenario. This
suggests that our formulation serves as a more robust solu-
tion in the absence of prior knowledge about K for the GCD
task.

CUB STANFORD CARS HERBARIUM19

ALL OLD NEW ALL OLD NEW ALL OLD NEW

GCD [42] 51.1 56.4 48.4 39.1 58.6 29.7 37.2 51.7 29.4

PIM 62.0 75.7 55.1 42.4 65.3 31.3 42.0 55.5 34.7

CIFAR10 CIFAR100 IMAGENET-100

ALL OLD NEW ALL OLD NEW ALL OLD NEW

GCD [42] 80.5 97.9 71.8 70.8 77.6 57.0 77.9 91.1 71.3

PIM 94.7 97.4 93.3 75.6 81.6 63.6 83.0 95.3 76.9

Table 5. Realistic GCD partitioning. ACC scores are obtained
by assuming K̂ (See Tab. 4) is the number of expected classes.

7. Conclusion
In this work, we proposed a simple yet effective alterna-

tive for Generalized Category Discovery. In particular, we
introduce a parametric family of mutual information objec-
tives, which we tackle with a bi-level optimization formu-
lation. Our solution allows to estimate the relative weight
of the marginal-entropy term automatically, which miti-
gates the class-balance bias inherent in standard informa-
tion maximization. Our empirical validation demonstrates

6https://github.com/sgvaze/
generalized-category-discovery

that by learning the optimal weight that controls the rela-
tive effect of the marginal-entropy, our model deals effec-
tively with both short-tailed and long-tailed datasets. In-
deed, our formulation achieves new state-of-the-art results
in GCD tasks, outperforming existing solutions across the
different benchmarks by a significant margin. It is worth
noting that our formulation is flexible as it could be cou-
pled with any trained feature extractor. Thus, we hope that
the proposed framework will be useful for future research
and development to solve the GCD problem for real-world
applications.

Limitations. A common limitation in the current GCD
learning paradigm stems from the fact that the models re-
quire access to the entire target unlabeled dataset at test
time. Needless to say, this strong assumption might hinder
the use of these approaches when the target set is composed
of a small number of images, or when samples appear se-
quentially. As in [42], we assume that the optimal values for
λ and K are obtained when the ACC is maximized on the
available labeled points. Despite that our extensive experi-
ments empirically confirm that this assumption is promising
in practice, it could be interesting to find a metric that could
simultaneously consider the novel classes.

References
[1] Automatically discovering and learning new visual cate-

gories with ranking statistics. In International Conference
on Learning Representations (ICLR), 2020.

[2] Philip Bachman, R Devon Hjelm, and William Buchwal-
ter. Learning representations by maximizing mutual infor-
mation across views. Neural Information Processing Systems
(NeurIPS), 2019.

[3] Mathilde Bateson, Hoel Kervadec, Jose Dolz, Hervé Lom-
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