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Figure 1: Bidirectional Mapping between Muscles and Motion. Visible human motion is created by, and constrained by,
our muscles. We learn to predict which muscle groups a person uses during motion (left column), as well as to reconstruct
motion from muscle activation (right column). We illustrate how these two mappings can be combined to recommend new
motions, similar to the input muscle, this time subject to particular muscle group goals (bottom row).

Abstract

Human motion is created by, and constrained by, our
muscles. We take a first step at building computer vi-
sion methods that represent the internal muscle activity that
causes motion. We present a new dataset, Muscles in Ac-
tion (MIA), to learn to incorporate muscle activity into hu-
man motion representations. The dataset consists of 12.5
hours of synchronized video and surface electromyography
(sEMG) data of 10 subjects performing various exercises.
Using this dataset, we learn a bidirectional representation
that predicts muscle activation from video, and conversely,
reconstructs motion from muscle activation. We evaluate
our model on in-distribution subjects and exercises, as well

as on out-of-distribution subjects and exercises. We demon-
strate how advances in modeling both modalities jointly can
serve as conditioning for muscularly consistent motion gen-
eration. Putting muscles into computer vision systems will
enable richer models of virtual humans, with applications
in sports, fitness, and AR/VR.

1. Introduction
The vision community has made great progress in mod-

elling and analyzing human motion from video via tasks
such as pose estimation [33, 25, 62, 45, 7, 23, 7], action
recognition [47, 56, 27, 26, 59], motion transfer [8, 1, 31,
58] and more. However, motion understanding goes beyond
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the surface. Human motion is created by and constrained
by muscles. Every action is a product of our brain sending
electric signals to our nerves, which contract our muscles, in
turn moving our joints. Although this process occurs within
us, most of us turn to physical therapists and sports instruc-
tors for guidance on how to improve our motions to target
or avoid particular muscle groups.

In this paper, we take a first step towards building com-
puter vision methods that represent the internal muscle ac-
tivity that causes human motion. We present a system that,
given a video of a person performing an action, learns to
infer what muscles a person used. Walking is controlled
falling, and any physical motion is a balance between mus-
cle forces and gravity. This interplay leads to an inherent
asymmetry: different muscles are engaged in the downward
portion of a squat, for instance, than in the upward portion.

Our goal is to learn the complex relationships between
physical forces by analyzing synchronized video and mus-
cle activation data. We achieve this by developing a sys-
tem that can predict muscle activity from motion, and vice
versa. One application of this bidirectional system is gen-
erating new motions that are similar to an existing motion,
while also adhering to specific muscle recruitment targets,
illustrated in Figure 1.

The typical method of measuring muscle activity is
through the use of electromyography sensors, which exist
in an invasive form, as well as an non-invasive form, called
surface electromyography (sEMG). We collected a new
dataset, which we will release, that consists of over twelve
hours of synchronized single-view video and sEMG signals
of eight muscles for ten subjects performing fifteen differ-
ent physical activities. By using commodity cameras and
inexpensive sEMG sensors, we make the problem practical
and easy for others to build on. The eight muscles recorded
are the left and right biceps brachii (biceps), the left and
right latissimus dorsi (laterals), both quadriceps (quads),
and both biceps femoris (hamstrings), denoted in Figure 2.

The primary contribution of this paper is a framework for
modeling the association between human motion and inter-
nal muscle activity in video, and the rest of the paper will
explain this contribution in detail. In section 2, we briefly
review related work in human activity analysis, conditional
motion generation, multi-modal learning, electromyogra-
phy, and physics-grounded human motion generation. In
section 3, we describe our multimodal dataset in detail and
analyze its characteristics. In section 4, we present a method
to learn a bidirectional representation between the visual
and muscle modalities. Section 5 shows experiments on
both in-distribution experiments and subjects, as well as
out-of-distribution experiments and subjects. In section 6,
we showcase a demo application for learning the bidirec-
tional representation between modalities. By releasing our
datasets and models publicly, we hope this paper will spur

Right Quadricep Left Quadricep Left Hamstring Right Hamstring

Right Bicep Left Bicep Left Lateral Right Lateral

Figure 2: Sensor Placement. We illustrate the placement
of our 8 sEMG sensors on a subject. We label the 8
measured muscles.

additional work that models the rich internal structure that
drives human activity in video.

2. Related Work
Human Motion Prediction from Video. The field

of computer vision has seen tremendous progress in in-
ferring information about human motion from monocu-
lar video. One of the tasks is to regress human pose
from video by regressing skeleton key-points and meshes
[33, 25, 62, 45, 7, 23, 7]. A related task is action segmenta-
tion [28]. Other tasks that span from the pose estimation re-
sults include human motion transfer [8, 1, 31, 58] and even
pose correction to make a given pose anatomically-correct
[20, 48]. Closely related, Park et al. predict the 3D grav-
ity direction from a moving first-person view using inverse
dynamics [42].

Conditional Human Motion Generation. The field of
conditional human motion generation is well-established,
with a diverse set of conditioning mechanisms. There are
works that condition based on past frames and/or future
target frame(s) [10, 36, 18, 14, 15, 22, 16, 9, 54]. Others
condition based on other modalities such as spatial trajec-
tory [19], action class [13, 43, 54], natural language text
[3, 44, 54], as well as audio [29, 5]. In this work, our mo-
tion generation is conditioned on an input motion, as well
as muscle activity constraints.

Multi-Modal Representations. Multi-modal learning
with video is a long-standing problem in computer vision.
Some works predict other modalities from video, such as
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Figure 3: The MIA Dataset. We illustrate two canonical frames from our dataset for each of the 15 exercises.

sound [40, 11] by using the natural temporal correspon-
dence between video and sound, as well as video cap-
tioning [60]. Beyond prediction, multi-modal learning has
been shown to improve video representations, for example
from sound [41, 4], and language [60, 52]. The converse
has also been explored - leveraging large datasets of unla-
belled video has improved representations of other modali-
ties [6, 4, 35, 12]. We are interested in predicting an entirely
different modality from monocular video, muscle activa-
tion, as well as reconstructing motion from muscle activity.

Electromyography. To measure muscle activation, we
use Surface Electromyography (sEMG) sensors, which are
attached to electrodes placed on human skin to measure the
electrical activity of muscle tissue. Reconstructing parts of
human pose from sEMG data is an established task, but only
for either arms [32, 2, 38, 46] specifically, or legs [65] sep-
arately. In the forward direction, previous work has tack-
led predicting muscle activation, however, the input modal-
ity has not been video. Some works use torque or surface
force measurements as input [50, 51, 30], while others use
goniometers to track pose [53] or motion capture tracking
systems [21, 61, 37]. Our work seeks to predict muscle
activation with no additional hardware at test-time besides
video. Additionally, certain works predict muscle activa-
tion directly from 3D point clouds collected by depth cam-
eras [39, 49]. However, these works rely on seeing the skin
deformation on the human subject to infer muscle activity.
We infer muscle activity from motion priors, not the visible
increase in muscle size. This allows our model to work for
clothed humans, or humans exercising at a distance.

Modeling Human Motion with Physics. Recent

work has focused on generating motion that respects the
physics of motion via physics simulations of human motion
dynamics [63, 34, 64]. However, the simulated humanoids
are constructed with assumptions about the physics of
human motion. Additionally, sEMG studies have shown
that for a given motion, different people vary in how they
recruit muscle groups to execute that motion [55]. Single
humanoid simulations will not capture this diversity in real
humans’ motion dynamics.

3. The Muscles in Action (MIA) Dataset
To explore the mapping between visual motion and mus-

cle activity, we collected a dataset of synchronized video
and sEMG signals. Our dataset contains 15 different exer-
cises, which each of the 10 subjects perform.

3.1. Data Collection

Our dataset consists of 12.5 hours of synchronized video
and sEMG signals, for eight muscles. These eight muscles
include the left and right biceps brachii (biceps), the left and
right latissimus dorsi (laterals), both quadriceps (quads),
and both biceps femoris (hamstrings). The collected sEMG
values correspond to the neuromuscular junction’s total bio-
electric energy.

The dataset consists of 15 exercises shown in Figure
6. Each subject performed each exercise for 5 minutes,
and we asked them to vary the execution’s speed, effort,
and orientation. There are a total of 10 subjects in the
dataset, 5 of which are females and 5 of which are males.
We collected 75 minutes of data for each subject, totalling
12.5 hours of data. The subjects varied in body weight
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Figure 4: Encoder and Decoder Architectures. We illustrate the architectures for our Motion-to-Muscle encoder and our
Muscle-to-Motion decoder.

and muscle. To collect the sEMG data, we used eight M40
Muscle Sense bluetooth wireless EMG sensors from ANR
Corp. To collect the video, we used a standard iPhone 10
camera. Please see the supplementary for details on the
electrode and sensor placement method.

3.2. Data Preprocessing

The sEMG data’s sample rate is 10fps, and the each data
point from the sensor comes with a timestamp. The iPhone
video records at 29.97 fps, and also has a time-stamp. We
resample the video to match the frame rate of the sEMG
data, and use these time stamps to align the muscle and vi-
sual modalities. We explain our exact methodology for this
in the supplemental material.

Once the sEMG and the frames are aligned, we extract
both 3D keypoints and 2D keypoints with the VIBE model
and checkpoints [25]. The 3D keypoints are normalized
with respect to a pre-computed bounding box, while the 2D
keypoints are absolute with respect to the frame dimensions.
For all experiments unless explicitly stated otherwise, the
input sequence length is 30 frames and the output sequence
length is 30 sEMG values per muscle, corresponding to 3
seconds. Once the dataset was split into intervals of 3 sec-
onds, the train/test split was created by randomly choosing
20% of the 3 second intervals within an exercise per subject
to be allocated to the test set, and the remaining 80% was
allocated to the training set.

4. Method
Our approach aims to learn the bidirectional mapping be-

tween the visual modality and the muscle modality, which
allows us to perform three tasks: a) infer muscle activity
from video, b) infer pose from muscle activity, and c) pro-
vide recommended motions to people that will target certain
muscles. In this section, we present this approach.

4.1. Muscle and Motion Mappings

The characteristics of muscle activity make the sEMG
signal challenging to analytically process. We aim to
overcome these challenges by leveraging the synchroniza-
tion with the visual modality. By finding the correlations
between a person’s visible motion and the sEMG signal,
we can learn representations that encode muscle activity
with respect to motion.

Let x ∈ RKD×T be the human pose of a person, ex-
tracted over K keypoints, with dimensionality D, for T
frames in a video. Our goal is to predict the muscle activity
that created the motion, which we denote as m ∈ RM×T

for M individual muscles, as well as to reconstruct motion
x ∈ RKD×T from muscle activity m. We aim to learn
mappings that transform between these spaces through the
functions:

m̂ = Eθ(x) and x̂ = Dω(m) (1)

where Eθ(x) is an encoder parameterized by θ and D is
a decoder parameterized by ω, both of which are neural
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networks whose architecture we describe later. We learn
the parameters for both models through the supervised
learning problem:

min
θ,ω

E(x,m) [L (Eθ(x),m) + L (Eω(m), x)] (2)

where we use a mean squared loss function L to compare
predictions to the ground truth in both modalities. We
optimize both using stochastic gradient descent with the
Adam optimizer [24]. Full implementation details are
provided in the supplemental material.

4.2. Modification in Muscle Space

In this section, we explain how our bidirectional model
can be used to generate new motions based on the edits in
the muscle modality. Given a goal to minimize a use of the
muscle, or increase the workout of a muscle, we generate
a new motion, similar to the input motion, with a modi-
fication that adheres to the muscle activity goal. To do so,
given a video, our encoder E first predicts muscle activation
m̂ ∈ RM×T , composed of M sequences. Let m̂k ∈ RT be
one muscle sequences in particular that we choose to scale,
either up or down, with scalar s ∈ R:

m̄k = s · m̂k and m̄j = m̂j ∀j ̸=k (3)

The new matrix m̄ ∈ RM×T is the edited m̂ matrix. Our
decoder D decodes m̄ into a recommended motion x̄:

x̄ = D(m̄) (4)

This recommended motion x̄ will be similar to the pre-
dicted reconstruction x̂, except the recommended motion
is in agreement with the muscle goals dictated by the edited
predicted muscle activation m̄.

4.3. Architectures

We use a common architecture for both the encoder and
decoder, with only minimal modifications between them
to adapt to their input and output modalities. See Figure
4 for an overview of both architectures. We factorize the
architectures:

E(x) = fθ2 (gθ1 (x)) and D(m) = fω2 (gω1 (m)) (5)

where g is a local feature extractor and f is a global feature
network.

The local feature extractor for the Motion-to-Muscle en-
coder receives keypoints x ∈ RKD×T , where K is the num-
ber of keypoints, D is their dimensionality, and T is the
number of frames. This matrix is then convolved with a
filter θ that has c channels:

gθ(x) = θ ∗ x (6)

The spatial dimension of the kernels θ spans the entirety of
the key-point dimension, and the temporal dimension spans
roughly a second of time. Each kernel outputs a feature n,
where n ∈ R1×T . Since there are c channels, the resulting
output from the temporal convolution layer is a sequence of
T embeddings d1, ..., dT , s.t. dt ∈ R128.

For the Muscle-to-Motion decoder, the local feature ex-
tractor has the same structure, except the input is the mus-
cle activation m ∈ RM×T . The convolutional layer’s spa-
tial dimension is changed to span the entirety of the mus-
cle dimension, M , and the temporal dimension still spans
roughly a second of time. The output dimensionality is thus
also a sequence of T embeddings d1, ..., dT , s.t. dt ∈ R128.

The second part of our common architecture, the global
feature network, needs to identify long range patterns over
time in order to capture the dynamics of the sequence. It
is global temporally. We implement it using a Transformer
[57] with 4 layers with 8 attention heads and no attention
masking. The input to the Transformer is the sequence of
embeddings d1, ..., dT , s.t. dt ∈ R128. The output of the
Transformer is the sequence of embeddings o1, ..., oT , s.t.
ot ∈ R128. For the Motion-to-Muscle encoder, a fully
connected layer maps ot ∈ R128 to a sequence of em-
beddings m1, ...,mT s.t. mt ∈ RM . For the Motion-to-
Muscle decoder, a fully connected layer maps ot ∈ R128 to
mt ∈ RKD.

4.4. Conditioning

For similar motions, different people will vary in mus-
cle activities. This is mostly a product of three factors: a)
slight variation in the motion itself b) different muscle re-
cruitment due to personal style [55] c) slight variations in
sensor placement and differences in morphology [17]. As
such, we construct two additional conditional versions of
our encoder and decoder. To accommodate the condition-
ing, we concatenate a unique tensor y ∈ R2×T to the se-
quence of embeddings d1, .., dT , per subject. Further details
can be found in the supplementary.

5. Experiments
The objective of our experiments is to analyze the align-

ment between the visual modality and the muscle activities
underlying motion. We show results across the 15 exercises,
using root mean squared error as our metric for both tasks.

5.1. Baselines

Retrieval (Retr.). Our first baseline for solving this
problem is to perform nearest neighbor. For the Motion-
to-Muscle task, given an example 3D skeleton over time x
in the test set Xtest, we retrieve the nearest neighbor x̄ from
Xtrain, and assign x̄’s muscle activation m̄ to m̂ as the pre-
dicted muscle activation. For the Muscle-to-Motion task,
given an example sequence of muscle activity m in the test
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Figure 5: Motion-to-Muscle Qualitative Results. We illustrate two separate qualitative results. The first row of frames
corresponds to a visualization of the predicted activations, and the second row of frames corresponds to a visualization of the
ground truth activations. For the plot beneath the frames, the dotted line corresponds to the ground-truth values, and the solid
line corresponds to the predictions. Yellow corresponds to relaxed, and red corresponds to flexed.
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Figure 6: Muscle-to-Motion Qualitative Results. We show reconstructed 3D pose and 2D pose from muscle activity, where
3D pose is normalized with respect to a bounding box, while the 2D pose is absolute with respect to the image frame. Since
sEMG signals don’t contain location information, the 2D model cannot reconstruct the subject in the right location.

set Mtest, we retrieve the nearest neighbor m̄ from Mtrain,
and assign m̄’s 3D skeleton over time x̄ to x̂.

Conditional Retrieval (C-Retr.). Our second baseline
is conditional retrieval, where we condition on the subject.
For the Motion-to-Muscle task, given an example sequence
of 3D pose x for subject s, in the test set Xs

test, we re-
trieve the nearest neighbor x̄ from Xs

train, which only con-
tains data from subject s, and assign x̄’s muscle activation
sequence m̄ to m̂ as the predicted muscle activation. We

report the average across subjects. The same method is ap-
plied to the Muscle-to-Motion task.

5.2. Results

In this section, we report quantitative and qualitative re-
sults for both the encoder and the decoder. For the quanti-
tative results, we report the results per exercise. We report
these results for our conditional and non-conditional base-
lines and models.
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Motion-to-Muscle Encoder. As seen in Table 1, for
all of the 15 exercises, both our conditional and non-
conditional model outperform both conditional and non-
conditional retrieval baselines. For the out-of-distribution
experiments, we retrained 15 models on 15 different
datasets, each dataset leaving out one exercise. For each
model, we then ran inference on the exercise that was
left out and reported it in the last four columns of Ta-
ble 1, denoted as Out-of-Distribution Encoder. The re-
sults indicate that our learning method generalizes better
to unseen exercises than the retrieval baselines. Finally, in
both the in-distribution and out-of-distribution experiments,
and in both our model and baselines, we observe that for
most exercises, the conditional model outperforms the non-
conditional model. This result confirms the hypothesis pre-
sented in Section 4.4.

We show two qualitative examples of predicting muscle
activation from motion in Figure 5. The first column shows
a subject performing a high kick, and the second column
shows a subject performing an elbow punch. The axis in
the third and fourth rows are scaled to the range of values
per example per muscle, and we denote the absolute value
with a gradient from yellow (low activation) to red (high ac-
tivation). Even when the range of the sEMG signal is small,
indicated by a plot that stays mostly one color, we notice
that the predictions follow the ground-truth fairly closely.
The alignment of the prediction and ground-truth is often
close, showing a small error in phase. We show more qual-
itative results in the supplementary material.

Temporal Analysis. In order to evaluate how crucial the
temporal component of our model was, we retrained seper-
ate 7 separate transformer models to predict muscle activa-
tion from motion, where both the input and output are n
frames for 7 different input/output lengths. We notice that

In-Distribution Encoder Out-of-Distribution Encoder
Exercise Retr. C-Retr. Ours C-Ours Retr. C-Retr. Ours C-Ours

ElbowPunch 15.1 15.2 12.0 12.0 25.7 29.4 19.8 19.7
FrontKick 10.5 9.8 7.8 7.9 32.7 54.4 11.0 11.0
FrontPunch 10.9 10.7 8.7 8.6 27.6 22.8 15.9 15.5
HighKick 13.0 12.8 10.1 10.1 17.6 17.8 15.8 15.5
HookPunch 16.4 16.3 12.5 12.4 23.4 23.6 19.3 18.9
JumpingJack 25.7 25.4 19.2 19.2 47.6 47.0 37.0 41.0
KneeKick 11.2 10.7 8.2 8.0 16.7 15.5 13.2 12.8
KickBack 12.3 11.7 9.3 9.3 17.5 19.2 15.3 15.6
LegCross 12.0 10.2 8.0 8.0 18.1 16.7 15.2 15.4
RonddeJambe 23.8 23.7 20.4 20.3 36.8 35.0 33.4 33.2
Running 15.8 10.6 8.7 8.6 27.2 15.6 14.0 14.0
Shuffle 13.6 13.2 9.9 9.9 22.1 17.0 14.2 14.0
SideLunge 17.2 16.5 13.8 13.7 27.7 30.1 24.4 24.0
SlowSkater 16.8 16.3 13.1 11.4 25.2 23.0 21.1 20.8
Squat 20.2 19.8 15.9 16.0 36.3 34.0 35.2 30.4

Table 1: RMSE per Exercise for the Encoder. We report
the rMSE per exercise for muscle prediction.

In-Distribution Decoder Out-of-Distribution Decoder
Exercise Retr. C-Retr. Ours C-Ours Retr. C-Retr. Ours C-Ours

ElbowPunch 0.045 0.43 0.031 0.031 0.078 0.078 0.060 0.060
FrontKick 0.058 0.052 0.040 0.043 0.103 0.099 0.074 0.077
FrontPunch 0.047 0.045 0.032 0.033 0.075 0.076 0.062 0.061
HighKick 0.093 0.090 0.076 0.074 0.145 0.139 0.119 0.119
HookPunch 0.060 0.055 0.044 0.045 0.090 0.087 0.075 0.076
JumpingJack 0.071 0.07 0.062 0.066 0.143 0.146 0.109 0.108
KneeKick 0.079 0.077 0.061 0.064 0.119 0.114 0.096 0.096
KickBack 0.086 0.082 0.072 0.069 0.116 0.114 0.093 0.093
LegCross 0.056 0.049 0.040 0.042 0.112 0.106 0.087 0.087
RonddeJambe 0.074 0.069 0.055 0.056 0.119 0.116 0.092 0.093
Running 0.047 0.046 0.037 0.037 0.074 0.070 0.052 0.051
Shuffle 0.058 0.056 0.043 0.044 0.077 0.072 0.056 0.057
SideLunge 0.07 0.067 0.058 0.057 0.127 0.123 0.108 0.108
SlowSkater 0.076 0.072 0.063 0.065 0.140 0.124 0.109 0.109
Squat 0.066 0.064 0.057 0.059 0.132 0.126 0.111 0.112

Table 2: RMSE per Exercise for the Decoder. We report
the rMSE per exercise for motion prediction.

Frame Count 1 5 10 15 20 25 30

C-Retr. 19.6 16.3 14.5 14.0 13.5 13.3 14.3
C-Ours 13.3 11.1 10.3 9.6 9.1 8.8 8.8

Table 3: Temporal Analysis. We report the root mean
squared error for the conditional baseline as well as for our
conditional model as we change the length of the sequences.

for both the conditional baseline and our conditional model,
the performance increases as the model sees examples with
longer temporal length. However, the conditional baseline
drops in performance from 25 to 30 frames, whereas our
conditional model does not.

Muscle-to-Motion Decoder. Similarly, we report the
root mean squared error per exercise, for both the con-
ditional decoder and non-conditional decoder in Table 2.
For all of the 15 exercises, both our conditional and non-
conditional model outperforms both conditional and non-
conditional retrieval baselines. For the decoder, there is less
of a clear pattern between the conditioned model and the
non-conditioned model. We believe that this is explained
by the fact that muscle activity already has conditioning
embedded within it. Subjects often have trademark mus-
cles, that they use more or less, or with different ranges. As
such, explicit conditioning may not be helpful.

We also show four qualitative examples from our
Muscle-to-Motion decoder in Figure 6. The first row il-
lustrates results from our main decoder, which regresses to
3D pose over time. The second row illustrates a secondary
decoder, which regresses to 2D pose over time. The ex-
tracted 3D keypoints from VIBE [25] are normalized with
respect to a given bounding box, which we utilize to project
the predicted 3D keypoints onto the 2D image. This is why
our 3D pose decoder results have the subject in the right
location, even for exercises that have high displacement,
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Figure 7: Qualitative Results. We illustrate three more qualitative results for the editing task. The first row illustrates the
ground truth 3D skeleton projected onto the frame. The second row shows the predicted muscle activation for the dorsal
muscles (laterals and hamstrings). Since we are visualizing the back of the person, the meshes are flipped. The third
row shows the scaled predicted muscle activations. The fourth row illustrates the recommended motion which the decoder
generates from the scaled predicted muscle activations.

such as shuffle. On the contrary, the 2D Decoder, whose
ground-truth coordinates are not normalized with respect
to a bounding box, is unable to predict the subject’s dis-
placement since muscle activation has no information about
a subject’s location. We show more qualitative results in the
supplementary material.

6. Editing

We show examples of how the motion-muscle mappings
can be leveraged to generate motion recommendations sub-
ject to muscle constraints in Figures 1 and 7. Given a mo-
tion, we predict the muscle activation, which we edit one or
more muscle predictions, as described in Equations 2 and 3
in Section 4, and decode the edited predicted muscle activa-
tion into a recommended motion.

When the modification amplifies the muscle, then it gen-
erates a corresponding motion with minimal change that
only causes the exercise to engage the target muscle more.
For example, in Figure 7A, shows a person performing the
Rond de Jambe, however their use of laterals is low. By am-
plifying the muscular representation, the generated motion

lifts the arms up correctly, therefore engaging the laterals
more. We see a similar trend in Figure 7C.

There is a converse effect when the modification atten-
uates the muscle. Figure 7B shows a person performing a
slow skater, which due to the non-supporting leg bending
backwards, activates the hamstrings significantly. By mod-
ifying the muscular representation to attenuate the ham-
strings, the generated motion prevents the non-supporting
leg from bending backwards, disengaging the hamstrings.

Moreover, the temporal pattern of the recommended mo-
tion matches that of the input motion, as the only edit per-
formed is scaling. This is useful for AR/VR applications.

7. Conclusion

This paper presents a new multi-modal dataset, the Mus-
cles in Action (MIA) dataset, for modeling the relationship
between muscle activity and motion. We present our frame-
work for learning the bidirectional mapping between the
modalities. We also demo how our bidirectional model can
be used to generate recommended motions conditioned on
muscle activity objectives.
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