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Abstract

As demands for high-quality videos continue to rise,
high-resolution and high-dynamic range (HDR) imaging
techniques are drawing attention. To generate an HDR
video from low dynamic range (LDR) images, one of the
critical steps is the motion compensation between LDR
frames, for which most existing works employed the op-
tical flow algorithm. However, these methods suffer from
flow estimation errors when saturation or complicated mo-
tions exist. In this paper, we propose an end-to-end HDR
video composition framework, which aligns LDR frames
in the feature space and then merges aligned features into
an HDR frame, without relying on pixel-domain optical
flow. Specifically, we propose a luminance-based align-
ment network for HDR (LAN-HDR) consisting of an align-
ment module and a hallucination module. The alignment
module aligns a frame to the adjacent reference by evalu-
ating luminance-based attention, excluding color informa-
tion. The hallucination module generates sharp details,
especially for washed-out areas due to saturation. The
aligned and hallucinated features are then blended adap-
tively to complement each other. Finally, we merge the
features to generate a final HDR frame. In training, we
adopt a temporal loss, in addition to frame reconstruc-
tion losses, to enhance temporal consistency and thus re-
duce flickering. Extensive experiments demonstrate that our
method performs better or comparable to state-of-the-art
methods on several benchmarks. Codes are available at
https://github.com/haesoochung/LAN-HDR.

1. Introduction

As diverse videos become easily accessible through
video-on-demand services, demands for high-quality video
content with high resolution and high dynamic range (HDR)
are naturally increasing. HDR content can provide a rich
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Figure 1: Visual comparisons of the proposed and Chen et
al.’s method [5]. Our framework generates more detailed
texture in regions with saturation and motions by utilizing
luminance information.

viewing experience by displaying high contrast and a broad
range of colors. While HDR displays are already ubiqui-
tous, there is still a lack of HDR content available for deliv-
ery.

Whereas HDR imaging techniques for still images have
been actively studied [8, 2, 33, 18, 45, 47, 35, 3, 38, 32,
10, 9, 1, 26, 49], those for videos have been relatively over-
looked. Some early methods [41, 40, 23] proposed well-
designed hardware systems for direct HDR video acquisi-
tion, but these systems mostly require a sophisticated de-
sign and high cost. Since Kang et al. [21] reconstructed an
HDR video using a low dynamic range (LDR) image se-
quence with alternating exposures, this approach has been
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commonly adopted. Specifically, an HDR frame is gener-
ated from a corresponding LDR frame and its neighbor-
ing frames, whose exposures alternate between two or three
values, after motions between the frames are compensated.
For instance, Mangiat et al. [28, 29] performed block-based
motion estimation and then refined the results using color
similarity and filtering, respectively. Kalantari et al. [20]
synthesized multi-exposure images at each time step using
patch-based optimization and merged them into an HDR
frame. These approaches mostly require considerable time
for the optimization process and suffer from artifacts result-
ing from inaccurate alignment.

With the development of deep learning, convolutional
neural network (CNN)-based HDR video reconstruction
methods have been proposed. Similar to the previous HDR
imaging method [18], Kalantari et al. [19] aligned neighbor-
ing frames to the middle frame using optical flow and com-
bined them with a simple merging network. More recently,
Chen et al. [5] trained a two-step alignment network using
optical flow and deformable convolution with large datasets.
These methods significantly improved the quality of result-
ing HDR videos, but they still show some distortions and
ghosting artifacts caused by optical flow estimation error,
especially when motion exists in saturated regions or mo-
tion is fast. (See Fig. 1.)

In this paper, we propose a luminance-based alignment
network (LAN) for HDR video composition. The LAN has
a dual-path architecture, where an alignment module reg-
isters motions between frames using attention [42], and a
hallucination module generates fine details, especially for
saturated regions. In the alignment module, we rearrange
a neighboring frame based on the attention score between
itself and the reference frame. However, by applying naive
attention, the system may find similar pixels solely by color.
For content-based matching between two frames, we extract
key and query features using only the luminance channel,
which contains essential information on edge and structure.
Here, downsampled frames are used as input to alleviate
memory consumption. However, alignment cannot be per-
fect because downsampled inputs lack high-frequency in-
formation, and saturation hinders precise matching. Thus,
the hallucination module fills in the missing details, espe-
cially in saturated areas using full-sized inputs, where we
use gated convolution [50] with a mask that represents the
image brightness. This mask enables the adaptive operation
for very dark regions as well as highlighted areas. The fea-
tures from each module are fused in an adaptive blending
layer, which determines the contribution of each feature in
terms of spatial dimension. Finally, we adopt a temporal
loss for the resulting video to have consistent motions. Ex-
tensive experiments demonstrate that our method produces
a clean HDR video from an LDR video with alternating ex-
posures.

The main contributions of our paper are summarized as
follows:

• We introduce an end-to-end HDR video reconstruction
framework that performs a precise motion alignment
using the proposed luminance-based alignment network
(LAN). The LAN consists of two novel components: an
alignment module and a hallucination module.

• The proposed alignment module performs content-
based alignment by rearranging a neighboring frame
feature (value) according to the attention score between
content features from the neighboring frame (key) and
the reference frame (query).

• The proposed hallucination module generates sharp de-
tails using adaptive convolution, especially for very
bright or dark regions.

• We present a temporal loss to produce temporally co-
herent HDR videos without flickering.

2. Related Work
2.1. Multi-exposure HDR image reconstruction

HDR video reconstruction is similar to multi-exposure
HDR imaging, a task of producing an HDR image from
multiple differently exposed LDR inputs, in that they both
aim to merge multi-exposure LDR frames with motions into
a clean HDR frame. Most HDR imaging approaches focus
on aligning input images to avoid ghosting artifacts. Some
methods [22, 2, 15, 13, 51, 33, 24] assumed globally reg-
istered inputs and tried to detect and reject shifted pixels.
Instead of simply discarding moving parts, several works
performed more sophisticated motion compensation using
optical flow [21, 52] and patch-based matching [39, 16].
However, most of these methods are slow due to the op-
timization process and often fail to handle large motions.

With the advancement of deep learning, HDR imaging
networks have also been proposed. Kalantari et al. [18] and
Wu et al. [45] proposed methods that align LDRs by flow-
based motion compensation and homography transforma-
tion, respectively, and then merge them by simple CNNs.
Pu et al. [37] presented a deformable convolution-based
pyramidal alignment network, while Prabhakar et al. [36]
trained a fusion network using both labeled and unlabeled
data. Yan et al. [47, 48] aligned input images using spa-
tial attention and non-local network, respectively. Note that
these approaches differ significantly from ours in that they
implicitly induce their attention maps to select valid ar-
eas through training. On the other hand, we compute the
correlation between the key and query frames and then re-
construct aligned results based on the estimated scores. It
is possible to apply the aforementioned methods to HDR
video composition frame by frame, but temporal consis-
tency is hardly guaranteed.

12761



Y channel

Rearrange

2 v
2

Attention

Adaptive 

Blending 

Layer

Y
 c

h
a
n

n
e
l

𝑭𝑽 ×5M
u

lt
ip

ly

𝑳𝒕+𝒊
↓

𝒈𝒕+𝒊(𝑳𝒕
↓)

H
a
ll

u
c
in

a
ti

o
n

 M
o

d
u

le

Aligned 

features

𝑭𝑲𝑸

R
e
s

F
F

T
-

C
o

n
v

B
lo

c
k

g
a
te

d
 c

o
n

v
c
o

n
v

R
e
sB

lo
c
k

interpolate

R
e
s

F
F

T
-

C
o

n
v

B
lo

c
k

c
o

n
v

𝑳𝒕+𝒊
↓,𝒀

𝒈𝒕+𝒊(𝑳𝒕
↓)𝒀

𝑳𝒕+𝒊: 𝑳𝒕+𝒊
𝒀

𝑳𝒕: 𝑳𝒕
𝒀

ResBlock

gated conv

Res FFT-Conv Block

conv

Block Design

A
li

g
n

m
e
n

t 
M

o
d

u
le

𝑭𝑲𝑸

Element-wise addition

Figure 2: Overview of the proposed luminance-based alignment network (LAN).

2.2. HDR video reconstruction

Instead of directly acquiring HDR videos using special-
ized camera systems [41, 40, 23], which are very expensive
approaches, many methods exploit LDR videos consisting
of frames with spatially or temporally varying exposures.
However, most approaches using dual- or tri-exposure im-
ages [7, 17] experience spatial artifacts. Meanwhile, similar
to the multi-exposure HDR image fusion, most of the meth-
ods using a sequence with alternating exposures align mul-
tiple frames and combine them to produce an HDR frame.
Kang et al. [21] proposed the first algorithm in this category,
which synthesizes aligned multi-exposure images at each
time step using global and local registration and merges
them into an HDR frame. Kalantari et al. [20] also recon-
structed missing images with different exposures based on
patch-based optimization [39]. Mangiat et al. [28] adopted
block-based motion estimation and additionally refined mo-
tion vector, which was improved by Mangiat et al. [29]
with the addition of HDR filtering for block artifact re-
moval. Meanwhile, Gryaditskaya et al. [14] proposed an
adaptive metering algorithm to minimize motion artifacts.
Li et al. [25] avoided correspondence estimation by for-
mulating HDR video reconstruction as a maximum a pos-
teriori (MAP) estimation problem, where foreground and
background are synthesized separately and then combined
together. These methods are mostly time-consuming and
often display visible artifacts.

The recent work of Kalantari et al. [19] first presented a

CNN-based framework that consists of a flow network and
a merging network, similar to the HDR imaging method in
[18]. However, the flow estimation error often leads to un-
desirable artifacts in the resulting images. Chen et al. [5]
trained a coarse-to-fine network, including a pyramid, cas-
cading, and deformable alignment module [44] with newly
collected datasets. This work requires global alignment as
preprocessing and still uses optical flow for coarse align-
ment. Despite the introduction of various alignment strate-
gies, these approaches often suffer from artifacts from mis-
alignment in saturated areas and temporal inconsistency due
to frame-by-frame reconstruction. In contrast, we perform
luminance-based alignment without pre-alignment and im-
prove temporal coherency by adding a temporal loss.

3. Proposed Method

Given an LDR video with alternating exposures, our
goal is to generate a high-quality HDR video. In order to
produce an HDR frame Ht, we use 2N + 1 consecutive
LDR frames {Lt−N , · · · , Lt, · · · , Lt+N}, which consist of
a corresponding LDR frame and its neighbors. Following
the previous work [5], five frames are used as input in the
case of having two alternating exposures (N = 2), and
seven frames for the three (N = 3). For brevity, this pa-
per mostly addresses the case of two alternating exposures
and discusses the extension to the three in Section 3.4.

Before feeding the inputs into our framework, we map
the LDR frames to the HDR using gamma correction with
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γ = 2.2:
Xt = Lγ

t /et, (1)

where et is the exposure time of Lt. We then construct a 6-
channel input by concatenating Lt and Xt along the channel
dimension. In the rest of the paper, we denote the LDR
input as Lt for brevity, though its gamma-transformed HDR
image Xt is actually used together as the input.

Our framework is composed of weight-sharing
luminance-based alignment networks (LANs) and a
merging network. Each LAN aligns the motion of the
supporting frame Lt+i to that of the reference Lt, and the
merging network combines the features from the LANs
into an HDR frame Ht. As shown in Fig. 2, the LAN has
two different modules. The alignment module calculates
the attention score between the reference frame (query) and
the supporting frame (key) and then aligns the supporting
frame (value) based on this score. Since the alignment
module can produce incomplete content in saturated areas,
the hallucination module generates fine details in the
desired regions. The features from the two modules are
fused in an adaptive blending layer. The outputs of the
LANs are concatenated and fed to the merging network for
HDR frame composition. The details of each network are
described in the following sections.

3.1. Luminance-based Alignment Network (LAN)

Alignment module The core idea of the alignment mod-
ule is to calculate attention between a neighboring frame
(key) and a reference frame (query) based on their content
and then rearrange the neighboring frame (value) using the
estimated attention. To alleviate memory usage and compu-
tation for attention operation, we input low-resolution im-
ages downsampled by a factor of 4. Here, we first adjust the
exposure of the downsampled reference frame L↓

t to that
of the downsampled neighboring frame L↓

t+i: gt+i(L
↓
t ) =

clip
(
L↓
t (et+i/et)

1/γ
)

, where et and et+i denote the expo-

sure time of L↓
t and L↓

t+i, respectively. Then, after conver-
sion to YCbCr space, only Y channels of each image, L↓,Y

t+i

and gt+i(L
↓
t )

Y , are fed to the key/query extractor FKQ. The
FKQ can extract key and query features focusing on content
rather than superficial color information.

The key and query features are then unfolded into
patches to reflect neighbors. Likewise, the downsampled
neighboring frame L↓

t+i is embedded through a value ex-
tractor FV and unfolded to construct value features. The
key K, query Q, and value V for attention operation can
be represented as a set of patches: K = {ki, i ∈ [1, n]},
Q = {qi, i ∈ [1, n]}, and V = {vi, i ∈ [1, n]}, respec-
tively. Each patch has the dimension of 3× 3×C, and n is
the number of pixels in the key/query/value features.

To estimate correlation between Q and K, patch-wise

Lt Lt+1 M

Figure 3: An example of a blending map M when aligning a
neighboring frame Lt+1 to the reference Lt with saturation.
The darker the map, the more features from the hallucina-
tion module Fh contribute to reconstruction.

cosine similarity is calculated as:

ci,j = ⟨ qi
∥qi∥

,
kj

∥kj∥
⟩. (2)

In order to prevent blurry results, we exploit the most cor-
related (top-1) element, constructing an index map I =
{pi, i ∈ [1, n]} and a confidence map S = {si, i ∈ [1, n]}.
For each query patch qi, an index of the most correlated key
patch pi and its confidence score si are determined as:

pi = argmax
j

ci,j , (3)

si = max
j

ci,j . (4)

Then, rearranged value features V ′ are obtained, where vpi

is located at the i-th location. To prevent information loss in
the case of mismatching, we concatenate the original value
features V with the rearranged features V ′ and then mul-
tiply the confidence map S. The adjusted features are up-
sampled to the resolution of the input L↓

t+i progressively
through upsampling blocks, resulting in the aligned features
Fa.
Hallucination module It is difficult to perform the align-
ment when the reference image has severely saturated areas
such as the one in Fig. 3. Also, downsampled inputs lack
sharp details while improving efficiency. The hallucination
module aims to fill in the missing content resulting from
saturation and generate high-frequency details. To this end,
we utilize gated convolution [50], which is widely adopted
in inpainting networks, to restore specific saturated regions.
Also, masks indicating saturated parts as well as the original
images are used as input to an encoder-decoder architecture.
According to the brightness information of the input masks,
the gated convolution performs adaptively with respect to
spatial and channel dimensions. Given input features Fi,
the output of the gated convolution Fo is formulated as:

Fo = ρ(
∑∑

Wf · Fi)⊙ σ(
∑∑

Wg · Fi), (5)

where ⊙ denotes element-wise multiplication. ρ and σ are
the exponential linear unit and sigmoid, respectively. Wf

denotes a convolutional filter for the feature, and Wg is the
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one for gating. Thus, gated convolution enables dynamic
operation that is aware of saturation. We use the Y channel
of each image as a mask to provide explicit but continuous
information about luminance. The luminance channel indi-
cates dark regions as well as saturated parts, thus helping to
suppress noise in dark areas. Analysis of the input to the
hallucination module is presented in Section 4.3.
Adaptive blending layer Aligned features from the align-
ment module Fa are fused with intermediate features of
the hallucination module Fh through an adaptive blending
layer. For the two modules to complement each other, the
adaptive blending layer estimates a blending map M ∈
RH×W×1 in the range [0, 1], where H × W is the spatial
resolution of Fa and Fh. The output features of the fusion
Fout are represented as follows:

Fout = (1−M)⊙ Fh +M ⊙ (Fh + Fa). (6)

When the alignment is challenging in saturated parts due to
missing information, the contribution of Fa becomes small,
represented as a low value in the map M . (See an example
in Fig. 3.) The Fout passes through the remaining upsam-
pling blocks to recover its spatial size.

3.2. Merging Network

Since the proposed LANs output well-aligned features,
our merging network has a simple structure. The aligned
features are concatenated along the channel axis and fed to
a convolutional layer and five Res FFT-Conv Blocks [31].
This network can cover the entire frame globally by per-
forming convolutions in the frequency domain. After the
final convolutional layer with a sigmoid activation function,
the final HDR frame Ht is constructed.

3.3. Training Loss

Since HDR images are usually displayed after tonemap-
ping, we calculate loss functions between the tonemapped
predicted HDR frame T (Ĥt) and the tonemapped ground
truth HDR image T (Ht) using the differentiable µ-law:

T (H) =
log(1 + µH)

log(1 +H)
, (7)

where µ is set to 5000.
L1 loss We adopt L1 loss which is defined as: L1 =∥∥∥T (Ĥt)− T (Ht)

∥∥∥
1
.

Perceptual loss Using the feature map from the pre-trained
VGG-19 network ϕ(·), we calculate perceptual loss Lper

as: Lper =
∥∥∥ϕ(T (Ĥt))− ϕ(T (Ht))

∥∥∥2
2
.

Frequency loss We also utilize a frequency loss which
has been shown to be effective in recent low-level vision
tasks [12, 6, 43]. The frequency loss Lfreq is defined as:

Lfreq =
∥∥∥F(T (Ĥt))−F(T (Ht))

∥∥∥
1
, where F is the fast

Fourier transform (FFT).
Temporal loss To generate a perceptually natural video,
temporal consistency without abrupt change is crucial.
Since every HDR frame is constructed independently, we
present our temporal loss Ltemp to improve temporal con-
sistency. Specifically, we enforce a difference map between
the consecutive tonemapped outputs to be similar to the
ground truth using the Charbonnier penalty function [4].
The temporal loss for this enforcement is defined as:

Ltemp =

√∥∥∥(T (Ĥt)− T (Ĥt−1))− (T (Ht)− T (Ht−1))
∥∥∥2
2
+ ϵ2,

(8)
where ϵ is set as 10−3.

Our total loss is represented as: Ltotal = λ1L1 +
λperLper + λfreqLfreq + λtempLtemp, where λ1 = 1,
λper = 0.1, λfreq = 0.1, and λtemp = 0.1.

3.4. Extension to Three Exposures

Given an LDR sequence with alternating exposures in
three levels, seven LDR frames are used to compose an
HDR frame. Our LAN aligns each pair of a supporting
frame and the reference, and the merging network combines
them in the same manner.

4. Experiments

4.1. Experimental Setup

Datasets We use synthetic training data constructed using
the Vimeo-90K septuplet dataset [46]. Since the Vimeo-
90K dataset is not optimized for HDR video reconstruc-
tion, we convert the original data to LDR sequences with
alternating exposures following the previous work [5]. We
evaluate our framework on two synthetic videos (POKER
FULLSHOT and CAROUSEL FIREWORKS) from the
Cinematic Video dataset [11] and DeepHDRVideo dataset
[5]. The DeepHDRVideo dataset [5] includes both real-
world dynamic scenes and static scenes augmented with
random global motion. HDRVideo dataset [20] is used only
for qualitative evaluation due to the absence of ground truth.
Training details We adopt AdamW optimizer [27] with
β1 = 0.9 and β2 = 0.999, and the learning rate is set to
10−4. We augment training patches using random flipping,
rotation by multiples of 90◦, and color augmentation. More
details are included in the supplementary material.
Evaluation metrics We compute PSNRT , SSIMT ,
PSNRPU , SSIMPU , and HDR-VDP-2 between the pre-
dicted results and ground truth frames. PSNRT and SSIMT

are computed on the tonemapped images using the µ-
law. PSNRPU and SSIMPU are calculated after percep-
tually uniform encoding [30], which maps the peak value
in the HDR image to the peak HDR display luminance
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Table 1: Quantitative comparisons of our method with other state-of-the-arts on the Cinematic Video dataset [11].

2 Exposures 3 Exposures
Methods PSNRT SSIMT PSNRPU SSIMPU HDR-VDP-2 PSNRT SSIMT PSNRPU SSIMPU HDR-VDP-2
Kalantari [20] 37.51 0.9016 39.13 0.9319 60.16 30.36 0.8133 32.53 0.8251 57.68
Kalantari [19] 37.06 0.9053 39.10 0.9286 70.82 33.21 0.8402 35.38 0.8582 62.44
Yan [47] 31.65 0.8757 32.99 0.7523 69.05 34.22 0.8604 36.04 0.8357 66.18
Prabhakar [36] 34.72 0.8761 36.06 0.8257 68.82 34.02 0.8633 36.19 0.8590 65.00
Chen [5] 35.65 0.8949 37.12 0.8156 72.09 34.15 0.8847 36.23 0.8357 66.81
Ours 38.22 0.9100 40.04 0.9039 69.15 35.07 0.8695 37.22 0.8666 65.42

Table 2: Quantitative comparisons of our method with other state-of-the-arts on the DeepHDRVideo dataset [5].

2 Exposures 3 Exposures
Methods PSNRT SSIMT PSNRPU SSIMPU HDR-VDP-2 PSNRT SSIMT PSNRPU SSIMPU HDR-VDP-2
Kalantari [20] 40.33 0.9409 43.71 0.9646 66.11 38.45 0.9489 42.35 0.9740 57.31
Kalantari [19] 39.91 0.9329 43.31 0.9641 71.11 38.78 0.9331 41.80 0.9647 65.73
Yan [47] 40.54 0.9452 45.33 0.9616 69.67 40.20 0.9531 42.36 0.9700 68.23
Prabhakar [36] 40.21 0.9414 45.16 0.9593 70.27 39.48 0.9453 41.15 0.9666 65.93
Chen [5] 42.48 0.9620 45.79 0.9773 74.80 39.44 0.9569 41.57 0.9725 67.76
Ours 41.59 0.9472 44.43 0.9730 71.34 40.48 0.9504 42.38 0.9755 68.61

Input Frames Our Result Input Frames Our Result

Kalantari
[20]

Kalantari
[19]

Yan
[47]

Prabhakar
[36]

Chen
[5]

Ours GT Kalantari
[20]

Kalantari
[19]

Yan
[47]

Prabhakar
[36]

Chen
[5]

Ours GT

Figure 4: Qualitative results on 3-exposure sequences in the DeepHDRVideo dataset [5]. Only the middle three input frames
are displayed.

4000cd/m2. When computing the HDR-VDP-2, the angu-
lar resolution of the image in terms of the number of pixels
per visual degree is set as 30.

4.2. Comparisons

We compare our results with previous HDR video recon-
struction approaches [20, 19, 5] and state-of-the-art HDR
image composition methods [47, 36] after adapting them
to the video reconstruction task. We use the official codes
if available, otherwise, we re-implement them based on
the papers. For a fair comparison, we have trained deep
learning-based methods with the dataset we use. All the vi-
sual results are tonemapped using Photomatix [34] and best

viewed by zooming into the electronic version.
Quantitative evaluations Our results on Cinematic Video
dataset [11] and DeepHDRVideo dataset [5] are listed in
Table 1 and Table 2, respectively, where our approach
achieves superior or comparable performances to state-of-
the-art methods. Especially, in the case of data with 3 expo-
sures, our method consistently demonstrates precise recon-
struction ability by handling large variations of motions and
brightness.
Qualitative evaluations We visualize our results on se-
quences with saturation and large motions. Fig. 4 shows
the results on two 3-exposure sequences from the DeepH-
DRVideo dataset [5]. The other methods except ours fail
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Our Result Input Frames Kalantari [20] Kalantari [19] Yan [47] Prabhakar [36] Chen [5] Ours

Figure 5: Qualitative comparisons on the sequence with 2 exposures from the HDRVideo dataset [20]. Only the middle two
input frames are displayed.
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Figure 6: Visualization of temporal consistency.

Table 3: Comparisons of inference time.

2 Exposures 3 Exposures
1280× 720 1536× 813 1280× 720 1536× 813

Kalantari [20] 140.02s 166.10s 321.16s 414.44s
Kalantari [19] 0.37s 0.69s 0.49s 0.72s
Chen [5] 0.54s 1.25s 0.54s 1.30s
Ours 0.37s 0.61s 0.57s 0.82s

to avoid ghosting artifacts and color distortions when fast
motion occurs with exposure changes. Especially, the ap-
proaches using flow-based estimation [19, 5] suffer from
artifacts caused by flow estimation error. We also evalu-
ate on a sequence with two alternating exposures from the
HDRVideo dataset [20]. Fig. 5 shows that our method gen-
erates fine details even when large occlusion and saturation
exist. More visual results are presented in Fig. 1 and the
supplementary material.
Temporal profiles This section provides temporal profiles
to demonstrate the temporal consistency of our results. We
produce temporal profiles by recording a single line across
all the frames and stitching them in order. Fig. 6 shows the
results on a 3-exposure sequence in the Cinematic Video
dataset [11]. Our method generates temporally consistent
videos with minimal flickering artifacts and preserves de-
tailed texture successfully.

Table 4: Effectiveness of each component in the LAN. AM,
HM, and ABL denote the alignment module, the hallucina-
tion module, and the adaptive blending layer, respectively.

Model AM HM ABL PSNRT PSNRPU

(a) ✓ 36.37 37.99
(b) ✓ 36.32 36.68
(c) ✓ ✓ 37.57 38.96
(d) ✓ ✓ ✓ 38.22 40.04

Lt Lt+1 Overlapped Input Blending Map M

(a) AM Only (b) HM Only (c) w/o ABL (d) Ours

Figure 7: Analysis of the components in the LAN.

Computation time We compare the inference time of our
method with other HDR video construction methods in Ta-
ble 3. We use a single NVIDIA TITAN Xp GPU, while the
optimization-based method of Kalantari et al. [20] is run on
CPUs. Our approach is faster than the method of Chen et
al. [5], and the gap increases as the image resolution be-
comes larger.

4.3. Analysis

In this section, we analyze the effects of the proposed
components with the example of sequences having two al-
ternating exposures. All the quantitative evaluations are
conducted on the Cinematic Video dataset [11].
LAN Our LAN is composed of the alignment module (AM)
and the hallucination module (HM), and features from
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Overlapped Input RGB Image Color Jittered Image Y Channel (Ours)

Figure 8: Results with different inputs to the key/query ex-
tractor of the alignment module.

Table 5: Effectiveness of gated convolution and input masks
in the hallucination module.

Model Convolution Input Mask PSNRT PSNRPU

(A) Regular Y channel 37.02 38.55
(B) Gated - 36.49 38.10
(C) Gated Binary 36.88 38.32
(D) Gated Y channel 38.22 40.04

Lt Lt+1 Mask of (C) Mask of (D)

Model (A) Model (B) Model (C) Model (D) (Ours)

Figure 9: Results with different convolutions and input
masks in the hallucination module.

the two modules are fused in the adaptive blending layer
(ABL). As shown in Table 4, the model with only AM
or HM achieves far lower PSNRs than the full proposed
model. The model which has both AM and HM, but blends
two features using a simple concatenation, improves perfor-
mance. But it suffers from undesirable artifacts in a chal-
lenging case such as a sequence with alternating exposures
whose middle frame has large saturations as in Fig. 7. In
this case, the AM cannot perform a perfect alignment be-
cause a large amount of content in the reference frame is to-
tally washed out and thus produces blurry texture, as shown
in Fig. 7a. On the other hand, Fig. 7b shows that the HM
generates sharp details but fails to align the motions accord-
ing to the reference. (See the hand holding a card.) Our full
model, including the AM, HM, and ABL (Fig. 7d), outputs
better results than the individual modules by properly com-
bining two kinds of features. For example, our blending
map has low values around the moving object in saturated
parts, demonstrating that inaccurate AM features are sup-
pressed in those areas.

Table 6: Effectiveness of the proposed temporal loss.

Methods PSNRT SSIMT PSNRPU SSIMPU

w/o Ltemp 36.33 0.9200 37.99 0.8972
w/ Ltemp 38.22 0.9100 40.04 0.9039

Inputs for alignment module In our AM, we perform
content-based alignment using Y channels of two input
frames to prevent a simplistic matching based on color in-
formation. We compare our model with the one that uses
original RGB images for alignment in Fig. 8. When using
RGB images for attention operation, registration is unsuc-
cessful when objects with similar colors overlap. We also
conduct experiments with color-jittered RGB images as an-
other means of relying less on color and more on content.
The model using the color-jittered images improves align-
ment, but our model shows the best alignment results.
Hallucination module Our HM in the LAN utilizes gated
convolution and input masks to operate adaptively to lumi-
nance. The effects of these elements are shown in Table 5
and Fig. 9. Model (A) with regular convolution takes the
Y channel as input, but the dynamic operation is not pos-
sible. Model (B) includes gated convolution, but there is
no explicit instruction for adaptive convolution, resulting in
unsatisfying results. For model (C), a binary mask obtained
from thresholding at a predefined value of 0.95 is given.
The binary mask indicates saturated parts but provides lim-
ited information regarding brightness. Fig. 9 shows a scene
with both highlighted and very dark regions. It is notewor-
thy that other models not only lack details in bright parts
but also generate significant noise in dark areas. In con-
trast, our framework suppresses noise in dark regions and
produces detailed content in saturated regions adaptively.
Temporal loss We exploit the temporal loss Ltemp to gen-
erate a temporally coherent HDR video. The temporal loss
forces difference of consecutive frames to be similar to one
of the ground truth. Table 6 shows that the overall quantita-
tive performance is improved by using the temporal loss.

5. Conclusion
We have proposed an end-to-end HDR video composi-

tion framework using LDR videos with alternating expo-
sures. To enhance alignment accuracy and restore washed-
out regions, our alignment network performs content-based
alignment with attention and recovers details in saturated
areas using brightness-adaptive convolution. The aligned
features and the hallucinated features are fused adaptively
using a learned blending map. The outputs of the align-
ment module are reconstructed into an HDR frame through
the merging network. During training, the temporal loss is
adopted for temporally consistent results. The overall re-
sults demonstrate that the proposed method generates high-
quality HDR videos.
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