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Abstract

Cross-modal alignment is one key challenge for Vision-
and-Language Navigation (VLN). Most existing studies
concentrate on mapping the global instruction or single
sub-instruction to the corresponding trajectory. However,
another critical problem of achieving fine-grained align-
ment at the entity level is seldom considered. To address this
problem, we propose a novel Grounded Entity-Landmark
Adaptive (GELA) pre-training paradigm for VLN tasks. To
achieve the adaptive pre-training paradigm, we first intro-
duce grounded entity-landmark human annotations into the
Room-to-Room (R2R) dataset, named GEL-R2R. Addition-
ally, we adopt three grounded entity-landmark adaptive pre-
training objectives: 1) entity phrase prediction, 2) land-
mark bounding box prediction, and 3) entity-landmark se-
mantic alignment, which explicitly supervise the learning of
fine-grained cross-modal alignment between entity phrases
and environment landmarks. Finally, we validate our model
on two downstream benchmarks: VLN with descriptive in-
structions (R2R) and dialogue instructions (CVDN). The
comprehensive experiments show that our GELA model
achieves state-of-the-art results on both tasks, demonstrat-
ing its effectiveness and generalizability.

1. Introduction
Vision-and-Language Navigation (VLN) [3] is an impor-

tant task in the Embodied Vision community, which has
gained great attention [66, 40, 50]. It aims to ask an agent to
reach the target location inside photo-realistic environments
by following natural language instructions. In VLN, cross-
modal alignment is one critical step to accurately make the
action decision for the agent [60], since matching the men-
tioned landmarks (objects or scenes) with visual observa-
tions can help the comprehensive understanding of the en-
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Instruction: Go past the table tennis table, and turn right. Head straight
down the hall until you reach a circle design on the floor. Wait there.

I find the table
tennis table. 

Figure 1. An illustration of an embodied agent navigating in a
3D photo-realistic environment. The agent is expected to navi-
gate based on environment landmarks that correspond to the entity
phrase in the instruction.

vironments and instructions [60, 15, 68]. However, most of
the available datasets could only provide the coarse-grained
text-image alignment signals [15], i.e., instruction-level cor-
respondences to the complete trajectories, where finer ones
are required to learn the cross-modality alignment for well-
performed navigation [18, 67, 47, 43, 57].

A large part of previous works [66, 11, 40, 50] has con-
centrated on the global alignment of instructions and trajec-
tories, which matches instructions to the overall temporal
visual trajectory via reinforcement learning [60], auxiliary
reasoning [66], or transformer-based matching pre-training
[7, 50, 40]. Others [18, 67, 15] have attempted to align
sub-instructions and sub-trajectories locally. At this gran-
ularity, the agents are designed to segment long instruction
[67, 18] and determine which sub-instruction to focus on.
To guide local cross-modal alignment, He et al. [15] in-
troduced the Landmark-RxR dataset by human-annotating
sub-instructions and sub-trajectories alignment. They ad-
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vanced the granularity of visual-textual alignment, but the
agent learning is still supervised at the sentence level. The
alignment within (sub-)instructions should be considered.

Identifying environment landmarks that correspond to
entities in the instruction, as shown in Figure 1, is the next
step to refine alignment and improve navigation. Recent
studies [47, 43, 57] investigated the same problem, suggest-
ing the alignment of entities and object regions [47] or the
scene- and object-aware transformer model [43]. But the
object regions were not under the direct supervision of the
corresponding entity phrases in the instruction. To gener-
ate navigation instructions enriched with landmark phrases,
Wang et al. [57] introduced grounded landmark annotations
using a dependency parser and weak supervision from the
pose traces, leading to the entity-landmark alignments of in-
sufficient precision. Therefore, a dataset with high-quality
entity-landmark level grounding annotations and powerful
supervision for entity-landmark level cross-modal align-
ment is highly desired for VLN.

To address the above limitations, we first enhance the
Room-to-Room (R2R) dataset [3] by introducing addi-
tional high-quality grounded entity-landmark human an-
notations, known as the Grounded Entity-Landmark R2R
dataset (GEL-R2R). The GEL-R2R dataset is annotated
with abundant precisely matched entity-landmark pairs (as
magenta text and bounding box illustrated in Figure 1),
which could provide the VLN models with direct supervi-
sion of fine-grained cross-modal alignment.

To verify the value of our GEL-R2R dataset, we pro-
pose a novel Grounded Entity-Landmark Adaptive (GELA)
pre-training paradigm to improve the learning of entity-
landmark level alignment for the VLN pre-trained model.
Specifically, we suggest three grounded entity-landmark
adaptive pre-training objectives: 1) Entity Phrase Predic-
tion (EPP), locating entity phrases that refer to environ-
ment landmarks from the instruction; 2) Landmark Bound-
ing box Prediction (LBP), predicting the bounding box of
environment landmarks that match with entity phrases; and
3) Entity-Landmark Semantic Alignment (ELSA), aligning
the matched pairs of landmark patches and entity tokens in
the feature space by contrastive loss. These three tasks ex-
plicitly equip the model with the ability to comprehend the
entity-level grounding between human instructions and vi-
sual environment observations.

Finally, we conduct extensive experiments on two down-
stream tasks to evaluate our proposed dataset GEL-R2R
and adaptive pre-training methods GELA: Room-to-Room
(R2R) and Vision-and-Dialog Navigation (CVDN). The in-
structions in R2R are fine-grained descriptions for the nav-
igation trajectory, whereas the instructions in CVDN are
multi-turn dialogs between the agent and the oracle during
navigation. We use HAMT [7] as the backbone VLN model
for the GELA pre-training. The results demonstrate our

suggested GELA achieves state-of-the-art (SoTA) perfor-
mance in both seen and unseen environments of the above
two benchmarks: 62% SPL on R2R and 5.87 GP on CVDN.

To summarize, our contributions are three-fold:
• We construct a new dataset GEL-R2R, which is

the first dataset with high-quality grounded entity-
landmark human annotations in the VLN domain.

• We propose a novel Grounded Entity-Landmark Adap-
tive (GELA) pre-training paradigm for VLN, explic-
itly supervising the models to learn fine-grained cross-
modal semantic alignment between entity phrases and
environment landmarks.

• Our suggested GELA achieves state-of-the-art results
on two challenging VLN downstream benchmarks,
demonstrating its effectiveness and generalizability.

2. Related Work
Vision-and-Language Navigation. Since the R2R

benchmark was proposed by [3], studies of the VLN have
made considerable progress in various aspects. VLN
datasets have become increasingly diverse, existing in in-
door [4, 30, 49, 55, 65] or outdoor [5, 16, 42] environments,
and in discrete [3, 49] or continuous [29, 28, 34, 19] en-
vironments. The architecture of VLN models has become
more complex, progressing from LSTM-based [11, 39] to
transformer-based [14, 43, 45, 7]. To develop the compe-
tence of getting closer to the destination and to the ground
truth path [23], VLN agents have been enhanced mainly
through action strategy learning [63, 8, 48, 17, 21] and
multi-modal representation learning [22, 59, 27, 26, 1].
Many excellent VLN models use imitation and reinforce-
ment learning-based training paradigms for action strategy
learning [60, 44, 54]. Recently, multi-modal transformer-
based models that use effective joint representations for in-
structions and visual observations have achieved promising
performance in VLN [12, 7, 50]. In this passage, we fo-
cus on incorporating more accurate and fine-grained cross-
modal grounding information to improve the performance
of VLN models by supervising the alignment between en-
tity phrases and environment landmarks.

Phrase-to-Region Grounding. Phrase-to-region
grounding is an important task in the Vision-Language
(VL) domain that involves localizing textual entities in
an image, commonly abbreviated as phrase grounding
[25, 33, 38]. This task has seen significant progress since
the introduction of the Flickr30k Entities dataset [46] and
has played a crucial role in learning fine-grained semantic
visual representation. Various models such as VisualBERT
[32], MDETR [25], and GLIP [33] have explored this task
under different architectures, and grounded pre-training has
shown to facilitate fine-grained semantic understanding.
However, the task of fine-grained cross-modal semantic
alignment in embodied VLN tasks is more challenging due
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All Object Scene

Trajectory Instruction Phrase P/I Box B/I Phrase Box P/B Phrase Box P/B

Train 4675 14039 57788 4.12 121146 8.63 30756 63248 2.06 27032 57902 2.14
Val Seen 340 1021 4196 4.11 8741 8.56 1939 4065 2.10 2257 4676 2.07
Val Unseen 775 2325 9483 4.08 20296 8.73 4324 8965 2.07 5159 11331 2.20

Total 5790 17385 71467 4.11 150183 8.64 37019 76278 2.06 34448 73909 2.15

Table 1. Statistics on our GEL-R2R dataset. P/I (resp. B/I) denotes the average number of entity phrases contained (resp. landmark
bounding boxes matched with entity phrases) in each instruction. And P/B represents the average number of landmark bounding boxes
matched with each entity phrase.

to more complex scenes and various objects. In this paper,
we introduce high-quality entity-landmark grounding
human annotations into the R2R dataset and propose a
grounded entity-landmark adaptive pre-training scheme for
VLN pre-trained models to address this problem.

Adaptive Pre-training. In the field of natural language
processing, a pre-trained language model in the general do-
main is continuously pre-trained to learn the knowledge ap-
propriate for a particular task or domain. This process is
known as adaptive pre-training [13], which is conducted be-
tween pre-training and fine-tuning. Previous work [41, 64]
gains consistent improvements by continuously pre-training
an adaptive language model with the Masked Language
Model (MLM) [10] objective. Furthermore, through three
pre-training objectives — the MLM, Span Boundary Ob-
jective (SBO) [24], and Perturbation Masking Objective
(PMO) — Wu et al. [62] improved the overall performance
of a dialogue understanding model. In this work, we adopt
adaptive pre-training into the area of VLN. Specifically,
based on our human-annotated GEL-R2R dataset, we con-
tinuously train the SoTA pre-trained model [7] with three
different supervised entity-landmark grounding objectives.

3. GEL-R2R Dataset
3.1. Dataset Construction

To establish alignment between entity phrases in instruc-
tions and their corresponding landmarks in the surround-
ing environment, we introduce GEL-R2R, a dataset that
includes human annotations of grounded entity-landmark
pairs. The construction process consists of five stages:
(1) Raw data preparation. We collect panoramas of the R2R
dataset from the Matterport3D (MP3D) simulator [4] for
each viewpoint. To improve the accuracy and efficiency of
annotating landmarks, we mark the next action direction in
panoramas and match each panorama with the correspond-
ing sub-instruction based on [18].
(2) Annotation tool development. We develop a web-based
annotation platform using the label-studio [56] to facili-
tate annotations. The annotation interface is shown in the
supplementary material. Annotators first mark the entity

phrases in the instructions and then identify the correspond-
ing landmarks in the images using the same labels.
(3) Annotation guideline standardization. Through pre-
annotation, we standardized the annotation guideline by es-
tablishing four rules to ensure the consistency of the anno-
tations. The four rules are as follows:

• Alignment Rule: The entity phrase in instructions
should match landmarks in panoramas precisely.

• Free Text Rule: Free text instead of the class should
be annotated, for instance, “the white dining table” in-
stead of “table”.

• Text Coreference Rule: Entity phrases referring to the
same landmark are marked with the same label.

• Unique Landmark Rule: For an entity phrase, only
one corresponding landmark bounding box should be
annotated in a panorama.

(4) Data annotation and revision. We first select annota-
tors by testing the participants using 50 test instruction-path
pairs. The qualification process leaves us 43 qualified anno-
tators to complete the annotation task. Following the anno-
tation, our experts double-check the annotations and correct
any errors to ensure compliance with the above four rules.
(5) Data processing. In order to ensure the quality of the an-
notations, we first eliminate the incorrect annotations violat-
ing the above rules and then correct a few incorrect words.
Finally, we established the GEL-R2R dataset by introduc-
ing additional grounded entity-landmark annotations to the
R2R dataset. More details about data collection are pro-
vided in the supplementary material.

3.2. Statistics and Analysis

Table 1 presents statistics for the train, validation seen,
and validation unseen splits of GEL-R2R. The dataset con-
tains a total of 71,467 entity phrases, with 57,788 in the
train split, 4,196 in the validation seen split, and 9,483 in
the validation unseen split. It also includes 150,183 land-
mark boxes, of which 121,146 are in the train split, 8,741
are in the validation seen split, and 20,296 are in the vali-
dation unseen split. On average, each instruction contains
4.1 entity phrases, which is roughly equal to the number of
actions in a path. Furthermore, each instruction uses about
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Figure 2. Overview of GELA. The three adaptive pre-training objectives served by our scheme encourage: 1) the annotated entity to predict
the bounding box of its corresponding landmark in panoramas, 2) the annotated landmark to predict the positions of its corresponding
entity phrases, and 3) the cross-modal encoder to establish the semantic alignment between landmarks and entities representations. After
grounded entity-landmark adaptive pre-training, the GELA model is fine-tuned for the two VLN downstream tasks, R2R and CVDN.

8.5 landmark boxes on average. As a result, the agent has
access to a diverse set of landmarks that can aid in decision-
making during each navigation episode.

We compute statistics on the object and scene, taking
into account their varying identification difficulties. In to-
tal, we gather 37019 object entity phrases and 34448 scene
entity phrases, referring to 76278 object landmark boxes
and 73909 scene landmark boxes, respectively. On average,
there are about 2 landmark boxes corresponding to each ex-
act entity phrase, whether for objects or scenes. This indi-
cates that the same landmark appears in approximately two
adjacent viewpoint panoramas from different sizes and an-
gles, which enables the agent to perceive the landmark from
multiple views. In summary, the GEL-R2R dataset is the
first to provide high-quality entity-landmark alignment hu-
man annotations, which are essential for the area of VLN,
such as cross-modal representation learning, data augmen-
tation, and interpretable navigation.

4. Method

4.1. Problem Setup and Overview

Problem Setup. In VLN tasks, an embodied agent
should move to a target location from a starting pose inside
a 3D photo-realistic environment by following natural lan-
guage navigable instructions. The instruction is a sequence
of L words, denoted as I = {w0, . . . , wL−1}, and it guides
the agent to traverse a connectivity graph G in order to
reach the intended destination. At each step t, the agent ac-

quires a new panoramic visual observation Ot = {ot,i}36i=1
from neighboring environment, where ot,i = [vt,i; at,i] con-
sists RGB image vt,i and orientation angle at,i of i-th view.
The relative angles of n navigable viewpoints to the current
viewpoint and the stop action constitute the action space at
step t, denoted as At = {actt,1, . . . , actt,n, [STOP ]}. The
agent selects an action to move to a navigable viewpoint in
G or stop at the current location. Once the agent stops, the
navigation episode is completed.

Overview. In this study, we propose a novel grounded
entity-landmark adaptive pre-training scheme for a VLN
pre-trained model, whose architecture is shown in Figure
2. The training scheme introduces explicit supervision on
entity-landmark grounding to enhance fine-grained cross-
modal representation learning. The scheme comprises two
distinct stages: GELA pre-training on several proxy objec-
tives and fine-tuning on the VLN downstream tasks.

4.2. Pre-trained Model

As illustrated in the bottom-left of Figure 2, our pre-
trained model is a fully transformer-based architecture for
multi-modal decision-making, which is modified from the
classical cross-modal model LXMERT [53]. The pre-
trained model takes three inputs: a global instruction I ,
history information Ht, and current panoramic visual ob-
servation Ot, which are fed in a language encoder, a his-
tory encoder, and a vision encoder, respectively. And
then the textual and visual modalities exchange the sig-
nals through cross-attention layers in the cross-modal en-
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coder. Specifically, the visual modality is the concatena-
tion of history and visual observation. Finally, the repre-
sentation of tokens in instruction, history, and visual state
is Z = {zcls, z1, · · · , zL}, Yt = {ycls, y1, · · · , yt−1}, and
St = {s1, · · · , s36, sstop }, respectively.

To learn effective uni-modal and multi-modal repre-
sentation, transformer-based models for VLN commonly
undergo pre-training on in-domain datasets using several
proxy tasks [14, 50, 7]. These tasks include common vision-
language pre-training tasks as well as VLN-specific auxil-
iary tasks. In this study, we utilize five proxy tasks: Masked
Language Modeling (MLM) [10], Masked Region Classifi-
cation (MRC) [37], Instruction Trajectory Matching (ITM)
[40], Single-step Action Prediction (SAP) [7], and Spatial
Relationship Prediction (SPREL) [7]. Details are demon-
strated in the supplementary material.

4.3. GELA Pre-training

As shown in the top-left of Figure 2, we adopt
three adaptive pre-training objectives for learning entity-
landmark level alignment, which are Entity Phrase Predic-
tion (EPP), Landmark Bounding box Prediction (LBP), and
Entity-Landmark Semantic Alignment (ELSA). The three
proxy objectives are designed by mimicking the objectives
used in pre-training vision-language Transformers, partic-
ularly with the goal of learning phase-level grounding in-
formation. LBP is adapted from the training objective of
TransVG [9]. EPP and ELSA are extended from the soft to-
ken prediction and contrastive alignment of MDETR [25],
respectively.

Entity Phrase Prediction (EPP). In this objective, we
predict the positions of entity phrases that correspond to
annotated environment landmarks. We first transfer the
human-annotated entity location to a mask vector Mz of
L+1 dimensions, which is the same as Z. Similarly, we
transfer the human-annotated landmark bounding box to a
37-dim (the same as St) mask vector Ms. Then we train
the model to infer a uniform distribution over all token po-
sitions that refer to the corresponding landmark patches and
supervise this process by the mask vector Mz . Specifi-
cally, we average the patches representation of the land-
mark: St×M⊤

s , where × denotes the matrix product, ob-
taining a 768-dim vector. Then we put it into a two-layer
feedforward network (FFN) to predict a distribution over
the token positions in the instruction sequence:

logits = Softmax(FFN(St×M⊤
s )), (1)

where the FFN maps a vector of 768-dim to a vector of L+1
dimensions. Finally, we minimize the cross-entropy loss
between logits and Mz:

LEPP = CrossEntropy(logits,Mz). (2)

Landmark Bounding Box Prediction (LBP). In this
objective, we predict the bounding box of the landmark that
matches with annotated entity phrases. We train the model
to directly predict a 4-dim vector box′ = (x′, y′, w′, h′) as
the coordinates of the bounding box for each entity phrases
and supervise this process by the human-annotated bound-
ing box box = (x, y, w, h). Specifically, we first average
the token embeddings of the entity phrase: Z×M⊤

z and
then we predict the coordinates of the box through a two-
layer FFN and sigmoid function:

box′ = Sigmoid(FFN(Z×M⊤
z )), (3)

where the FFN maps a vector of 768-dim to a vector of 4-
dim. Finally, we apply the smooth L1 loss and generalized
IoU loss (GIoU loss) to optimize the box coordinates Mz:

LLBP = Lsmooth-l1(box, box
′) + λLGIoU(box, box

′), (4)

where λ is the weight coefficient of GIoU loss to balance
these two losses.

Entity-Landmark Semantic Alignment (ELSA).
While the above two unidirectional prediction tasks use
positional information to match the entity and landmark,
the entity-landmark semantic alignment loss enforces
alignment between the hidden embeddings of the landmark
and entity at the output of the cross-modal encoder. This
additional contrastive alignment loss ensures that the repre-
sentations of the landmark patches and the corresponding
entity tokens are closer in the feature space compared
to representations of unrelated tokens. This constraint
is stronger than the above two unidirectional prediction
losses as it directly operates on the representations and is
not single-handedly based on the positional information.
Specifically, inspired by InfoNCE loss [36], the objective is
the mean of two contrastive losses as follows:

Ls =

36∑
i=0

1∣∣Z+
i

∣∣ ∑
j∈Z+

i

− log

 exp
(
s⊤i zj/τ

)
∑L

k=0 exp
(
s⊤i zk/τ

)
 , (5)

Lz =

L∑
i=0

1∣∣S+
i

∣∣ ∑
j∈s+i

− log

 exp
(
z⊤i sj/τ

)
∑36

k=0 exp
(
z⊤i sk/τ

)
 , (6)

LELSA = (Ls + Lz)/2, (7)

where Z+
i is the token set to be matched with an annotated

patch si, and S+
i is the landmark patch set that should be

matched with an annotated token zi, and τ is a temperature
parameter regulating attention to negative samples.

Therefore, the full adaptive pre-training objective is:

LGELA = αLEPP + βLLBP + γLELSA. (8)
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4.4. Fine-tuning for VLN Tasks

The fine-tuning stage is illustrated in the right of Fig-
ure 2, where we generalize the GELA model for two VLN
downstream tasks under the scheme of imitation learning
(IL) and reinforcement learning (RL) by following previ-
ous work [20, 7]. IL supervises the agent to clone the be-
havior of the expert while RL encourages the agent to ex-
plore the trajectory according to the learning policy. Firstly,
the GELA model navigates in the environment following
the ground-truth action and generates gradients by IL. Sec-
ondly, using the same instruction, the model samples the
action space to make decisions and uses RL to generate gra-
dients. Finally, we combine the gradients and optimize the
pre-trained model. For the CVDN task, our setting is the
same to [7]. For the R2R task, we apply three settings with
different data augmentation following [31]:

• none: without data augmentation on environments.
• st: with data augmentation by style transformation on

original environments. Specifically, each discrete view
of panoramas is transferred with a random style.

• smo: with data augmentation by semantic class mask-
ing on synthesis environments, which are generated by
image synthesis with the same style as the original en-
vironments. One semantic class is randomly masked
out during image generation.

5. Experiment and Results

5.1. Experimental Setup

Datasets. We evaluate our proposed method on the two
VLN datasets: Room-to-Room (R2R) [3] and Vision-and-
Dialog Navigation (CVDN) [55], which are all based upon
the MP3D indoor environments. The instructions in R2R
are detailed descriptions of the navigation trajectory. There
are four splits in 21,558 trajectory-instruction pairs of the
R2R dataset: training (14,039), validation seen (1,021),
validation unseen (2,325), and test unseen (4,173). Our
grounded entity-landmark human annotations are based on
the training, validation seen, and validation unseen splits.
The instructions in CVDN are multi-turn dialogs between
the agent and the oracle during navigation. These kinds of
instructions are frequently vague and unspecific. Therefore,
the CVDN task is more challenging, serving to evaluate the
generalization ability for new downstream tasks.
Evaluation Metrics. For R2R, we report four evaluation
metrics: Trajectory Length (TL); Navigation Error (NE ↓)
- the average distance in meters between the agent’s final
position and the goal viewpoint; Success Rate (SR ↑) - the
proportion of paths where the agent stopped within 3 me-
ters of the goal viewpoint; Success rate weighted by Path
Length (SPL ↑) [2] 2. SR and SPL are the recommended

2We denote a ↓ to demonstrate lower is better and an ↑ to demonstrate

Model Feature Validation Unseen

TL NE↓ SR↑ SPL↑

HAMT[7]
none 11.46 2.29 65.7 60.9
st 11.78 3.42 67.3 62.6
smo 12.13 3.22 67.9 62.9

GELA (ours)
none 11.75 3.33 69.2 63.4
st 11.56 3.26 69.3 64.2
smo 11.73 3.11 71.1 65.0

Table 2. Comparison with the HAMT baseline on the R2R vali-
dation unseen split. Black denotes the best results.

key metrics. For CVDN, we use the average progress in
meters of the agent towards the goal viewpoint as the pri-
mary evaluation metric, denoted as Goal Progress (GP ↑).
Implementation Details. We typically conform to the ar-
chitecture of [7] and its associated hyper-parameters. We
conduct adaptive pre-training on our GEL-R2R training
dataset and the augmented dataset from [14]. In the adap-
tive pre-training stage, we inherited the pre-training tasks to
prevent knowledge forgetting. The GEL-R2R training set
serves for both pre-training tasks and adaptive pre-training
tasks. Due to the lack of entity-landmark grounding anno-
tations, the augmented dataset serves only for pre-training
tasks. We set λ=1.0 in Eq. (4), and α=1.0, β=1.0, γ=1.0 in
Eq. (8). And we set τ to 0.07 in Eq. (5) and Eq. (6) fol-
lowing [25]. And We adopt adaptive pre-training for 200k
iterations with a learning rate of 5e-5 by using 2 NVIDIA
RTX 3090 GPUs, and the batch size for each GPU is set
to 64. We adopt fine-tuning on the R2R and CVDN tasks
respectively. For both R2R and CVDN tasks, we train the
GELA model for 100k iterations with a learning rate of 1e-5
on a single NVIDIA RTX 3090 GPU. We set the batch size
to 16 for the R2R task and 8 for the CVDN task.

5.2. The Effect of GELA Pre-training

In this section, we demonstrate the effects of our GELA
pre-training paradigm for VLN models in terms of naviga-
tion performance and cross-modal representation.
The effect of GELA pre-training on navigation perfor-
mance. Table 2 presents a comparison with the HAMT
baseline model on the R2R validation unseen split under
three fine-tuning settings. The results of the first three lines
are obtained from [31]. The results show that our GELA
model outperforms HAMT by a large margin under all three
settings. Specifically, GELA achieves absolute improve-
ments of 3.5%, 2%, and 3.2% in SR under none, st, and
smo respectively. Furthermore, we show the single-step ac-
tion prediction (SAP) accuracy of GELA and HAMT on the
R2R validation unseen split during adaptive pre-training in
the left panel of Figure 3. As the training progresses, we

higher is better.
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Methods Validation Seen Validation Unseen Test Unseen

TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑
Seq2Seq[3] 11.33 6.01 39 - 8.39 7.81 22 - 8.13 7.85 20 18
SSM [58] 14.70 3.10 71 62 20.70 4.32 62 45 20.40 4.57 61 46
EnvDrop[54] 11.00 3.99 62 59 10.70 5.22 52 48 11.66 5.23 51 47
AuxRN[66] - 3.33 70 67 - 5.28 55 50 - 5.15 55 51
SEvol[6] 11.97 3.56 67 63 12.26 3.99 62 57 13.40 4.13 62 57

PREVALENT[14] 10.32 3.67 69 65 10.19 4.71 58 53 10.51 5.30 54 51
AirBERT[12] 11.09 2.68 75 70 11.78 4.01 62 56 12.41 4.13 62 57
RecBERT[20] 11.13 2.90 72 68 12.01 3.93 63 57 12.35 4.09 63 57
HOP[50] 11.26 2.72 75 70 12.27 3.80 64 57 12.68 3.83 64 59
REM[35] 10.88 2.48 75 72 12.44 3.89 64 58 13.11 3.87 65 59
HAMT[7] 11.15 2.51 76 72 11.46 2.29 66 61 12.27 3.93 65 60

GELA (ours) 11.19 2.39 76 73 11.73 3.11 71 65 12.99 3.59 67 62

Table 3. Comparison with SoTA methods on the R2R dataset. The methods in the top group are trained from scratch. The methods in the
second group are based on pre-training.
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Figure 3. The effect of GELA pre-training. Single-step Action Pre-
diction (SAP) accuracy (left) and Effective Attention (EA) score
(right) of GELA and HAMT on the R2R validation splits.

observe a gradual increase in the performance gap between
GELA and HAMT, with GELA and HAMT achieving pre-
diction accuracies of approximately 78% and 75%, respec-
tively. These significant improvements demonstrate that
fine-grained cross-modal alignment between entity phrases
and environmental landmarks is highly effective in enhanc-
ing agents’ navigation performance.

The effect of GELA pre-training on cross-modal repre-
sentation. To directly demonstrate the effect of GELA pre-
training on cross-modal semantic alignment, we analyze
cross-modal attention weights at the last Transformer layer
during inference. First, we visualize the attention weights
normalized to a scale of 0 to 1 in a heatmap. We then utilize
the annotations in GEL-R2R to mark tokens, which are in-
volved in the grounded entity-landmark pairs, and calculate
the attention weights received by each token from the cor-
responding tokens in the other modality, defined as the Ef-
fective Attention (EA) score. In the right panel of Figure 3,
we compare the average EA score of each marked token in

GELA and HAMT on the R2R validation seen and unseen
splits, where e2l (resp. l2e) represents the attention of the
entity token to the landmark token (resp. the attention of
the landmark token to the entity token). Among all compar-
isons, GELA achieves significantly higher EA scores than
HAMT (with a p-value in the two-sample t-test approaching
0), indicating that the grounded entity-landmark pairs have
a stronger correspondence in GELA. While HAMT has a
strong ability for uni-modal representation based on the
large-scale transformer and end-to-end pre-training, it can
be confused about matching the mentioned landmarks with
visual observations. The explicit supervision for entity-
landmark level alignment in GELA can improve the cross-
modal representation and substantially enhance the agent’s
decision-making ability during navigation. Qualitative ex-
amples are provided in the supplementary material.

5.3. Comparison to SoTA

Room-to-Room: R2R. Table 3 reports the performance
comparison of various models on the R2R benchmark. The
ensemble models, SE-Mixed [51] and EnvEdit [31], are ex-
cluded for a fair comparison. Our proposed GELA model
outperforms all the other models in primary metrics (SR and
SPL) across all the dataset splits. This indicates that GELA
agents can navigate more accurately and efficiently than
the other models. Specifically, on the validation seen split,
GELA performs comparably to the SoTA HAMT. However,
on the validation unseen and test unseen splits, GELA out-
performs HAMT by absolute 5% and 2% (SR) and 4% and
2% (SPL) improvements, respectively. This demonstrates
that GELA exhibits better generalization ability to unseen
environments, which can be attributed to its stronger capa-
bility in capturing the semantic features of landmarks after
entity-landmark grounding learning.
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Methods Val Seen Val Unseen Test Unseen

Seq2Seq[55] 5.92 2.10 2.35
CMN[68] 7.05 2.97 2.95
PREVALENT[14] - 3.15 2.44
VISITRON[52] 5.11 3.25 3.11
ORIST[61] - 3.55 3.15
HOP[50] - 4.37 3.31
MT-RCM+EnvAg[61] 5.07 4.65 3.91
HAMT[7] 6.91 5.13 5.58

GELA (ours) 8.57 5.86 5.87

Table 4. Comparison with SoTA methods on the CVDN dataset.

Methods Task TL NE↓ SR↑ SPL↑
0 None 11.46 2.29 65.7 60.9

1 EPP 11.83 3.63 65.8 60.7
2 LBP 12.71 3.71 65.6 60.1
3 ELSA 11.73 3.58 66.3 61.7
4 EPP+LBP 12.10 3.59 67.0 61.4
5 EPP+LBP+ELSA 11.75 3.33 69.2 63.4

Table 5. Ablation study of adaptive pre-training objectives on the
R2R validation unseen split.

Vision-and-Dialog Navigation: CVDN. Table 4 presents
the results on the CVDN benchmark, which utilizes
Goal Progress (GP) in meters as the key performance
metric. During training, we use a mixture of two types of
demonstrations (navigator and oracle) as supervision for
the trajectory. The results indicate that GELA consistently
outperforms the other models on both the validation and
test unseen environments. Particularly, our model achieves
up to 1.66-meter improvement over the SoTA model
HAMT on the validation seen split. Additionally, GELA
outperforms the SoTA results by 0.73 meters and 0.29
meters on validation unseen and test splits, respectively.
These results clearly demonstrate the GELA model is
effective and generalizable to different types of instructions
in more challenging VLN downstream tasks.

5.4. Ablation studies

Adaptive Pre-training Objective. To evaluate the effec-
tiveness of different adaptive pre-training objectives, we
conduct an ablation study on R2R validation unseen split
under none setting. The results are presented in Table 5.
Model 0 represents the HAMT baseline, while Models 1-
3 show the results of combining the original proxy tasks
in [7] with EPP, LBP, and ELSA, respectively. The results
demonstrate that ELSA can further improve navigation per-
formance, while the other two unidirectional prediction ob-
jectives solely based on positional information do not en-
hance the pre-trained model. This indicates that ELSA pro-

Category TL NE↓ SR↑ SPL↑
None 11.46 2.29 65.7 60.9

Scene 11.84 3.44 66.7 61.2
Object 11.23 3.54 66.8 61.9
All 11.75 3.33 69.2 63.4

Table 6. Ablation study of landmark categories on the R2R vali-
dation unseen split.

vides more effective supervision of cross-modal alignment
by directly operating on the feature representations. Subse-
quently, we evaluate the effect of combining EPP and LBP.
The results show that the combined performance (Model 4)
is much better than the separate performance of Model 1
and Model 2, demonstrating that these two objectives are
complementary. Finally, we combined all three objectives,
and the results show that this performance (Model 5) im-
proves even further. These findings highlight the impor-
tance of effective cross-modal alignment and the comple-
mentary nature of different adaptive pre-training objectives
in improving navigation performance.

Landmark Category. Table 6 presents our investigation
into the impact of two category entities (object and scene)
from GEL-R2R under none setting. Our results demon-
strate that integrating both object and scene entities can
enhance navigation performance. Of the two entity types,
object entities have a greater influence on performance, as
agents find it easier to comprehend individual objects com-
pared to complex scenes. Furthermore, the best perfor-
mance is achieved by combining both entity types, enabling
agents to navigate more precisely by utilizing both object
and scene landmarks. This improvement can be attributed
to the fact that the amount of available data for each entity
type is only half that of the complete dataset. Therefore, it
is plausible that the performance of GELA has not reached
saturation due to the limited volume of available data.

5.5. Limitations and Future Work

GELA is a preliminary investigation into cross-modal
alignment at the entity-landmark level in VLN based on our
human-annotated GEL-R2R dataset. Due to the high cost
of human annotation, the volume of GEL-R2R is relatively
limited. In the future, we plan to expand the dataset using
two cost-effective approaches: 1) developing a data aug-
mentation model by using GEL-R2R to produce grounded
entity-landmark annotations, and 2) incorporating large-
scale phrase grounding datasets in the VL domain. Addi-
tionally, we intend to explore interpretable navigation based
on our introduced dataset and method.
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6. Conclusion

A well-performed VLN agent should have powerful
competency in fine-grained cross-modal semantic align-
ment between entities and landmarks. In this paper, we in-
troduce the manually annotated grounded entity-landmark
dataset GEL-R2R, which provides powerful cross-modal
alignment for VLN at the entity-landmark level. We then
adopt three grounded entity-landmark adaptive pre-training
objectives based on GEL-R2R to facilitate cross-modal se-
mantic alignment learning under explicit supervision. Com-
prehensive experimental results on two downstream VLN
tasks, R2R and CVDN, demonstrate the effectiveness and
generalizability of our proposed model, GELA.
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