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Figure 1: Inpainting results of ResBlock-based, FourierUnit-based [4] and Unbiased FourierUnit-based (Ours) frameworks.

ResBlock-based framework results blurry due to its limited receptive field. FourierUnit-based framework can capture texture

pattern but is prone to color shifting and artifacts due to its fundamental flaws (Sec. 3.2). Our method produces clean and

reasonable inpainting result. All frameworks are trained under the same setting.

Abstract

Recently proposed LaMa [25] introduce Fast Fourier

Convolution (FFC) [4] into image inpainting. FFC empow-

ers the fully convolutional network to have a global recep-

tive field in its early layers, and have the ability to produce

robust repeating texture. However, LaMa has difficulty in

generating clear and sharp complex content. In this paper,

we analyze the fundamental flaws of using FFC in image

inpainting, which are 1) spectrum shifting, 2) unexpected

spatial activation, and 3) limited frequency receptive field.

Such flaws make FFC-based inpainting framework difficult

in generating complicated texture and performing faithful

reconstruction. Based on the above analysis, we propose a

novel Unbiased Fast Fourier Convolution (UFFC) module.

UFFC is constructed by modifying the vanilla FFC mod-

ule with 1) range transform and inverse transform, 2) abso-

lute position embedding, 3) dynamic skip connection, and

4) adaptive clip, to overcome the above flaws. UFFC cap-

tures frequency information efficiently and realize recon-

struction without introducing additional artifacts, achiev-

ing better inpainting results and more efficient training. In

*Corresponding author.

addition, we propose two novel perceptual losses for better

generation quality and more robust training. Extensive ex-

periments on several benchmark datasets demonstrate the

effectiveness of our method, outperforming the state-of-the-

art methods in both texture-capturing ability and expres-

siveness.

1. Introduction

Image inpainting (also known as image completion) is

a subtask of the low-level vision tasks that aims to recover

the masked missing/degraded area by referring to the con-

tent of the undegraded area. Traditional non-learning image

inpainting methods, such as diffusion [2], PatchMatch [1],

etc., use statistical information of the undegraded area to

infer the missing content. These methods can produce in-

painting results with reasonable structure and texture when

the mask area is small, or the undegraded part shows well-

defined geometry. However, these methods often perform

poorly when being required to recover semantics since they

lack image semantic priors.

Compared with the non-learning methods, learning-

based models can obtain semantic priors for a certain class
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of images after training. Therefore, a reasonable inpainting

effect can be achieved by generating content that does not

exist in the current degraded image. However, in the case

of extremely large and continuous masks, learning-based

methods are still prone to artifacts. The researchers found

that this is because the limited receptive field of classic Con-

volutional Neural Network (CNN) backbones is hard to cap-

ture the global semantics. Hence, many works [33, 30, 28]

have been proposed to increase the receptive field of image

inpainting models. But none of them can achieve the bal-

ance between receptive field and computational cost. Re-

cently, Suvorov et al. proposed LaMa [25], which directly

introduces Fast Fourier Convolution (FFC) [4] to image in-

painting for obtaining the global receptive field with rela-

tively small computational cost. In detail, FFC performs

ChannelFC - batch normalization - ReLU in frequency do-

main after fast Fourier transform (refer to Fig. 2). The in-

ductive bias of the Fourier transform makes LaMa performs

better in inpainting images with fixed pattern texture.

Though LaMa has the ability to capture global pattern,

researchers have found that LaMa has difficulty in gener-

ating clear and sharp complex content. Recall that high-

level vision tasks are to convert high-dimensional input into

low-dimensional output, thus requiring the model to filter

out irrelevant information while retaining principal com-

ponents representing classification labels. FFC [4] was

first designed for high-level vision tasks (classification) and

has achieved SOTA performance. On the contrary, low-

level vision tasks have to preserve semantic information and

achieve accurate pixel-level reconstruction, which is diffi-

cult for FFC. Therefore, it is inappropriate to directly apply

FFC to low-level vision tasks without any specific adap-

tation. Specifically, simply filtering out all negative val-

ues via ReLU operation by FFC in the frequency domain

will damage the statistics of the spectrum, causing artifacts

and unexpected extremely large values in the spatial fea-

ture after the inverse Fourier transform. Tiny deviations

in the frequency feature can accumulate in the spatial fea-

ture (and vice versa), often resulting in biases that are sev-

eral orders of magnitude larger than normal value, which

cause additional artifacts and compressed effective feature

values after the normalization layer. In addition, the chan-

nelFC (conv1x1) applied on the frequency feature only cal-

culate among features with the same frequency, while ignor-

ing the relationship between different frequencies, which

makes FFC difficulty to capture complex content. This goes

against the requirement of low-level vision tasks. We sum-

marize FFC’s flaws in inpainting as 1) spectrum shifting, 2)

unexpected spatial activation, and 3) limited frequency re-

ceptive field. As can be seen from Fig. 1, though FFC can

capture texture patterns compared to the commonly used

spatial module (ResBlock), it still inevitably suffers from

biased color and artifacts in inpainting.

To address the above issues, we propose a novel Unbi-

ased Fast Fourier Convolution (UFFC) module to replace

FFC in LaMa. In addition to Fourier transform/inverse

transform and activation function, UFFC mainly contains

learnable range transform/inverse transform, dynamic skip

connection, position embedding, and adaptive clip. Those

components enable the UFFC module to obtain stronger

feature capture capabilities while avoiding the fundamental

flaws of FFC in inpainting. Our contribution can be sum-

marized as follows:

- We find out the reason why FFC is not suitable to be

directly applied to image inpainting and the issues that may

result when doing so by analyzing the difference between

high/low-level vision task and frequency/spatial domain.

- We propose a novel Unbiased Fast Fourier Convolution

(UFFC) module, which can capture frequency information

more efficiently and accurately than FFC by avoiding fun-

damental flaws such as 1) spectrum shifting, 2) unexpected

spatial activation, and 3) limited frequency receptive field.

- We propose MAE [10] perceptual loss and self-

perceptual loss for better generation quality and more robust

training.

- Extensive experiments on Places2 [36], CelebA [15],

and Paris Streetview [6] show that our method converges

faster and generates better inpainting results than LaMa [25]

and is competitive with other SOTA inpainting models. Ex-

periments on DTD [5] show that our UFFC has a stronger

ability to capture textures than FFC.

2. Related Work

2.1. Image Inpainting

Image inpainting is a classic ill-posed low-level vision

task. Many non-learning inpainting algorithms were pro-

posed in the past, such as exemplar or diffusion-based [1, 2]

methods. Here we focus on learning-based methods.

In 2016, Pathak et al. [19] took the lead in propos-

ing an encoder-decoder structure inpainting network, which

proved that deep learning methods are useful in the field of

image inpainting. Many subsequent researchers have pro-

posed a large number of different network structures and

loss functions for image restoration. Since image inpainting

requires the model to understand the content of the image,

researchers have focused on making the model better at ex-

tracting abstract semantics. Some researchers proposed us-

ing a coarse-to-fine network structure; the coarse inpainting

results provide guidance for the fine stage. The constraints

of the coarse stage can be low-resolution patches[33, 21]

or some other low-level features, such as edge maps[18],

gradient maps[32], grayscale graphs[29], etc. Some re-

searchers seek a global receptive field by introducing other

inductive biases, such as transformer [28, 16] and Fast

Fourier transform [25, 17]. Other studies like[35, 3] pro-
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Figure 2: Left: Vanilla Fast Fourier Convolution module and our Unbiased Fast Fourier Convolution module. (a) range

transform and inverse transform, (b) absolute position embedding, (c) dynamic skip connection, (d) adaptive clip. Right:

Statistical equalization. The statistics of the reconstructed area are aligned with the corresponding area of the ground truth.

posed to mapping the degraded image to the latent space.

They manipulated the latent code and then translated it back

to the pixel space by a well-trained generator to obtain more

diverse or natural inpainting results.

2.2. Frequency Learning

The idea of frequency analysis was first proposed in [7].

It proved that any function (continuous or discrete) could be

expanded into a series of sines. Afterward, the method was

generalized to higher dimensions and improved to reduce

computational complexity.

Classic works in deep learning, such as VGG [23], in-

ception [26, 12, 27], ResNet [11], etc. tend to be calculated

in the spatial domain. Although good performance can be

achieved, the contradiction between the size of the recep-

tive field and the computational cost cannot be elegantly

resolved. In 2020, Chi et al. [4] took the lead in learning

directly in the Fourier space with the benefit of the global

receptive field. They performed channelFC in the frequency

domain and mixed the calculation results of the frequency

branch and the spatial branch. Rao et al. proposed a simple

MLP backbone named GFNet [22]. They achieved SOTA

performance with a small computational cost by imposing

element-wise multiple operations called global filter on the

frequency feature. Guibas et al. [8] proposed to use a hy-

brid branch module including a frequency global filter to

improve the performance of the vision transformer.

Inspired by them, a few researchers have also begun to

explore the frequency methods in low-level vision tasks [34,

38, 24], but most of these works directly use the frequency

module designed for high-level vision tasks.

3. Method

The goal of image inpainting is to inpaint a degraded

RGB image Ideg . A binarized mask m (1 in mask indicates

the degraded area) is used to specify the degraded area. The

input of the inpainting model Fθ is a channel-wise concate-

nated tensor [Ideg,m], where Ideg = I ⊙ (1 − m). The

output of the inpainting network is Iinp, and the final in-

painting result is acquired after a post-processing operation

named statistical equalization Iinp = SE (Iout).

In this section, we will explain the design of our Un-

biased Fast Fourier Convolution module by analyzing the

difference between high/low-level vision tasks and fre-

quency/spatial domain.

3.1. High/lowlevel Vision Tasks

It is generally believed that the difference between

high/low-level vision tasks is classification and regres-

sion [9]. Recalling classical algorithms such as PCA [20],

it is not difficult to find that the essence of high-level vision

tasks can be summarized as dimensionality reduction. From

the perspective of signal analysis, the noise-like “high-

frequency” information should be filtered out, and only the

base frequency that represents the classification label is re-

tained. In most of the current deep learning models, such a

function is accomplished by the combination of the learn-

able linear layer (Fully connected layer, convolution layer,

etc.), the normalization function, and the activation func-

tion. The high activation value of label features makes the

unnecessary information fall into negative values after the

normalization function. The negative values will be sup-
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pressed or eliminated by the activation function after.

On the other hand, low-level vision tasks require the out-

put and input to maintain similar dimensionality, usually an

RGB image. Unlike high-level vision tasks that focus on la-

bel accuracy, low-level vision tasks require reasonable and

clean pixel-level modeling, so noise or artifacts should not

be in the output image. The spatial modules designed for

high-level vision tasks can be directly applied to low-level

vision tasks since spatial features’ information density is

balanced. This implies that the value change caused by non-

linear mapping in any position of the spatial feature does not

significantly affect the global representation, so the infor-

mation loss is acceptable considering the feature extraction

ability brought by it. However, in the case of spectrum, the

loss of information in low-frequency position significantly

affects the ability to maintain global content, often resulting

in artifacts in the output. (see supplementary material for

visual comparison).

3.2. Frequency/Spatial Domain

The Fourier transform is a transform that converts a func-

tion into a form that describes the frequencies present in

the original function. In computer vision tasks, 2D Dis-

crete Fourier Transform (DFT) is used to transform the

spatial feature into the frequency domain, 2D inverse Dis-

crete Fourier Transform (iDFT) is used to transform the

frequency feature back to the spatial domain. In order

to ensure that the features after inverse transform are still

real numbers, real DFT uses only half of the spectrum

compared to the DFT. The spectrum size of real DFT is

RB×C×H×(W//2+1).

2D DFT and iDFT can be expressed as:

F [k, l] =

M−1
∑

m=0

N−1
∑

n=0

f [m,n]e−j2π( km

M
+ ln

N
) (1)

f [m,n] =
1

MN

M−1
∑

k=0

N−1
∑

l=0

F [k, l]ej2π(
km

M
+ ln

N
) (2)

The following conclusions can be drawn by analyzing the

formula and the spectrum:

(1) DFT and iDFT are identical in form.

(2) Spectrum of an image has a very large range of val-

ues (sometimes 7-8 orders of magnitude different, including

positive and negative values), unlike images in the spatial

domain (generally 0-255 or 0-1).

(3) Different frequencies have unbalanced effects on spa-

tial. The lower the frequency (top left and bottom left of the

spectrum), the greater the macroscopic effect on the spatial

domain, and vice versa.

We will provide a detailed analysis in the following sec-

tion to explain why directly applying spatial operations

(linear-normalization-activation) to the frequency domain is

Figure 3: Visualization of the impact of applying ReLU in

the frequency domain. The original function is a square

wave with a period of 2π on [-10,10]. It can be seen that the

waveform on the right has obvious disturbances, and a large

activation value appears at t=-10.

not appropriate. Early work [31, 14] has demonstrated that

the combination of learnable linear layers and nonlinear ac-

tivation functions, such as sigmoid/tanh/ReLU/leakyReLU,

etc., provides basic learning capabilities for neural net-

works. However, activation function (take ReLU as an ex-

ample) in the frequency domain will cause spectrum shift-

ing since all the negative values in the spectrum are zeroed.

Directly applying iDFT to a positive-only feature would

cause artifacts and extremely large activation at the “low-

frequency” position in the spatial domain, as Fig. 3 shows.

In addition to the activation function, the normaliza-

tion function is also one of the important components of

the neural network. The commonly used batch normaliza-

tion (BN) is expressed as BN (x) = γ x−µ
σ + β, the fea-

ture is firstly normalized to a standard Gaussian distribution

N(0, 1), then transformed to a learned distribution param-

eterized by γ and β. However, the physical meaning of

frequency statistics is not equivalent to that of the spatial

domain. For example, the mean of the spectrum is deter-

mined by the value of the upper left pixel (fundamental fre-

quency) of the spatial image as shown in figure 4. From

this perspective, the learned β of frequency BN represents

the value of every upper left feature in the spatial domain,

which is meaningless. From another perspective, the bi-

ases introduced by linear layer will accumulate at the trans-

formed fundamental frequency positions in the spatial fea-

ture, since it is non-trivial to apply reasonable constraints

on the learnable parameters. The unexpected large activa-

tion values will suppress most of the features after normal-

ization and therefore harm the semantic representation.

Based on the aforementioned observations, we believe

that FFC could potentially disrupt the reconstruction capa-

bility of the model by introducing unexpected large activa-

tion into the spatial-domain features and compressing the

features that represent the non-repetitive patterns.

23198



Figure 4: The influence of spatial ”low frequency” pixel on

spectral statistical characteristics, note that the only differ-

ence between the two images is one pixel in the upper left

corner.

3.3. Unbiased Fast Fourier Convolution

To solve the aforementioned problems, we propose a

novel Unbiased FFC module as shown in Fig 2, expecting

to make the spatial operations suitable for low-level vision

tasks while retaining the pattern extraction ability of FFC.

Our improvements mainly focus on two aspects: activation

function in the frequency domain and normalization func-

tion in the frequency domain.

Activation Function As analyzed in the Sec. 3.2, the

spectrum shifting caused by the activation function will lead

to disturbances and unexpected activation values in the spa-

tial feature. Since it is difficult to redesign an activation

function for frequency domain, we seek to avoid these de-

fects by adjusting the module structure. Inspired by the

design of Fourier transform and inverse transform [7], we

propose to use learnable range transform and inverse trans-

form before and after the activation function in order to

reduce the impact of spectrum shifting (Fig. 2,(a)). The

weighted layer of FFC is conv1x1, i.e., channel-wise fully

connected layer (channelFC), which is computed only on

the current frequency. Such design can enhance the pro-

nounced frequency features but can not capture complex

content efficiently because of the limited frequency recep-

tive field. However, an excessively large convolution kernel

may cause interference between different frequency bands,

so a convolution layer with kernel size of 3x3 is used as

our range transform and inverse transform. Additionally,

we found that the uneven impact of high/low frequency on

spatial output and the inductive bias (translation equivari-

ance) of convolution is in conflict. Therefore a learnable

absolute position embedding ∈ RH×W is concatenated to

the frequency feature for specifying the different frequency

bands (Fig. 2,(b)). After range inverse transform, dynamic

skip connection with learnable weights λ ∈ (0, 1) is used to

mitigate the effect of the learnable operations on frequency

feature (Fig. 2,(c)).

Normalization Function Although the module is care-

fully designed for the ability to overcome spectrum shifting,

unexpected spatial activation will still inevitably appear af-

ter iDFT since the network is trained from randomly ini-

Figure 5: Unexpected spatial activation lead to artifacts in

the ”low frequency” area of the image.

tialized parameters. As shown in Fig. 5, those large values

can cause severe artifacts in the inpainting results. There-

fore, we propose a simple yet effective method to avoid this

situation, which we call adaptive clip (AdaClip). The out-

put feature after iDFT is first normalized by the mean of

the input feature and then truncated by the maximum and

minimum values of the input feature (Fig. 2,(d)).

Additionally, we integrate the Fourier Unit (FU) and the

Local Fourier Unit(LFU) in FFC into one module by re-

placing the vanilla 3x3 convolution layer in range inverse

transform with 3x3 dilated convolution, which can inherit

the perception mode of LFU without losing 3/4 channel in-

formation. Our motivation comes from the following inter-

polation theorem of DFT. Assume F [k, l] is the spectrum

transformed by a spatial matrix f [m,n], c is the interpola-

tion rate, corresponding to the dilation rate in convolution.

Fc[k
′, l′] =

{

F [k′/c, l′/c], k′, l′ mod c = 0
0, else

(3)

f [m,n] =
1

M ′N ′

M ′
−1

∑

k=0

N ′
−1

∑

l=0

Fc[k
′, l′]ej2π(

km

M
+ ln

N
)

=
1

c2MN

cM−1
∑

k=0

cN−1
∑

l=0

Fc[ck, cl]e
j2π( ckm

M
+ cln

N
)

∴ Fc[k
′, l′]↔ REPEATc×c(f [m,n])

(4)

∴ Fc[k
′, l′]↔ REPEATc×c(f [m,n]) (5)

3.4. Statistical Equalization

In the experiment, we found that the ResNet perceptual

loss [25] leads to inpainting results with a lower contrast

ratio, although it is easier for the model to generate com-

plete content. We propose an effective non-learning post-

processing method named Statistical Equalization SE:

µc(Iout[mask == 0])← µc(Igt[mask == 0])

σc(Iout[mask == 0])← σc(Igt[mask == 0])
(6)

In the above formula, µc represents the mean of the cth

channel, and σ represents the variance of the cth channel.

The final output image Iinp is obtained after SE.

Iout = Fθ([Ideg,m]), Iinp = SE(Iout) (7)
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3.5. Loss Functions

Our loss functions follow LaMa [25] and GLaMa [17],

including adversarial loss with gradient penalty, spatial and

frequency reconstruction loss, ResNet perceptual loss. Ad-

ditionally, we introduce self-perceptual loss and MAE per-

ceptual loss for better inpainting quality.

The adversarial loss can be written as:

LD = −E[logD(Igt)]− E[logD(Iinp)⊙m]

− E[log(1−D(Iinp))⊙ (1−m)]
(8)

LG = −E[logD(Iinp)] (9)

LR1
= ||∇D||2 (10)

Ladv = LD + LG + LR1
(11)

Inpainting task requests faithfully reconstruction of the

undegraded area. Following the previous work [17], we

use spatial and frequency reconstruction loss for our model.

Wavelet transformW is used to calculate the total variation

loss. Our reconstruction loss can be written as:

Lsrec = ||Igt − Iinp||1 (12)

Lfrec = ||F(Igt)−F(Iinp)||1 (13)

LTV = ||W(Igt)−W(Iinp)||2 (14)

Lrec = Lsrec + Lfrec + Lfrec (15)

The L-norm-based reconstruction loss will lead to the

blur of the generated image; hence the perceptual loss [13]

is widely used in image generation tasks for more accurate

constraints. Suvorov et al. [25] show that the inpainting

quality optimized by the perceptual loss and the size of the

receptive field of the feature extractor are positively cor-

related. Our perceptual loss is based on ResNet [11] and

MAE [10], which has a global receptive field. The loss can

be written as:

LResPerc =
∑

i

||ΦRes
i (Igt)− ΦRes

i (Iinp)|| (16)

LMAEPerc =
∑

i

||ΦMAE
i (Igt)− ΦMAE

i (Iinp)|| (17)

However, previous studies did not consider that the fea-

ture extractor is not trained on the inpainting dataset, so the

perceptual loss may not focus on the important content in

some images. He et al. proved that a network trained un-

der inpainting constraints has sufficient feature extraction

Figure 6: Self-perceptual loss. The inpainting result and the

corresponding ground truth is input to the encoder to extract

features. P in the figure refer to proection layer.

ability in [10]. Inspired by it, we propose to use a self-

perceptual loss to impose more reasonable constraints. The

encoder of our inpainting network is reused as the feature

extractor. Self-perceptual loss can be written as:

LSelfPerc =
∑

i

||ΦE
i (Igt)− ΦE

i (Iinp)|| (18)

We use the output of the last two layers of the encoder as

the constrained features. Due to the drastic changes of the

parameters in the early stage of training, self-perceptual loss

is used in the late stage of training.

The total loss function of our module is:

L = Ladv + Lrec + LResPerc + LMAEPerc + LSelfPerc

(19)

4. Experiment

In this section, we prove the superiority of our pro-

posed inpainting method by comparing it with the state-

of-the-art methods on four datasets, including widely used

CelebA [15], Places2 [36], Paris Streetview [6], and De-

scribable Textures Dataset (DTD) [5]. We choose the fol-

lowing work as our baseline for comparison: LaMa [25],

Co-Mod GAN [35], MAT [16], MADF [37], and EdgeCon-

nect [18]. For the baselines, LaMa [25] is the SOTA in-

painting model based on FFC and is the model on which

our work is based. Co-Mod GAN [35] is the SOTA in-

painting model based on the pre-trained generative model,

MAT [16] is the SOTA inpainting model based on trans-

former. To demonstrate the effectiveness of our method,

we retrain LaMa under the same experimental settings. For

other methods, we use publicly available pre-trained mod-

els. For masks, we superimpose a 1/4 image size rectangle

on top of the LaMa proposed mask to increase the lower

bound of the mask size to 25% to avoid extremely small

randomly generated masks. And for masks below 1/2 im-

age size, we do a negative operation m = 1 − m with a

probability of 25%. Self-perceptual loss is added after 15

epochs of training.
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Masked Co-Mod [35] MAT [16] LaMa [25] Ours Ground Truth

Figure 7: Inpainting results on CelebA [15], Places2 [36], Paris Streetview [6] and DTD [5]. Inpainting results in the red box

is sampled from early stage of training.

Table 1: Quantitative evaluation of different models on CelebA[15], Places2[36], and DTD[5] datasets.

CelebA Places2 DTD

mask method U-IDS↑ SSIM↑ PSNR↑ FID↓ U-IDS↑ SSIM↑ PSNR↑ FID↓ PSNR↑ FID↓

<50%

LaMa [25] 20.04 0.81 26.96 36.48 32.85 0.80 25.58 22.10 27.05 87.79

MAT [16] 24.37 0.84 28.95 25.76 39.44 0.79 25.42 25.09 - -

Co-Mod [35] 23.47 0.83 28.71 39.44 37.31 0.81 26.40 21.53 - -

MADF [37] 21.59 0.81 26.73 36.19 31.55 0.80 24.79 23.64 - -

EdgeConnect [18] 18.21 0.79 26.26 39.72 30.00 0.78 25.75 23.31 - -

Ours 26.65 0.85 29.64 22.53 37.88 0.81 26.41 20.24 30.40 52.78

>50%

LaMa [25] 15.86 0.78 25.02 43.19 30.47 0.78 23.72 37.15 26.97 99.45

MAT [16] 21.75 0.80 26.15 27.31 34.29 0.79 23.65 36.64 - -

Co-Mod [35] 17.11 0.81 25.78 38.84 32.78 0.79 23.07 29.92 - -

MADF [37] 15.66 0.77 24.92 42.26 29.49 0.77 23.10 42.36 - -

EdgeConnect [18] 14.88 0.77 24.53 49.39 25.11 0.75 23.12 45.87 - -

Ours 20.32 0.81 26.60 26.53 33.96 0.79 23.99 30.03 30.23 62.20

4.1. Qualitative Comparison

Compared with LaMa LaMa can quickly capture simple

pattern textures in the first few epochs of training, such as

parallel lines, as shown in Fig. 1. As analyzed above, LaMa

could be more sensitive to simple textures due to the ef-

fectiveness of vanilla FFC in extracting frequency features.

However, as the training progresses, our method is signifi-

cantly more capable of generating clean and complex tex-

tures. For small datasets such as DTD [5], LaMa is un-
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able to generate complex textures even though the model is

close to overfitting. Inpainting results of expansion masks

are shown in Fig. 7. It requires the model to infer the over-

all semantics from the known central parts of the degraded

image. It can be seen that our method can produce a more

reasonable structure than LaMa, which means our method

can more effectively extract complex semantic.

Compared with Other Methods MAT [16] and Co-Mod

GAN [35] are more likely to inpaint reasonably on large

masks due to their essence of sampling from the noise space

z. In contrast, these works require extremely high train-

ing costs and careful fine-tuning of their own or pre-trained

models. Thanks to the inductive bias of the Fourier trans-

form, our method can generate robust and smooth textures

without a large amount of training.

4.2. Quantitative Comparison

We use multiple metrics, including PSNR, SSIM, FID,

and U-IDS for quantitative comparison of our proposed

method and the SOTA image inpainting methods. As can

be seen from Tab. 1, our method outperforms LaMa [25]

on different metrics, proving the effectiveness of our de-

sign. However, for the inpainting of extremely large masks

(especially for object inpainting rather than the fixed pat-

tern background), our work still has certain disadvantages

compared to the SOTA method. We have to admit that al-

though Co-Mod GAN [35] and MAT [16] produce severe

artifacts on some samples, the content richness of their gen-

erated inpainting results outperform LaMa or our method at

extremely large mask inpainting.

4.3. Ablation Study

Different Modules in UFFC As can be seen from Tab. 2,

AdaClip and dynamic skip connection contribute the most

to training stability. Since the number of convolutional lay-

ers and kernel size of our method exceeded FFC, unex-

pected spatial activation appears more frequently. With-

out the above two modules, the network can only produce

meaningless random textures. Compared with other mod-

ules, the range transform/inverse transform contributes the

most to network performance. As analyzed in Sec. 3.3, such

design makes the activation function in the frequency do-

main available.

Statistical Equalization With the introduction of ResNet

perceptual loss, we found the inpainting result has a lower

contrast ratio. Statistical equalization is proposed to make

the color of Iinp visually closer to the original image. As

can see in Fig. 8, SE effectively resolves the conflict be-

tween the training effect and the graying of the image. Sur-

prisingly, even if the module is removed, our method can

still produce accurate colors in the late stage of training.

We think this is because AdaClip removes the unexpected

spatial activation.

Table 2: Ablation experiments of different modules in our

model. In this table, RT/iT - range transform/inverse trans-

form, APE - absolute position embedding, AC - AdaClip,

DS - dynamic skip connection, SE - statistical equalization.

RT/iT APE AC DS SE PSNR↑ LPIPS↓√ √ √ √ × 18.21 0.47√ √ √ × √
collapsed√ √ × √ √
collapsed√ × √ √ √

17.89 0.51

× √ √ √ √
15.32 0.60√ √ √ √ √
18.27 0.45

Figure 8: Ablation study of statistical equalization. Inpaint-

ing result with SE achieves more accurate color.

Different Perceptual Losses Qualitative and quantitative

comparison of different perceptual losses is shown in

Fig. 10 and Tab. 3. In our experiment, we found that MAE

perceptual loss can make the training more stable and more

inclined to generate global consistency inpainting results.

In particular, experiments under certain settings diverge at

the early stage of training without MAE perceptual loss.

Self-perceptual loss makes the inpainting results sharper

when used with other perceptual losses. However, if the

Self-perceptual loss is used together with other perceptual

losses in the early stage of training, the training will con-

verge extremely slowly, and if the loss is used alone, the

inpainting result will be excessively sharp.

Efficiency of UFFC UFFC can capture texture patterns

more efficiently compared to FFC. As shown in the last row

of Fig. 7, our method achieves better inpainting quality than

LaMa in early stage training. It is contributed by a larger

frequency receptive field and less unexpected spatial acti-

vation of UFFC. For quantitative comparison in Fig. 9, we

retrained LaMa on the texture dataset and compared it with

our method; we found that LaMa requires more training to

achieve convergence.

Comparison with Inflated FFC We noticed that com-

pared to the 1x1 convolution used by FourierUnit and Lo-

cal FourierUnit in LaMa, the 3x3 convolutions used by the

range transform and inverse transform in our paper increase

the number of parameters (∼ ×9). To demonstrate that the

superiority of UFFC does not arise solely from the increase

in parameter, we compared our method with vanilla FFC,

inflated FFC (×9), and inflated FFC with longer training

time (×50 epochs) on DTD dataset. As shown in Fig. 11,
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Figure 9: PSNR changes during training. Our method con-

verges faster than LaMa [25].

Masked R+S M M+S M+R M+S+R

Figure 10: Ablation study of different perceptual losses. R:

ResNet perceptual loss, M: MAE perceptual loss, S: Self-

perceptual loss.

Masked (a) (b) (c) (d)

Figure 11: Comparison with inflated FFC. (a) inflated FFC

with ×50 epoch, (b) inflated FFC, (c) vanilla FFC, (d) Ours

our method tends to produce clear and color-unbiased re-

sults compared to FFC. We found the inflated FFC to be dif-

ficult to converge, and even with increased training epochs,

it still struggled to generate visually plausible results.

5. Conclusion

In this paper, a novel Unbiased Fast Fourier Convolution

(UFFC) module is proposed to generate visually reasonable

image inpainting results. We analyze the characteristics of

Table 3: Ablation study on different perceptual losses. R:

ResNet perceptual loss, M: MAE perceptual loss, S: Self-

perceptual loss. - means collapsed. For a fair comparison,

the encoder of group M+R is used to calculate the self-

perceptual loss in other groups.

R M S R+S M+S M+R M+S+R

FID↓ - 66.04 70.04 55.65 58.94 63.83 55.16

PSNR↑ - 18.20 18.00 17.57 18.25 18.17 18.29

frequency/spatial domain and high/low-level vision tasks,

addressing why vanilla FFC is not suitable for image in-

painting. We propose range transform and inverse trans-

form to reduce the spectrum shifting caused by the activa-

tion function and propose AdaClip to replace the normaliza-

tion function in the frequency domain. Two novel percep-

tual losses and a post-processing method are proposed to

achieve better inpainting performance and stable training.

Experiments on multiple datasets show that our method has

greatly improved the performance of vanilla FFC on image

inpainting, reaching comparable performance with the cur-

rent SOTA methods.
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