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Abstract

Generalization capability of vision-based deep reinforce-
ment learning (RL) is indispensable to deal with dynamic
environment changes that exist in visual observations. The
high-dimensional space of the visual input, however, imposes
challenges in adapting an agent to unseen environments.
In this work, we propose Environment Agnostic Reinforce-
ment learning (EAR), which is a compact framework for
domain generalization of the visual deep RL. Environment-
agnostic features (EAFs) are extracted by leveraging three
novel objectives based on feature factorization, reconstruc-
tion, and episode-aware state shifting, so that policy learning
is accomplished only with vital features. EAR is a simple
single-stage method with a low model complexity and a fast
inference time, ensuring a high reproducibility, while attain-
ing state-of-the-art performance in the DeepMind Control
Suite and DrawerWorld benchmarks. Code is available at:
https://github.com/doihye/EAR.

1. Introduction
Deep reinforcement learning (RL) plays an important

role in various fields such as robotic manipulation, video
games, and autonomous navigation. Among them, RL ap-
proaches using visual observations [32, 26, 31, 7, 58, 1, 46]
have achieved appreciable success in that dense and rich in-
formation can be obtained easily through the camera. Since
real world changes dynamically at all times, the ability to
generalize an agent against visual variations is indispensable
in this field. However, the high-dimensional observation
space of visual inputs [5, 41] imposes several challenges in
adapting the agent to unseen environments [8, 4].

To learn robust policies invariant to visual changes, do-
main randomization methods [44, 37, 36, 53, 38] have been
proposed based on the surmise that applying miscellaneous
augmentations during a training phase empowers an agent
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Figure 1. From visual observations with the same agent state under
different environments (o1: original environment, o2: random box,
o3: color jitter), EAR separates environment-agnostic feature and
environment-specific feature to learn vital representation used for
RL policy learner.

to cover any test environments. However, a considerable
amount of effort is required to set the degree of randomiza-
tion, and more importantly, it is practically impossible to
fully consider all variations of test scenarios.

Instead of increasing the variability in training data, do-
main adaptation approaches have attempted to adapt the
policy ingenuously to a test domain [39, 20, 19]. However,
these methods often require additional fine-tuning during in-
ference with a reward function that is newly created for each
unseen environment. Alternatively, PAD [12] proposes to
adapt an auxiliary self-supervised task (e.g. inverse dynam-
ics prediction and rotation prediction) to obtain supervisory
during test time without using reward. While this approach
benefits greatly from an online learning, an appropriate aux-
iliary task should be selected depending on the specific RL
task. More importantly, the additional training stage in the
novel environment causes extra inference time, impairing an
overall computational efficiency.

More recently, as an explicit approach based on domain
generalization, VAI [49] proposes to learn visual foreground
masks from augmented input images to feed only foreground-
related information to a policy network. Though a high gen-
eralization performance was reported in VAI, several short-
comings still limit the use of this method. Since the policy
training process requires two pre-training steps of auxiliary
tasks (e.g. keypoint detection and visual attention predic-
tion), the learning process is complex, requiring substantial
computational costs compared to existing works. Moreover,
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the image that VAI finally uses for learning the policy is
generated using the multiplication of the foreground mask
and the augmented image, therefore remnants of the envi-
ronmental changes (e.g. foreground changes) still remain,
hampering the policy training.

In this paper, we propose a novel generalization method,
termed Environment Agnostic Reinforcement learning
(EAR), which is a compact framework for domain gener-
alization of the visual deep RL. To be more specific, our
method attempts to extract an environment-agnostic feature
(EAF) and use it to learn the RL policy network. By simply
adopting novel objectives, our method can be trained in a
single step, without the complicated procedure consisting of
multiple individual training steps as in [49]. For extracting
the EAFs from input images, we provide a feature factoriza-
tion constraint to EAFs and remaining environment-specific
features (ESFs) which are separated from the latents, and at
the same time impose a reconstruction constraint computed
by reversely combining EAFs and ESFs separated from two
consecutive frames. Moreover, the proposed method intro-
duces an episode-aware state shifting (ESS) constraint to
EAFs in a self-supervised Siamese framework. By utilizing
the proposed domain generalization task in an end-to-end
manner with RL, EAR learns the process of extracting an
EAF from an image, so that policy learning is accomplished
only with the vital agent-related information, as depicted in
Figure 1.

It is noteworthy that we aim to improve the generaliza-
tion ability and at the same time maintain a lightweight
encoder used by prior RL algorithms [11, 23] without any
additional architectures [17, 51]. To achieve this, we as-
sumed additive feature factorization and designed the novel
objectives. Moreover, the ESS module imposes an important
constraint that the separated EAFs, which we assume as a
newly generated state, must be consistent in terms of the
episode-aware state shifting. In Table 6, we show that the
ESFs should be excluded when training the policy network.
EAR is the first attempt to generate a novel agent-related
states to make them episode-consistent, yielding a signifi-
cant impact on the robustness of performance. This is easily
confirmed by referring to the standard deviation of episode
returns with and without the ESS module (Lss) in Table 5.
The proposed ESS module works complementary to the fea-
ture factorization framework, since both constraints aim to
encode agent-related representation.

In simulation, we present an extensive evaluation on the
DeepMind (DM) Control Suite [43] including DM Con-
trol Generalization Benchmark [14] and Distracting Control
Suite [42], which introduce a number of visual distractors
to analyze whether the trained agent performs well in var-
ious environments. For evaluating the robustness of the
trained agent on realistic textures, we also conduct experi-
ments on the DrawerWorld [49] robotic manipulation tasks

which add texture distortion and background distortion to
MetaWorld [54] benchmark. Our method achieves a high
generalization performance, outperforming the state-of-the-
art methods in tasks of DM Control Suite [43] by up to 50.1%
and DrawerWorld [49] by up to 97.7% with low model com-
plexity and computational cost (Table 1). Notably, empirical
evaluations show that while EAR does not require any extra
costly adaptation during the test time [12] or using extra
training stages [49], it achieves the state-of-the-art perfor-
mance over existing methods.

To summarize, EAR has the following affirmative assets.
1) Novel domain generalization framework designed for
visual RL. EAR proposes a novel framework tailored to
RL setup, which segregates the intrinsic property needed
for policy learning. Moreover, the generalization process of
EAR requires no manual annotations or prior knowledge of
environments. Accordingly, EAR can be readily adopted in
any task that is subject to RL.
2) Simple single-stage training. The proposed method can
be implemented by applying only novel objectives in a single
training stage without several training steps.
3) Low complexity. The proposed architecture maintains
a network size almost similar to that of the existing RL al-
gorithms [11, 23], which do not consider the generalization
ability of the agent. Also, the inference time is faster than
other adaptation methods [12] or similar to other general-
ization methods since EAR does not require any adaptation
during inference. See more details in Table 1.
4) Superior performance. Superior generalization perfor-
mance of the proposed method was validated through exten-
sive experiments on diverse test environments including DM
Control Suite [43] and DrawerWorld [49].

2. Related Work
Self-supervised learning for RL. Self-supervised learn-
ing attempts to extract meaningful features from only unla-
beled input images by defining a pretext task [45, 48, 56].
(e.g. rotation prediction [9], jig-saw puzzle solving [33],
and context prediction [6]) or leveraging contrastive learn-
ing [2, 3, 10]. In recent years, the self-supervised learning
has been actively leveraged in the field of RL. Inspired by
standard self-supervised learning adopting auxiliary tasks
without supervision, PAD [12] minimizes the RL and self-
supervised objectives jointly to adapt a pretrained policy to
an unseen environment with no reward. SPR [40] proposes
self-predictive representation that predicts its own latent
state representations. VAI [49] extracts visual foreground
through unsupervised keypoint detection and visual attention
to deliver an invariant visual feature to RL policy learner.
Unlike leveraging self-supervised learning for adapting do-
main [12] or obtaining visual foreground [49], we explicitly
learn environment-agnostic feature from an image with self-
supervised feature factorization, so that policy learning is
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Figure 2. The overall framework of Environment Agnostic Reinforcement learning (EAR): EAR separates the environment-agnostic feature
(EAF) from the latent representation and uses it to learn policies for RL. Through representation learning, we can guarantee that policy
training proceeds only with the suitable feature from the observation of an unseen environment. A detailed description of the ESS module
can be found in Figure 3.

accomplished only with the vital features.

Domain generalization for RL. Domain generalization for
RL has received significant attention over the past few years.
One approach is to enhance the robustness of policies against
the visual changes. The use of randomly simulated RGB
images was proposed in [44]. Similarly, Peng et al. [36]
learn domain adaptive policies by randomizing the dynam-
ics during a training phase. RARL [37] attempt to learn a
robust policy against extra disturbances by modeling differ-
ences between training and test scenarios. Several works
explore data augmentation techniques to improve the gen-
eralization capacity of policy [22, 38, 21]. For example,
RAD [22] achieve a significant improvement via random
translation and random amplitude scales, while DrAC [38]
automatically find the most effective augmentation with reg-
ularization terms for the policy and value function. Rather
than learning policies solely from augmented data, SODA
[14] aims to decouple augmentation from policy learning by
using non-augmented data for policy learning while using
augmented data for auxiliary representation learning. More
recently, SVEA [13] design a stabilized Q-value estimation
framework for dealing with an instability issue under data
augmentation in off-policy RL, while DBC [55] uses bisim-
ulation metrics to learn a representation that disregards task-
irrelevant information. Another promising approach is to
adapt policy to a test domain. For example, Julian et al. [19]
illustrate the effectiveness of fine-tuning in RL, while Rusu
et al. [39] propose a progressive framework that accumulates
prior knowledge while preventing catastrophic forgetting. In-

stead of directly adapting policy, PAD [12] proposed to adapt
a self-supervised task to obtain free training signal during
deployment. On the other hand, VAI [49] extracts a universal
visual foreground mask to feed invariant observation to RL.
For a similar purpose, but as a simpler and more effective
way, our work focuses on generating an universal represen-
tation, which is invariant to distribution shifts, through novel
objectives based on feature factorization, reconstruction, and
episode-aware state-shifting.

Factorized representation. Feature factorizing, aiming to
encode data into explanatory latent variables, has received
considerable attention especially in image domain [24, 35,
27]. Recently, with the success of variants of variational
autoencoders (VAE) [30, 29] and generative adversarial net-
works (GAN) [28, 34] even in the absence or lack of supervi-
sion, several attempts have been made to amalgamate factor-
ized representation with RL. DARLA [17] and LUSR [51]
exploit β-VAE [16] and cycle-consistent VAE [18] to en-
code an observation into environment’s generative factors,
respectively. However, the reconstruction loss of VAE-
based approaches demands an extra decoder network and
its implicit regularization still faces several difficulties in
extracting environment-agnostic features from visual obser-
vation. On the other hand, the proposed feature factorizing
method has the ability to factorize the visual observation
into environment-agnostic and environment-specific features
with the help of explicit objectives.
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Figure 3. Episode-aware state shift (ESS) module: It consists of the action conditioned prediction (ACP), two projection heads, and one
prediction head. The target projection head is updated via the exponential moving average (EMA) similar to self-supervised learning
approaches.

3. Method
We propose Environment Agnostic Reinforcement learn-

ing (EAR), a compact and lightweight framework to general-
ize to an unseen environment in a completely unsupervised
manner. EAR is an off-the-shelf method that can be readily
adopted to any other RL algorithms. We cast the problem of
generalization as an environment-agnostic feature extraction,
which aims to separate the agent-related feature from input
images, and use it to learn policies for RL.

3.1. Feature factorization of latent representation

As shown in Figure 2, EAR starts with two visual inputs
with different kinds of augmentation A1 and A2 applied
to suppose a new environment. The operation of EAR is
regardless of the kind of augmentation as its ultimate purpose
is to learn features in which environmental variations are
removed. EAR learns feature factorization between the two
groups with different augmentations in batch units, i.e., the
RL encoders for ot and ot+1 are Siamese.

For encoders commonly used by off-the-shelf RL algo-
rithms [23, 12, 22], we split the network into a base encoder
Ebase and a factorization encoder Efac. This allows the
model complexity to remain unchanged by avoiding the use
of additional layers for the factorization task. We found
that such a compact architecture for the feature separation is
very effective in terms of both accuracy and efficiency (see
Table 1 and Table 2 and 3).

Given raw input observations ot and ot+1 where t and
t+ 1 represent a timestep, we first apply two different aug-
mentations and obtain base features ft and ft+1 which are
the output of the base encoder Ebase. Then, Efac separates
EAF fEAF

t and fEAF
t+1 from ft and ft+1, respectively. The

difference between ft and fEAF
t is defined as the environ-

ment specific feature fESF
t .

ft = Ebase(A1(ot)),

fEAF
t = Efac(ft),

fESF
t = ft − fEAF

t

(1)

This is similarly applied to ft+1, where ft+1 =

Ebase(A2(ot+1)). Using the assumption that fEAF
t and

fESF
t must be independent and not related at all, we can

impose a feature separation constraint which maximize the
cosine distance between two features as follows:

Lsep = |∥∥g(fEAF
t )

∥∥T
2

∥∥g(fESF
t )

∥∥
2
|, (2)

where g(·) denotes a global average pooling operation to
vectorize feature maps. Since subtraction between features
is possible, conversely it is assumed that addition also holds
true. In this regard, the addition of fEAF

t and fESF
t+1 should

be formed similar to f ′
t , which is the output feature map

of Ebase with the opposite augmentation applied, and it is
likewise applied to fEAF

t+1 and fESF
t as well. We impose

the mean square error (MSE) between features to give a
reconstruction constraint Lrecon.

Lrecon =
∥∥(fEAF

t + fESF
t+1 )− f ′

t

∥∥2
2

+
∥∥(fEAF

t+1 + fESF
t )− f ′

t+1

∥∥2
2
,

(3)

where f ′
t = Ebase(A2(ot)), and f ′

t+1 = Ebase(A1(ot+1)).
The environment-agnostic feature fEAF

t , which is the output
of Efac, is finally used as an input for the RL policy network.
In our work, the soft actor critic (SAC) [11] algorithm is
used as a baseline.

3.2. Episode-aware state shift (ESS) module

The feature factorization and reconstruction constraints
may be beneficial to separate input features, but an optimiza-
tion using them alone may often lead to instability (refer to
Table 5) due to the existence of multiple solutions satisfy-
ing these constraints. Besides, visual RL generally uses the
image observation of the agent as an input, but disregards
agent-related information.

Accordingly, we impose a novel complementary con-
straint that separated fEAF, which we assume as a newly
generated state, is consistent with respect to state shifting.
We introduce the episode-aware state shift (ESS) module,
which uses an action vector as a medium to constrain the
factorized vital features of two consecutive frames. To be
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specific, the action conditioned prediction (ACP) first pre-
dicts EAF f̂EAF

t+1 at the next frame from the current EAF
fEAF
t using the associated action at;

f̂EAF
t+1 = ACP(fEAF

t , at). (4)

Detailed structure of ACP is provided in the supplemen-
tary material. The state shift constraint is then imposed by
applying two projection heads and one predictor as shown
in Figure 3. We project the predicted representation f̂EAF

t+1

and target representation f̃EAF
t+1 into a smaller latent space

by feeding them into a query projection head Pq with pa-
rameters ξq and a target projection head Pt with parameters
ξt. Note that, we follow the self-supervised literature [10] to
compute the target feature f̃EAF

t+1 using the network updated
via the exponential moving average (EMA). When using
SAC [11] as the base algorithm, the feature of its critic tar-
get encoder can be reused as the target representation f̃EAF

t+1

for state shift constraint, instead of performing additional
computation. Refer to the supplementary material for more
implementation details about encoding target representation.
After additionally applying the query prediction head Qq to
the query projection, the state shift objectiveLss is computed
as follows:

Lss(ŷt+1, ỹt+1) = −
< ŷt+1, ỹt+1 >

∥ŷt+1∥2∥ỹt+1∥2
,

where ŷt+1 = Qq(Pq(f̂EAF
t+1 )), ỹt+1 = Pt(f̃EAF

t+1 ).

(5)

The parameters of target projection head ξt are updated
using the parameters of query projection head ξq via EMA,
ξt ← τξt+(1−τ)ξq . Notably, the proposed state prediction
works complementary to the feature factorization module,
since it aims to learn state-related vital information. Namely,
state representative feature contains vital information about
the agent status, and it is essentially the same as EAFs, thus
leading to mutual supplementation between two modules
(feature factorization and ESS). Aggregated with the RL
algorithm loss LRL, the final objective is as follows:

LEAR = LRL + αLsep + βLrecon + γLss. (6)

4. Experiments
We intend to evaluate the generalization ability of the

trained agent. Following [12, 14, 13, 49], the agent was first
trained in the original environment and then evaluated under
various environmental changes and visual distractors without
any reward or prior knowledge about the test environment.
For a comprehensive evaluation, we tested our method on
both simulation and robotic manipulation. In the case of
simulation, we presented an extensive evaluation on the chal-
lenging continuous control tasks of DM Control Suite [43] in-
cluding DeepMind Control Generalization Benchmark [14]
and Distracting Control Suite [42]. Beside simulations, we

Table 1. Comparison on the number of model parameters and an av-
erage time per episode at evaluation time with VAI [49], SAC [11],
PAD [12] and CURL [23]

Method EAR VAI SAC PAD CURL

Model parameter (M) 2.55 4.88 2.54 2.54 2.54
Time per episode (s) 0.72 0.72 0.71 4.13 0.71

also conducted experiments on DrawerWorld [49] robotic
manipulation tasks which is based on MetaWorld [54] bench-
mark with texture distortions and background distractions,
in order to enable the agent to work in an environment close
to real-world. The same RL algorithm (SAC [11]) was em-
ployed in our method and the existing methods used in the
comparison. For reference, inspired by [15, 50, 52, 47], we
employed an asymmetric augmentation intensity to the mo-
mentum encoder of SAC. Detailed experiment is provided
in the supplementary material.

4.1. Model complexity and speed

Table 1 illustrates the comparison on the number of model
parameters and an average speed per episode at evaluation
time with VAI [49], SAC [11], PAD [12] and CURL [23].
EAR has the similar runtime and model complexity to the
existing RL algorithms [11, 23] that do not consider the gen-
eralization capability. Even at training time, the increase
in the number of parameters of the ESS module is very
marginal at 0.5%, resulting in little changes to the overall
model complexity. Compared to VAI [49] which requires
twice as many parameters, and PAD [12] which takes more
than four times for inference, EAR is much lighter and faster
while achieving superior performance as reported in Sec-
tion 4.2 and 4.3.

4.2. DeepMind Control Suite

Training. For tasks of DM Control Suite [43] 3D simulation
benchmark, we trained agents on original environments
without distractions. To ensure a fair comparison, we
followed the environmental setting of current methods
(PAD [12], SODA [14], SVEA [13], and VAI [49]). To
guarantee reproducibility, we evaluated the model across 10
random seeds with 100 random environment initializations.

Test. Following prior works [12, 14, 13, 49], the gen-
eralization performance was measured on three different
types of test environments: (i) randomized colors; (ii) video
backgrounds; and (iii) camera poses as shown in Figure 4.
For the test environments of randomized colors and video
backgrounds, we used DM Control Generalization Bench-
mark [14]. We compared our method against the strong
baselines including SAC [11] which is a base policy learn-
ing method, DR which is the SAC trained with simple do-
main randomization on a fixed set of 100 colors, PAD [12]
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training randomized colors video backgrounds camera poses

Figure 4. Training and test environments of DM Control Suite [43]. We train agents on original environment and evaluate them under various
environmental changes and visual distractors without any reward or prior knowledge about the test environment in order to evaluate the
generalization ability.

Table 2. Quantitative evaluation of episode return on DM Control [43] Generalization Benchmark [14] randomized color tests. EAR
significantly outperforms existing state-of-the-art methods without any test time adaptation or using the additional training stages. We report
our mean and standard deviation over 10 random seeds on 500K time steps. The results of other methods used for comparison are obtained
from [12, 14, 13, 49]. The best result on each task is in bold.

Randomized colors SAC DR PAD SODA SVEA VAI EAR ∆

Walker, walk 414±74 594±104 468±47 692±68 760±145 819±11 922±37 +103
Walker, stand 719±74 715±96 797±46 893±12 942±26 964±2 972±11 +8
Cartpole, swingup 592±50 647±48 630±63 805±28 837±23 830±10 884±39 +47
Cartpole, balance 857±60 867±37 848±29 - - 990±4 997±2 +7
Ball in cup, catch 411±183 470±252 563±50 949±19 961±7 886±33 979±15 +18
Finger, spin 626±163 465±314 803±72 793±128 977±5 932±3 946±18 -31
Finger, turn easy 270±43 167±26 304±46 - - 445±36 553±87 +108
Cheetah, run 154±41 145±29 159±28 - - 337±1 368±56 +31

Table 3. Quantitative evaluation of episode return on DM Control [43] Generalization Benchmark [14] video background tests. All
experimental settings are the same as in Table 2.

Video backgrounds SAC DR PAD SODA SVEA VAI EAR ∆

Walker, walk 616±80 655±55 717±79 768±38 612±144 870±21 913±38 +43
Walker, stand 899±53 869±60 935±20 955±13 795±70 966±4 970±23 +4
Cartpole, swingup 375±90 485±67 521±76 758±62 606±85 624±146 762±88 +4
Cartpole, balance 693±109 766±92 687±58 - - 869±189 950±30 +81
Ball in cup, catch 393±175 271±189 436±55 875±56 659±110 790±249 911±40 +36
Finger, spin 447±102 338±207 691±80 695±97 764±86 569±366 717±51 -47
Finger, turn easy 355±108 223±91 361±101 - - 419±50 629±39 +210
Cheetah, run 194±30 150±34 206±34 - - 322±35 334±56 +12

Figure 5. Quantitative evaluation of episode return on Distracting Control Suite [42] of DM Control Generalization Benchmark [14] camera
pose tests.

which adapts to a test environment during deployment time,
SODA [14] which applies soft data augmentation in an aux-
iliary learning, SVEA [13] which stabilizes Q-value estima-
tion, and VAI [49] which extracts visual foreground mask.
Note that, SODA [14] obtained the results using Places
dataset [57] as a part of the training set, and SVEA [13]
obtained the results with random convolution augmentation
[25]. Additionally, we measured an episode return on Dis-
tracting Control Suite [42] of DM Control Generalization
Benchmark [14], where camera pose, background, and col-
ors continually change throughout an episode. Mean and

standard deviation were measured over 10 random seeds on
500K time steps. We also provide evaluations on the sample
efficiency in the supplementary material.

Randomized color test. Table 2 demonstrates that EAR out-
performs the strong baselines on most of the tasks in terms of
the episode reward return by up to 24.3%. When compared
to PAD [12] tuning the encoder with test samples at test time,
remarkable performance of EAR is possible even without
an additional adaptation during deployment. This indicates
the proposed generalization method is more efficient and
effective than adaptation methods in terms of inference time
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grid wood metal marble fabric blanket

Figure 6. Training and test environments of DrawerWorld robotic manipulation benchmark [49] which is based on MetaWorld [54] benchmark
with texture distortions and background distractions. We train agents on grid environment and evaluate them under texture distortions and
background distractions without any reward or prior knowledge about the test environment in order to evaluate the generalization ability in
terms of texture changes.

Table 4. Quantitative evaluation of episode return on DrawerWorld [49] robotic manipulation tasks. EAR surpasses strong baselines in most
of the new texture environments of DrawerOpen and DrawerClose tasks. The mean and standard deviation were measured over 10 random
seeds. The results of other methods used for comparison are obtained from [49]. The best result on each task is in bold.

success rate DrawerOpen DrawerClose

SAC PAD VAI EAR ∆ SAC PAD VAI EAR ∆

Grid 98±2 84±7 100±0 100±0 +0 100±0 95±3 99±1 100±0 +0

Black 95±2 95±3 100±1 100±0 +0 75±4 64±9 100±0 100±1 +0
Blanket 28±8 54±6 86±6 92±4 +6 0±0 0±0 85±8 94±5 +9
Fabric 2±1 20±6 99±1 93±6 -6 0±0 0±0 74±8 90±8 +16
Metal 35±7 81±3 98±2 100±1 +2 0±0 2±2 98±3 98±1 +0

Marble 3±1 3±1 43±7 85±12 +42 0±0 0±0 49±13 77±16 +28
Wood 18±5 39±9 94±4 96±3 +2 0±0 12±2 70±6 70±8 +0

(refer to Table 1) and accuracy. Meanwhile, it is noteworthy
that even with a single training step, EAR derived greater
performance than VAI [49] requiring complex plural training
stages. These results indicate that using properly designed
objectives to select vital environment-agnostic features is
more crucial than adapting policies or deploying auxiliary
networks with additional training stages.

Video background test. Table 3 shows that the proposed
method greatly improves generalization ability over
state-of-the-art baselines in 7 out of 8 tasks by up to
50.1%. Due to the nature of the proposed method of
feeding environment-agnostic features to the RL algorithm,
the trained agent come to be robust against a variety of
challenging background distractions.

Camera pose test. Figure 5 represents that EAR competes
favorably with the strong baselines on all the tasks of Dis-
tracting Control Suite [42] in terms of the randomization in-
tensity. The intensity indicates the degree of variations, and
some sample images with different intensities are provided in
the supplementary material. This environment is much more
challenging than other environments in that background,
camera pose, and colors are constantly changing throughout
a single episode. Nevertheless, since EAR utilizes features
that eliminate environmental elements, it continuously per-
forms well regardless of the environmental change. For low
randomization intensity, EAR improved generalization by
up to 87%, while the performance declined more slowly than
those of the baselines as the intensity increased, ensuring

high robustness.

4.3. DrawerWorld Robotics Manipulation

Training. For two tasks of DrawerWorld robotic manipu-
lation benchmark [49], the agent was trained on the origi-
nal environment without texture distortions and background
distractions, which is referred to as ‘Grid’ in Table 4 and
Figure 6. The DrawerOpen and DrawerClose tasks of Draw-
erWorld ask a Sawyer robot to open and close a drawer, and
the reward function was set as a combination of a reaching
reward and a push reward. To guarantee a fair comparison,
we followed the environmental setting of [49].

Test. Following [49], the generalization performance was
measured on six different types of new texture environments:
Black, Blanket, Fabric, Metal, Marble and Wood including
both color change and texture change of background, in
order to enable the agent to work in a realistic environment.
The performance was compared against SAC [11], PAD [12],
and VAI [49]. We report mean and standard deviation of
success rate which refers to the percentage of successful
attempts out of 100 attempts over 10 random seeds.

Texture background test. Table 4 demonstrates that EAR
remarkably outperforms the state-of-the-arts on the most
tasks in terms of the success rate by up to 97.7%. The Draw-
erClose task, where the agent needs to infer a handle position
precisely, is more challenging than the DrawerOpen task,
and thus a success rate became 0 frequently in the existing
approaches. However, EAR stably achieves a high success
rate since the environment-agnostic features are fed to the
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Table 5. Significance of three objectives on the DM Control [43] randomized color tests over 5 random seeds. The agent trained with a
single objective produces an inferior performance to those of using two or more objectives, but it still produces comparable performance to
state-of-the-arts [12, 14, 13, 49]. More details are found in the ablation study.

Proposed objectives Walker, walk Cartpole, swingup Ball in cup, catch Finger, spin Cheetah, runLsep Lrecon Lss

412±68 528±63 545±47 757±49 149±54

✓ 799±134 803±109 906±117 883±164 314±78
✓ 773±88 691±121 694±133 795±106 196±64

✓ 553±27 631±41 531±56 796±35 196±33
✓ ✓ 891±82 873±97 979±104 908±95 351±77

✓ ✓ 873±49 839±34 952±29 927±38 288±21
✓ ✓ 879±50 856±28 955±67 912±44 352±42
✓ ✓ ✓ 922±37 884±39 977±15 946±18 368±56

Table 6. Ablation study on where to apply the ESS constraint on the DM Control [43] randomized color tests. We showed that imposing the
ESS module on the non-factorized original feature deteriorates the overall performance, due to the action-independence of environment-
related information (ESF). This confirms that the ESS constraint should be imposed only on the environment-agnostic features (EAFs).

Application of
state shift constraint Walker, walk Cartpole, swingup Ball in cup, catch Finger, spin Cheetah, run

Applying non-factorized feature ft to Eq. 5 919±43 805±24 968±12 935±32 389±43
Applying fEAF

t to Eq. 5 (ours) 922±37 884±39 977±15 946±18 368±56

RL algorithm no matter what environmental change happens.
Our results indicate that the visual features extracted by EAR
is even robust to changes in background color and texture
that are difficult to handle with CNNs.

4.4. Ablation Study

Significance of objectives. We conducted an intensive
ablation study of the three objectives on the DM Control [43]
randomized color tests over 5 random seeds in Table 5.
The result without using all three objectives (first row) is
the same as our baseline algorithm, SAC [11]. Our results
can be summarized as follows. 1) The agent trained with
a single objective produces an inferior performance to
those of using two or more objectives, but it still produces
comparable performance to state-of-the-arts [12, 14, 13, 49].
In particular, despite the relatively high standard devia-
tion, the method with only Lsep applied produces much
improved performance than the baseline, implying that
environment-agnostic features can be learned to some extent
with the simple feature separation constraint alone. 2)
When Lss was not used (Lsep, Lrecon, Lsep + Lrecon), the
standard deviation was generally very high. This indicates
that the episode-aware state shifting constraint enables
stable generalization ability, since the objective imposes a
constraint that the environment-agnostic feature should be
consistent with respect to state shifting. 3) The performance
gain by Lsep and Lrecon was almost identical, in that
both serve to separate the features. 4) Finally, the best
performance was attained when the three objectives were
used together. Refer to the supplementary material for more
ablations.

Application of state shifting constraint. Table 6 provides

the episode return depending on where the ESS constraint
is applied on the DM Control [43] randomized color tests.
Namely, we experimented the case of using the original non-
factorized feature in Eq. 5 and compared it with the proposed
method using EAFs. We showed that imposing the ESS
module on the non-factorized feature deteriorates the overall
performance by up to 9%. The performance degradation is
attributed by the fact that environment-specific feature does
not contain information related to the agent and therefore is
not dependent on the action. Hence, it is ideal to apply the
proposed ESS constraint to a representation that excludes the
environment-specific information. In the proposed method,
we supposed the separated EAFs as new state and imposed a
state-shifting constraint as in Eq. 5.

5. Conclusion

We have presented a novel approach to address the
essential generalization issue for visual RL. Our method is
capable of consistently separating the environment-agnostic
features from input visual observations with environment
changes and feeding only them to the RL policy learner
with the well-defined objectives considering the feature
factorization, reconstruction, and episode-aware state
shifting constraints. Empirical evaluations show that
the proposed approach improves generalization over the
state-of-the-arts on DM Control Suite and DrawerWorld
benchmarks, while maintaining a low model complexity and
a fast inference time.

Limitations and future work. While this work has showed
superior performance on various benchmarks, similar to
recent visual RL approaches, its applicability in real-world
environments has not yet been fully validated.
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