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Abstract

Many existing FL methods assume clients with fully-
labeled data, while in realistic settings, clients have limited
labels due to the expensive and laborious process of label-
ing. Limited labeled local data of the clients often leads
to their local model having poor generalization abilities
to their larger unlabeled local data, such as having class-
distribution mismatch with the unlabeled data. As a result,
clients may instead look to benefit from the global model
trained across clients to leverage their unlabeled data, but
this also becomes difficult due to data heterogeneity across
clients. In our work, we propose FEDLABEL where clients
selectively choose the local or global model to pseudo-label
their unlabeled data depending on which is more of an ex-
pert of the data. We further utilize both the local and global
models’ knowledge via global-local consistency regulariza-
tion which minimizes the divergence between the two models’
outputs when they have identical pseudo-labels for the unla-
beled data. Unlike other semi-supervised FL baselines, our
method does not require additional experts other than the
local or global model, nor require additional parameters to
be communicated. We also do not assume any server-labeled
data or fully labeled clients. For both cross-device and cross-
silo settings, we show that FEDLABEL outperforms other
semi-supervised FL baselines by 8-24%, and even outper-
forms standard fully supervised FL baselines (100% labeled
data) with only 5-20% of labeled data.

1. Introduction

Federated learning (FL) [27] enables collaborative learn-
ing across clients without explicit disclosure of their local
data [18, 38]. In FL, a server updates its global model by
aggregating the local gradients obtained from clients’ train-
ing on their datasets. These clients can be a number of
edge-devices such as cell-phones (cross-device) [44] or a
handful of hospitals, for example, willing to train a model
for disease prediction without sharing patients’ private data
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Figure 1: Test accuracy of the global model for varying amount
of labeled local data in each client. The fewer the labeled data,
the lower the test accuracy for standard FL algorithms (FedAvg,
FedProx) while our proposed FEDLABEL performs significantly
higher. For CIFAR10, FEDLABEL achieves an even higher test
accuracy than when 100% of labels are used.

(cross-silo) [32]. While FL can indeed allow clients to train a
single global model without private data sharing, a crucial yet
often overlooked limitation found in realistic FL scenarios is
that labels can be scarce [13, 9, 2, 21, 34]. In cross-device
settings, owners of edge-devices rarely go through the effort
of labeling all of their local data such as photos, resulting in
only a few labeled samples and a large volume of unlabeled
data. Similarly in cross-silo settings, such as hospitals collab-
orating for predicting diseases, labeling is often a laborious
process where healthcare experts are required to process vol-
umes of patients’ data [15, 12]. Such scarcity of labels can
lead to severe performance degadation as shown in Fig. 1.
A naive approach to tackle label scarcity in clients is
using standard semi-supervised learning (SSL) methods de-
vised for general machine learning (ML) applications at each
client, using its own local data. For example, consistency
regularization methods [4 ] or pseudo-labeling methods [35]
can be directly used with each client’s local data with its lo-
cal model. However, with limited labels, the feature-label
pair distribution of the labeled data can be different from
that of the unlabeled data as shown in Fig. 2 and previous
work [47, 3]. We call this difference between the two distri-
butions as class distribution mismatch. As such, the limited
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Figure 2: Class distribution mismatch (CIFAR10) is shown just
by limiting the number of labeled data to 20% without artificially
biasing the labeled data distribution.

labeled data can poorly generalize to a large number of un-
labeled local data. This is also shown in Table 1, where
the ‘Only Local’ performance largely degrades for a smaller
number of labeled data. Due to these scenarios, leveraging
only the local knowledge of a client may not be enough to
fully utilize its unlabeled data. Thus, in FL, a client can
seek to utilize the global knowledge shared across clients
through the aggregation of the local updates to the global
model. The problem, however, with only using the global
knowledge for leveraging the unlabeled data at the clients
is that the data distribution amongst clients’ local data is
heterogeneous [33, 29, 11, 26, 20, 39]. Due to this data het-
erogeneity, for clients whose local data distribution differs
from the overall global data distribution, the global model
may also not be useful in assisting the clients to leverage their
unlabeled data as shown in Table 1, ‘Only Global’ case in
which the test accuracy is lower than selectively leveraging
both global and local models.

Based on the observations above, either the local or global
model, or both, can be useful for clients to leverage their
unlabeled data depending on the labeled data’s generaliz-
ability to the unlabeled data and clients’ data heterogene-
ity. Therefore, to utilize the setting of FL where clients
have access to both the knowledge from their local data
and the global model, we propose a selective knowledge
assimilation method named FEDLABEL where each client
chooses between its local and global model to pseudo-label
its unlabeled data based on each model’s confidence score.
Moreover, with our proposed global-local consistency regu-
larization, we fully utilize both the local and global models
when both have useful knowledge of the unlabeled data.

Most relevant line of recent work to FEDLABEL has pro-
posed the server to identify multiple experts for each client.
The experts can be other clients with similar data distribu-
tions [17], or the local, global, and the mixture of the local
and global models by model splicing [2]. However, the
additional computational and communication overhead for
the server to find and send the appropriate experts for each
client can become exponentially costly with the increasing
participating clients [40]. Moreover, these works treat all
experts equally, taking an average of their knowledge for
leveraging each client’s unlabeled data. Due to this, we show

High Data 20% Labeled | 50% Labeled
Heterogeneity Data Data
Only Local 32.57 (+2.20) | 41.21 (+1.80)
Only Global 37.51 (+1.80) | 38.43 (4+0.94)
Global+Local (ours) || 44.51 (+1.85) | 50.53 (+1.74)

Table 1: Test acc. (CIFAR10) when only the local or global model
is used for pseudo-labeling which largely underperforms the case
when both models are selectively used by our proposed FEDLABEL.

that these methods’ performance degrades significantly (see
Section 5.2) when the number of labels decreases and the
data heterogeneity gets higher. In our work, we use only the
natural two experts that are available in FL, local and global,
and show that this is enough to fully utilize the unlabeled
data at the clients when executed properly for both high and
lower label scarcity and data heterogeneity cases. Other
related work proposes methods with restrictive assumptions
such as the server having labeled data that is similar to the
data distribution of the clients [8] or several clients having
fully labeled data [23]. In FL, the server does not have
access to client data and labels are scarce, making these
assumptions practically improbable.

As summarized in Table 2, previous work in SSFL: i) as-
sumes restrictive settings such as the server or several clients
having good-enough fully labeled data, ii) imposes addi-
tional computational/communication burden at the server to
find and send more experts other than the naturally occurring
local and global models, and iii) does not consider the poor
generalization of limited data to the unlabeled data such as
class distribution mismatch. Improving on these drawbacks,
we propose our novel method FEDLABEL, which:

* Is robust to both the limited generalizability of the labeled
data such as class distribution mismatch and data hetero-
geneity by using just two experts, global and local, to
leverage a large number of unlabeled data (80-95%) with
just a few labeled data (5-20%).

Does not require the server having any labeled data or a
few clients to have fully labeled data. It also does not re-
quire additional experts to be computed or communicated
other than the local and global model used in standard FL.
algorithms [27, 33].

Leverages unlabeled data by adaptively choosing either
the local or global model based on the confidence of
the model’s prediction for pseudo-labeling with our pro-
posed global-local consistency regularization that mini-
mizes the divergence between the models’ outputs when
their pseudo-labels are identical.

Achieves 8-24% test accuracy improvement compared to
the other SSFL baselines, and even achieves a higher test
accuracy than fully supervised scenario (100% labeled
data) with only using 5-20% of labels for extensive experi-
ments (3 tasks for cross-device and 2 tasks for cross-silo).
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Method Requires Server ~ Requires Fully ~ Requires Additionally =~ Requires Additional Robust to
etho Labeled Data Labeled Clients ~ Computed Expert(s) Comm.- of Params.  Class-Dist. Mismatch
SemiFL [8] Yes No No No No
Rscfed [23] No Yes No No No
FedTriNet [2] No No Yes Yes No
FedMatch [17] No No Yes Yes No
FedLabel (ours) No No No No Yes
Table 2: Comparison of related work with FEDLABEL.
2. Related Work the experts differently to further combat limited data general-

Semi-Supervised Learning for General ML. Labels are
required to train well-performing models for classification
tasks, but realistically labels are often scarce and expensive
to obtain [25, 24, 7, 31, 1]. To tackle such label scarcity
for general ML problems, there has been a wide range of
works including methods such as consistency regulariza-

tion [41, 16, 36], pseudo-labeling [35, 46, 42], virtual adver-
sarial training [28], and per-sample weighting of unlabeled
data [30]. As one of the most popular methods, consis-

tency regularization leverages unlabeled data by minimizing
a model’s prediction difference between the original image
and perturbed versions of the image [41, 16, 36]. Another
commonly used method is pseudo-labeling, a simple ap-
proach to apply thresholding to the max probability of the
prediction and provide a pseudo label for a data sample [35].
Pseudo-labeling has also been popularly used in variations
such as dynamic thresholding based on the sample’s related-
ness to the labeled data [42], or class-based thresholding [46].
However, the aforementioned work does not jointly consider
the poor generalizability that the limited labeled data can
have to the unlabeled data and the data heterogeneity across
clients. We show in Section 5.2 that naively combining these
SSL methods to FL significantly fails, while FEDLABEL is
robust to both limited labeled data and data heterogeneity.

Semi-Supervised Learning for FL. Recently, several SSFL
methods have been proposed such as utilizing inter-client
consistency across clients [ 7], leveraging the labeled data at
the server or several clients for communication-efficient or
personalized SSL for FL [8, 13, 23], or using node classifica-
tion on graphs for handling data with new label domains [37].
FedMatch [17] and FedTriNet [2] are the closest to our work.
In FedMatch, the server finds clients with similar data dis-
tributions for each client and sends the predictions from
similar data clients for inter-client consistency regulariza-
tion. In FedTriNet, each client handles three models (local,
global, and the combination of the two through model splic-
ing) to leverage the unlabeled data through a simple average
of predictions across the three experts, and also requires the
clients to send back their loss values to the server. Both
approaches not only impose additional communication and
computational costs for the clients and server but also their
performance highly depends on finding the right parameter
such as the number of helper clients or how to splice the
models. Moreover, both methods do not consider weighing

izability and data heterogeneity. We show in Section 5.2 that
both FedMatch and FedTrinet indeed fail further for a lower
percentage of labeled data and higher data heterogeneity,
while FEDLABEL in fact performs even better in these cases
by simply leveraging only the local and global models.

3. Problem Formulation

We consider a FL setup (cross-silo and cross-device)
where M clients are connected to a central server to train a
well-performing global model for a N-class classification
task. Each client’s local data, denoted as Dy, , k € [M], is
consisted of the labeled set (x,y) € Dy, i and unlabeled set
¢ e DU,k, ie., Dy = DL,k UDU,k where x, £ € R4 is the
input and y € [1, V] is the label.

Conventional FL Algorithms’ Assumption. Previous work
in FL [19, 29] assumes an ideal scenario where each client
k has its unlabeled data Dy labeled which we call as the
hypothetically labeled unlabeled dataset denoted as Dy ..
With the ‘hypothetical’ fully labeled dataset of each client k&
denoted as Dy, = D kU Dﬁ’k, conventional FL algorithms
assumes fully labeled data where the server aims to find the
model parameter w € R? that minimizes:

LS fw,6)

M
F(w) =Y prFr(w), Fi(w) i= =

k=1 |Dk| 565

k

where py, is the aggregating weight and f(w, ) is the loss
function for sample ¢ := (x,y) and parameter vector w.
Realistic FL with Limited Labeled Data. In practice, much
of the available local data may not have ground-truth labels.
In fact, the number of unlabeled data can be much larger
than the labeled data, i.e., |Dr x| < |Dy,i|. Then the server
can only use the labeled data and effectively minimize

M
Fe(w)= Y piFes(w), Pea(w)i=5— 3 f(w.9
k=1 ’

£€DyL i

where wi = argmin,, F/z(w) becomes more different to
the solution of the ideal objective w* = arg miny, F(w) as
the distribution of U£4:1 Dy, i, differs more from the hypo-
thetical ideal dataset Ukle Dy.. Our goal is to find an algo-
rithm that can find the model parameter w* by using only the
labels from UQ/I:1 Dy 1, and the unlabeled data Ufy:l Du k.
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With clients having only a few labeled data and a larger
number of unlabeled data, the labeled data can have limited
generalization properties to the large unlabeled data due to
factors such as class-distribution mismatch (the discrepancy
between the distribution Dy, 3, and Dy ;) or the mere limited
number of its samples. Moreover, data heterogeneity (the
discrepancy across the distributions of the clients’ local data
Dy, k € [M]) exacerbates the difficulty of SSFL. We show
in our work that our proposed FEDLABEL enables clients to
leverage their unlabeled data to the full extent just by selec-
tively using the local and global model despite the difficulties
caused by data heterogeneity and limited generalizability of
the labeled data as explained in detail in the next section.

4. FEDLABEL: Choose Local or Global

In this section, we first introduce the novel semi-
supervised loss function of FEDLABEL over the clients’ un-
labeled data and then present the end-to-end algorithm of
FEDLABEL for implementation when used in realistic FL
frameworks. An overview of how FEDLABEL leverages
unlabeled data for each client & € [M] is in Fig. 3.

4.1. Semi-supervised Loss of FEDLABEL.

In the most commonly used vanilla FL [27], there are
two natural sources the clients can learn from: the global
model which is trained across different clients, and the local
model which is trained further with local SGD with their
own local data. Whether the local or global model, or even
both, can be effective for labeling the unlabeled data depends
on which is more knowledgeable on the data based on what
each has learned. For instance, if a client has very few
labeled data, leading to class distribution mismatch or limited
generalization capability to the unlabeled data, it can perform
badly at correctly matching the labels for the unlabeled data.
Instead, the global model can be more effective in giving
the correct labels for the unlabeled data since it has seen
more data from different clients. On the other hand, if the
local labeled data sufficiently generalizes well to the local
unlabeled data, the local model is more likely to give correct
pseudo labels. This is also observed in Table 1 where smaller
number of labels leads to the ‘Only Global’ performing
better, but for larger number of labels ‘Only Local’ performs
better. There can also be cases where both the local and
global models are not useful for leveraging the unlabeled
data, and it is best not to use either model.

Based on this observation, we propose FEDLABEL that
adaptively chooses either the local or global model based
on the confidence score of each model’s logits for pseudo-
labeling. If both models’ confidence does not exceed a
certain threshold, we do not use that unlabeled data. Such
binary choice of the model, however, can lead to losing rele-
vant information from the other discarded model despite it
having the same hard-label prediction as the chosen model.
To assimilate both information from the local and global

model for such scenarios, FEDLABEL adds global-local con-
sistency regularization that minimizes the divergence be-
tween the local and global models’ outputs. To the best of
our knowledge, adaptive selection of the global and local
model for pseudo-labeling and assimilating more knowledge,
when needed, with global-local consistency regularization is
a novel method that has not been previously proposed.

1) Obtaining Global and Local Models (same as Standard
FedAvg [27]). With superscript (¢, r) denoting the commu-
nication round ¢ and local iteration r, for each ¢ the server
selects a set of clients C(“:9) uniformly at random and sends
the global model w9 to clients in C(**). The clients in
€9 initialize their local model for supervised training as

(ﬁt 0 = w0 to perform 7 local iterations with learning

rate 7) to obtain their respective supervised local models as:
(Perform Local SGD on Labeled Data)

(t,7) (t,0)

) 1
We'k =Wl nZVFﬁkW(Ltk’ Ltk)) ey

(Compute the Supervised Local Update)

Awg:g) — Wg:]:) _ WE?IS) (2)

1) oy

b ecern VIWER. O is
the stochastic gradient computed with mini-batch & (¢, ,? of
size b randomly sampled from Dy, . Note that FEDLA-
BEL does not alter the local update procedure used in stan-
dard FL algorithms [27, 33], and can be easily extended to

using different methods to obtain the local model w(t T).

where VI, k(W(gt’z?v (Ltllc)) =

2) Confidence-based Selection with Thresholding. After
performing local SGD on the labeled data as in (1), clients
have the global model w (%) and the local model trained with
labeled data W(L ’;) Each client & € C(*9) gets the logits
from each the global and local model from the unlabeled

data ¢ € Dy, denoted as s(w0) | ¢) and s(w(ﬁ’;), )

respectively where s(-,-) : R x RY — RV 1, We then use
function h(-) : RV*! — R that calculates the confidence-
score (variance) of the logits and select the logit with the
higher confidence-score to pseudo-label the unlabeled data.
While we use variance to calculate confidence as in previous
literature [4], FEDLABEL is not restricted to this metric. We
include an ablation study on what to use as the confidence
score of the logits in Appendix A. Formally, we have that
Binary Selection of Logit: s*(¢) = arg max h(s),
S5 (€) 3)

D€)== {s(w™?, &), s(wiD, &)}
Pseudo Label from Thresholding:

¢ = arg maxs” (§)1(maxs*(€) > B) @
1€[N]

We discard the instances of g = 0 which indicates that the
selected logit did not pass the thresholding function in (4).
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1) Obtain Global and Local Models (eq.(3)-(4))

cont’d 2) Thresholding (eq.(6))

3) Global-Local Consistency Regularization (eq. (8)-(9))

If arg max ( I:I) =1
¢€[N] s(wzr,€) Selected Model’s

Global s(w,§) If max s(w,§) > f: -f
W % Model i€[N] m

-~ 772" . Pseudo-Label
Non-Selected Model's

B
1 SGD steps on
- |

2) Confidence-based Model Selection (eq.(5))

h(+) : confidence-score of the prediction

Selected Model \ (e9. (7))

w ! local data Logit Vectors Pseudo-Label
v po-mm=mmmmmmmmsm-eomo
S(w s Vo
Unlabeled Wk Local _ | (We ks §) — | ¢ 1= arg max s(w,§) !
Data & Model i i€[N] !
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Figure 3: Overview of FEDLABEL leveraging unlabeled data for each client k¥ € [M]. FEDLABEL consists of 3 main steps to leverage
unlabeled data: 1) Obtaining global and local models (eq. (1)-(2)), 2) Confidence-based selection with thresholding for obtaining the
pseudo-label for the cross-entropy loss (eq. (3)-(4)), and 3) the global-local consistency regularizing term to assimilate knowledge from both
global and local models when applicable (eq. (6)-(7)). Details of the end-to-end algorithm of FEDLABEL is in Algorithm 1.

Given that ¢ # 0, we have the pseudo-label §j¢ obtained via
(4) for the unlabeld data & € Dy . Then, with the separately
set local model to be trained over the unlabeled data defined
as wyy ., we have the cross-entropy loss for FEDLABEL as

CrossEntropy(wWy i, &), & := (¢¥(£),Te) o)

where () is a strong-augumentation (RandAugment [6])
of the data sample £ with its hyperparameters set to (1, 10).

3) Global-Local Consistency Regularization. The cross-
entropy loss of FEDLABEL in (5) uses the pseudo-label
selected via a binary selection between the local and global
model which essentially discards the logits of the model that
has not been selected. However, there can be cases where the
discarded model’s soft logits which we denote as s™*(&) also
point to the same label J¢, i.e., arg max; ¢ 8~ (§) = J¢ as
the selected model. In such cases with only the cross-entropy
term in (5), FEDLABEL can lose the useful information
contained in the discarded model. To cover such scenarios,
FEDLABEL utilizes the knowledge of the discarded model
when it predicts the same label as the selected model by our
proposed global-local consistency regularizing term as:

/\k(ﬁ)KL(S(Wu,k,5)787*(5))1(%1?%6[1}1\?57*(5) = Je),
(6)
where A\, (€) := Aoh(s™(£))/h(s*(£)) (7

Note that the global-local consistency regularizing term (KL-
divergence) is weighed by A\ (€) which is the confidence-
score ratio by the discarded model to the selected model,
i.e., Adoh(s™*(£))/h(s*(£)) < Ao, so that the less confident
the discarded model is compared to the selected model, the

lower the regularization weight. The maximum value of
Me(§), € € Dy, Yk € [M]is Ao which is achieved when
the confidence score of the discarded model and the selected
model is identical. We show in Section 5.2 that this consis-
tency regularization term indeed helps FEDLABEL improve
its performance from at least 5% to at most 9%.

FEDLABEL’s Final Semi-supervised Loss. Combining the
cross-entropy loss from the confidence-based selection in (5)
and the global-local consistency regularization loss in (6), we
have the final semi-supervised loss of FEDLABEL denoted
as Fy; j,(w) for each client k € [M] as below:

Z CrossEntropy(Wu k> f)
€Dy,

FA(§) K L(s(Wy k,6),8™

Fup(wyr) = |D N

*(f))]l(argmaxs
€[N

(©)=1¢))
®)

With the final semi-supervised loss of FEDLABEL proposed
in (8), now we are ready to elaborate on how FEDLABEL is
implemented in the subsequent subsection.

4.2. FEDLABEL Implementation

Recall that at each communication round ¢, the selected
set of clients C(**) initialize their local model to the global

(t 0)

model, ie., w; '~ = = w0 and perform 7 local iterations to

obtain the superv1sed local update Aw(t 0) (see (2)). Using

the same initialization WS’,S) = w(t’o), the clients now

obtain the semi-supervised local update by minimizing the
semi-supervised loss Fy (W i) (see (8)) via mini-batch
SGD for 7/ iterations on the unlabeled data Dy, k € Ct:0),
Concretely, we have the semi-supervised local update as:
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Algorithm 1 FEDLABEL Framework

1: Initialize W(O’O), Qutput: Global model w(T’O),

2: Fort =0,...,T — 1 communication rounds do:
Global server: Select m clients for C©*) uniformly at
random and send w* to clients in C(©'*)
Clients k € C*? in parallel do:
Set W(t 0wt 0) (t 0) w0
Get fé;? _ Awtd) +w“ Y (See (2))
Get Awy,") (See (10)
Send Aw,(f’o) = Aw(ﬁt:g) —+ AWZ(;,’E) and aggregation

(98]

A A

weight r,(:’o) to the server
9: Global server: Update w

(l‘ 0)
(t,0)
Zkec(f 0) Awk

t+10)  _ @t 4

»(t,0)
Ek’EC(f 0) k!

(Perform Local SGD on Unlabeled Data)
' —1

n = Wi = Y VE(wii ) ©)

Wik = Wyl

(Compute the Semi-supervised Local Update)

Awyy) = wip) —wyy) (10)

where VFMk(wz(j b g,?) = defu D) Vf(Wz(j;lC ,€) is

the stochastic gradient computed using a mini-batch &, (t.0)
of size b that is randomly sampled from client k’s local un-
labeled dataset Dy ;. Now each client k£ € C*:9 sends

back its update Aw (L0 — Aw (t 0) + Aw(t 9 back to
the server along w1th the total number of data samples

r,(f ) used for obtaining the local updates Aw(ﬁvg) and

sz(j)’,g). Note that r,(fp) is dependent on ¢ because the
number of unlabeled data samples that are used for train-
ing varies for each communication round depending on
how many samples pass the confidence-based threshold in
(4). Then finally the server updates its global model as
F(:0)
w10 = W(t’0)+2kec<t,0> ) iy Awkt ). The
K’ ec(t,0) TA’
details of FEDLABEL’s implementation is in Algorithm 1.

5. Experiments

5.1. Experimental Setup

We perform experiments on a wide variety of experiments
on both cross-device and cross-silo settings, partial and
full client participation, low and high data heterogene-
ity, and low and large label scarcity. We perform 3 tasks
for cross-device: Resnet18 with EMNIST (62 labels) [5],
Resnet34 with CIFAR10 (10 labels), and Resnet50 with
CIFAR100 (100 labels) [22] and 2 tasks for cross-silo: Or-
ganAMNIST (11 labels) and BloodMNIST (8 labels) [43]
both with Resnetl8. For cross-device, we select 10% of
clients for training for each comm. round. For the OrganAM-

NIST and BloodMNIST we select 30% and 100% of clients.

Data Partitioning Across Clients. For cross-device, the
data is partitioned across 100 clients using the Dirichlet dis-
tribution Dir(w = 0.1) [14], unless mentioned otherwise.
The parameter v determines the degree of data heterogeneity
(smaller « indicates larger data heterogeneity). For cross-
silo, data is partitioned across 10 and 5 clients in total re-
spectively with o = 0.1, unless mentioned otherwise. Note
that we emulate a realistic setting where the total number of
clients is much smaller for cross-silo than for cross-device.

Data Partitioning Within Clients. The local training
dataset of each client is partitioned into labeled and un-
labeled data uniformly at random. Note that even without
artificially biasing the dataset partitioning, we were still able
to observe class-distribution mismatch for high label scarcity
(see Fig. 2). For cross-device, we have 20% : 80% and
50% : 50% partitioning of the labeled : unlabeled data for
each client’s local training data. For cross-silo, we have
5% : 95% and 20% : 80% partitioning. Note that we have
run more fine-grained data ratio experiments (10,20,50,65 for
CIFARI10, and 5,20,35,50 for OrganAMNIST), also shown
in Fig. 1, but have selected a few intervals that have shown
the most significant difference for presentation.

Baselines. We compare FEDLABEL with 3 classes of base-
lines: 1) Supervised FL baselines with Fully Labeled Data de-
noted as 100% (FedAvg (100%), FedProx (100%)), ii) Su-
pervised FL baselines with Partially Labeled Data (FedAvg,
FedProx), and iii) SSFL baselines with Partially Labeled
Data ((FedAvg+UDA, FedAvg+FixMatch, FedProx+UDA,
FedProx+FixMatch, FedTriNet, FedMatch). The i) super-
vised FL baselines with 100% of labeled data is the hypo-
thetical upper bound that we can achieve by using FL when
clients have all their data labeled, and ii) the supervised FL
baselines with partially labeled data is the lower bound that
FL actually achieves in a realistic setting with only a few
labeled data. The iii) SSFL baselines are the state-of-the-art
methods that tackle label scarcity in FL. We do not compare
with SemiFL [8] and Rscfed [2] which impose assumptions
such as the server having labeled data or several clients hav-
ing fully labeled data (see Table 2).

5.2. Experimental Results

We thoroughly evaluate FEDLABEL in the following as-
pects: achieves high accuracy for i) both low and high label
scarcity (5-20% and 20-50%), and ii) both low and high data
heterogeneity. We also perform ablation studies on FEDLA-
BEL as follows: iii) effect of the global-local consistency
regularizing term modulated by g in (7), iv) effect of the
number of local steps 7 to obtain the local model in (1), v)
effect of the thresholding parameter 3 in (4), and vi) effect
of different confidence measures i(-) in (3). We defer the
results for v) and vi) to Appendix A due to space constraints.

Effectiveness of FEDLABEL for High Label Scarcity. We
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High Client Cross-Device Setting Cross-Silo Setting
Data Heterogeneity EMNIST CIFAR10 CIFARI00 || OrganAMNIST BloodMNIST
Supervised, FedAvg (100%) 78.36 (+0.73) 44.67 (£1.09) 24.67 (+0.55) 71.09 (+1.00)  70.53 (£1.13)
Fully Labeled : FedProx (100%) 78.60 (+0.89) 44.72 (+1.63) 24.87 (+0.19) || 73.34 (+0.86) T74.53 (+0.39)
Supervised, FedAvg 63.05 (x1.52) 28.83 (£2.94) 11.33 (+0.22) 41.90 (+£2.18)  53.18 (+0.11)
Partially Labeled FedProx 63.31 (x0.16) 31.09 (+1.15) 11.37 (+o0.15) 48.28 (+0.78)  56.53 (+0.68)
FedAvg+UDA 68.98 (+1.06) 31.32 (+2.84) 10.80 (+0.57) 55.14 (+0.92)  53.18 (+0.68)
FedAvg+FixMatch || 67.98 (£1.59) 23.99 (+2.73) 10.16 (+0.20) 52.76 (+2.95)  47.92 (£1.55)
Semi-Supervised, FedProx+UDA 71.93 (x1.37) 31.99 (x2.26) 10.57 (+0.13) || 54.15 (£2.53) 59.48 (+1.17)
Partially Labeled = FedProx+FixMatch || 70.56 (+0.96) 22.38 (+2.28) 10.02 (+0.54) 55.49 (+2.65)  50.88 (£1.12)
FedTriNet 60.31 (x0.25) 29.56 (£1.53) 10.53 (£1.83) 50.82 (+1.21)  59.38 (£1.05)
FedMatch 63.48 (+0.57) 31.94 (+1.78) 10.86 (£1.33) 48.99 (+1.38)  58.89 (+2.24)
FEDLABEL (ours) || 79.33 (+1.97) 46.05 (+1.09) 18.42 (+1.46) || 69.43 (+1.58) 71.46 (+1.89)

Table 3: Test accuracy for high label scarcity on each client’s local data (20% of labeled data for cross-device and 5% for cross-silo).
FEDLABEL achieves a significantly higher test accuracy by approximately 8-16%, 15-24%, 8%, 14-20%, and 12-23% for EMNIST,
CIFAR10, CIFAR100, OrganAMNIST, and BloodMNIST respectively. For EMNIST, CIFAR10, and BloodMNIST, FEDLABEL achieves an
even higher test accuracy than the supervised fully labeled case (100% of the data labeled) by approximately 1%, 2%, and 1%.

Non-Semisupervised Baselines Semisupervised Baselines

O i st Ttk s ke e

40 D A i 0

Iy P VU I B A i
g g i M "y
=30 =30 v Iy
Q Q

o o

< <

=20 = 20

7] 7]

5] o

= 10 —FedAvg (100%) -- FedProx (100%) = 10— FedAvg+UDA FedProx+UDA

--FedProx — FedLabel

0 —FedAvg

--FedAvg+FixMatch —-FedMatch
0 — FedProx+FixMatch —FedLabel

0 200 400 600 800
Communication Rounds

(a) 50% of Labeled Data for CIFAR10

Communication Rounds

Test Accuracy

1000 0 200 400 600 800 1000

Semisupervised Baselines

Non-Semisupervised Baselines

80

-
3

Py AV
60 60 1, e AR \:’&?‘W‘J L
> T e sy
50 8 50 N
o r
= 1
40 g4 §
! < 1"
30 =30 I
| R
20| —FedAvg (100%) -+ FedProx (100%) £ 20 —FedAvg+UDA FedProx+UDA
10 " --FedProx — FedLabel 10 —-FedAvg+FixMatch --FedMatch
— FedAvg — FedProx+FixMatch — FedLabel

0

o

1000 0 200 400 600 800 1000

Communication Rounds

0 200 400 600 800
Communication Rounds

(b) 20% of Labeled Data for OrganAMNIST

Figure 4: Test accuracy for lower label scarcity, 50% and 20% of labeled data, for each client’s local training data for CIFAR10 and
OrganAMNIST respectively. FEDLABEL outperforms the baselines by 8-15% and 2-10% for CIFAR10 and OrganAMNIST respectively.
Comparing to results in Table 3, FEDLABEL performance gap with other baselines is higher when there is higher label scarcity.

evaluate FEDLABEL with the top-1 test accuracies for 20%
and 5% of labeled data on each client for cross-device and
cross-silo respectively in Table 3. Compared to the other
SSFL baselines, FEDLABEL achieves a higher test accuracy
by 8-16%, 15-24%, 8%, 14-20%, and 12-23% for EMNIST,
CIFAR10, CIFAR100, OrganAMNIST, and BloodMNIST re-
spectively. Surprisingly, for EMNIST, CIFAR10, and Blood-
MNIST, FEDLABEL achieves an even higher test accuracy
than the fully supervised case (100% of labeled data) by
approximately 1%, 2%, and 1%. In other words, FEDLA-
BEL performs even better than the ideal scenario when 100%
of the data is labeled, with only 5-20% of labeled data. We
reason that this is due to the small amount of noise intro-
duced by FEDLABEL when leveraging the unlabeled data
which can improve the generalization performance as shown
in previous work [45, 10]. FEDLABEL’s also outperforms
by 7-27% than the supervised baselines with partially la-
beled data, while some of the SSFL baselines with partially
labeled data perform even worse. Next, we evaluate FEDLA-
BEL when there are more labels in the subsequent paragraph.

Comparison with Cases for Lower Label Scarcity. In
Fig. 4, we show results for larger portions of labeled data,

50% for CIFARI10 and 20% for OrganAMNIST, than the
results shown in Table 3 which was for 20% and 5% of la-
beled data respectively. For the larger number of labeled
data, FEDLABEL still outperforms the baselines by 8-15%
and 2-10% for CIFAR10 and OrganAMNIST respectively.
However, the performance gap is lower than the 15-24%
and 14-20% improvement shown in Table 3 for higher la-
bel scarcity. Hence, this shows that while FEDLABEL still
outperforms other baselines for lower label scarcity, it out-
performs the other baselines with a higher gap when clients
have a smaller number of labels, i.e., high label scarcity.

Robustness of FEDLABEL to Data Heterogeneity. In Ta-
ble 4, we show the test accuracy for smaller data hetero-
geneity (¢ = 1) where FEDLABEL still outperforms the
other baselines by 4-10% and 7-20% for CIFAR10 and Or-
ganAMNIST respectively. However, compared to the results
in Table 3 which is for higher data heterogeneity (o = 0.1),
the performance gap between FEDLABEL and the other base-
lines is smaller by around 11-14%. This implies that FED-
LABEL works better when there is high data heterogeneity,
while the other baselines perform worse when there is higher
data heterogeneity across clients.
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Figure 5: Ablation study on the effect of the global-local consistency regularizing term by modulating Ao in (7). For all datasets, Ao = 0
gives the lowest test accuracy, showing that without the regularizing term, we lose useful information from the discarded model from the
binary selection between the local and global model. For larger Ag > 0, the test accuracy improves by approximately 5-9%.

Low Inter-Client

Data Heterogeneity CIFAR10 | OrganAMNIST
FedAvg (100%) 57.17 (+0.34) | 81.49 (+0.96)
FedProx (100%) 57.45 (+0.51) | 82.07 (+1.10)
FedAvg 40.11 (+0.67) | 59.74 (£1.52)
FedProx 41.45 (+0.58) | 61.86 (+1.23)
FedAvg+UDA 42.07 (+0.94) | 63.05 (£1.91)
FedAvg+FixMatch || 38.51 (+0.96) | 70.14 (£1.42)
FedProx+UDA 42.08 (+0.83) | 65.12 (£2.03)
FedProx+FixMatch || 42.94 (+o.86) | 70.58 (+1.13)
FedTriNet 42.67 (£0.79) | T4.16 (£1.42)
FedMatch 44.23 (+0.88) | 72.57 (+1.58)
FEDLABEL (ours) || 48.89 (+0.91)| 79.76 (+0.83)

Table 4: Test accuracy for labeled data 20% and 5% respectively
for CIFAR10 and OrganAMNIST with lower data heterogeneity
(o = 1). FEDLABEL outperforms the baselines by 4-10% and
7-20% for CIFAR10 and OrganAMNIST respectively.

Effect of Global-Local Consistency Regularization. In
FEDLABEL, we use global-local consistency regularization
which is weighted by the parameter Ag (see (7)). We evaluate
the effectiveness of this term by varying g in Fig. 5. For all
datasets, \y = 0 gives the lowest test accuracy, showing that
without the regularizing term, we are losing useful informa-
tion from the discarded model due to the binary selection
between the local and global model. As we increase Ay, we
see significant improvement in the test accuracy of 5-9%.
However, we also observe that when \g exceeds a certain
threshold the improvement decreases. The intensity of the
global-local consistency regularizing term can be modulated
by tuning Ao when appropriate.

Number of Training Steps to Obtain the Local Model.
To obtain the local model (see Eq. (1)), clients perform 7
local SGD steps on the received global model with their
labeled data. Hence, with larger 7, the more the local model
well reflects the client’s local data. In Fig. 6, we perform an
ablation study on the effect of 7. The smallest 7 = 5 yields
the worst performance across the range of 7, showing that for
the local model to well reflect the client’s local data and bring
distinct information from the global model, T needs to be set
to a moderately large value. For larger 7, the performance
improves and gradually saturates indicating that the local
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Figure 6: Ablation study on the number of local steps 7 to obtain
the local model w i for client k& € [M]. The smallest 7 = 5
yields the worst performance showing that for the local model to
well reflect the client’s local data, 7 needs to be moderately large.

model converges. We provide additional results on the effect
of 7 for a larger number of labeled data in Appendix A,
giving further insight into how the quality of the local model
affects FEDLABEL’s performance.

6. Concluding Remarks

In conclusion, we propose FEDLABEL, a SSFL frame-
work that works well for both low and high data heterogene-
ity cases, as well as for both limited and larger portions of
labeled data. We use a confidence-based binary selection of
the local or global model for pseudo-labeling with global-
local consistency regularization. Unlike previous work, FED-
LABEL does not require additional computation to find new
experts, additional communication of parameters, server la-
beled data, or any fully labeled clients. In both cross-device
and cross-silo settings, we show that FEDLABEL largely
outperforms other SSFL baselines, especially when there is
high data heterogeneity and label scarcity, by at most 24%.
FEDLABEL even outperforms fully-supervised FL baselines
which use fully-labeled data with only using 5-20% of la-
beled data. Currently, FEDLABEL does not consider the
possible noise that can be present in the labeled data of the
clients caused, for instance, clients mislabeling their data
due to lack of expertise. Thus, for future work, we aim to
extend the FEDLABEL to be robust to label noise.
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