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Abstract

Document pre-trained models and grid-based models
have proven to be very effective on various tasks in Docu-
ment AI. However, for the document layout analysis (DLA)
task, existing document pre-trained models, even those pre-
trained in a multi-modal fashion, usually rely on either
textual features or visual features. Grid-based models for
DLA are multi-modality but largely neglect the effect of
pre-training. To fully leverage multi-modal information
and exploit pre-training techniques to learn better repre-
sentation for DLA, in this paper, we present VGT, a two-
stream Vision Grid Transformer, in which Grid Transformer
(GiT) is proposed and pre-trained for 2D token-level and
segment-level semantic understanding. Furthermore, a new
dataset named D4LA, which is so far the most diverse
and detailed manually-annotated benchmark for document
layout analysis, is curated and released. Experiment re-
sults have illustrated that the proposed VGT model achieves
new state-of-the-art results on DLA tasks, e.g. PubLayNet
(95.7%→96.2%), DocBank (79.6%→84.1%), and D4LA
(67.7%→68.8%). The code and models as well as the D4LA
dataset will be made publicly available 1.

1. Introduction
Documents are important carriers of human knowledge.

With the advancement of digitization, the techniques for au-
tomatically reading [38, 50, 39, 40, 9], parsing [51, 31],
and understanding documents [32, 46, 20, 25] have become
a crucial part of the success of digital transformation [8].
Document Layout Analysis (DLA) [4], which transforms
documents into structured representations, is an essential
stage for downstream tasks, such as document retrieval, ta-
ble extraction, and document information extraction. Tech-
nically, the goal of DLA is to detect and identify homoge-
neous document regions based on visual cues and textual
content within the document. However, performing DLA in
real-world scenarios is faced with numerous difficulties: va-

*Equal contribution. † Corresponding author.
1https://github.com/AlibabaResearch/AdvancedLiterateMachinery

Table 1. Comparisons of the use of different modalities and pre-
training techniques with existing SOTA methods in DLA task.

Models Vision Text Pre-trained

CNN-based [37, 34] ✓ ✗ ✗

ViT-based [25] ✓ ✗ ✓

Multi-modal PTM [15, 20] ✓ ✗ ✓

Grid-based [45, 47] ✓ ✓ ✗

VGT (Ours) ✓ ✓ ✓

riety of document types, complex layouts, low-quality im-
ages, semantic understanding, etc. In this sense, DLA is a
very challenging task in practical applications.

Basically, DLA can be regarded as an object detection or
semantic segmentation task for document images in com-
puter vision. Early works [37, 34] directly use visual fea-
tures encoded by convolutional neural networks (CNN) [19]
for layout units detection [36, 30, 35, 17], and have been
proven to be effective. Recent years have witnessed the
success of document pre-training. Document Image Trans-
former (DiT) [25] uses images for pre-training, obtaining
good performance on DLA. Due to the multi-modal nature
of documents, previous methods [15, 20] propose to pre-
train multi-modal Transformers for document understand-
ing. However, these methods still employ only visual infor-
mation for DLA fine-tuning. This might lead to degraded
performances and generalization ability for DLA models.

To better exploit both visual and textual information for
the DLA task, grid-based methods [45, 22, 47] cast text with
layout information into 2D semantic representations (char-
grid [23, 22] or sentence-grid [45, 47]) and combine them
with visual features, achieving good results in the DLA task.
Although grid-based methods equip with an additional tex-
tual input of grid, only visual supervision is used for the
model training in the DLA task. Since there are no explicit
textual objectives to guide the linguistic modeling, we con-
sider that the capability of semantic understanding is lim-
ited in grid-based models, compared with the existing docu-
ment pre-trained models [20]. Therefore, how to effectively
model semantic features based on grid representations is a
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(1) Budget (2) Email (3) Form (4) Invoice (5) Letter(a) PubLayNet

(b) DocBank (10) Scientific publication (11) Scientific report (12) Specification(7) News article (8) Presentation (9) Resume

(6) Memo

Figure 1. Document examples in the public dataset PubLayNet (a) and DocBank (b) and document examples in real-world applications.

(1) RegionTitle (2) RegionList

(3) LetterHead (4) RegionKV (5) LetterDear

Figure 2. Some special layout categories of D4LA dataset.

vital step to improve the performance of DLA. The differ-
ences between existing DLA methods are shown in Table 1.

As a classic Document AI task, there are many datasets
for document layout analysis. However, the variety of ex-
isting DLA datasets is very limited. The majority of docu-
ments are scientific papers, even in the two large-scale DLA
datasets PubLayNet [48] and DocBank [26] (in Figure 1 (a)
& (b)), which have significantly accelerated the develop-
ment of document layout analysis recently. As shown in
Figure 1, in real-world scenarios, there are diverse types
of documents, not limited to scientific papers, but also in-
cluding letters, forms, invoices, and so on. Furthermore, the
document layout categories in existing DLA datasets are tai-
lored to scientific-paper-type documents such as titles, para-
graphs, and abstracts. These document layout categories are
not diverse enough and thus are not suitable for all types of
documents, such as the commonly encountered Key-Value
areas in invoices and the line-less list areas in budget sheets.
It is evident that a significant gap exists between the exist-
ing DLA datasets and the actual document data in the real
world, which hinders the further development of document
layout analysis and real-world applications.

In this paper, we present VGT, a two-stream multi-
modal Vision Grid Transformer for document layout analy-
sis, of which Grid Transformer (GiT) is proposed to directly

Table 2. Comparisons with previous DLA datasets.

Dataset Type Category Labeling Training Validation

PubLayNet 1 5 XML 335,703 11,245
DocBank 1 13 LATEX 400,000 50,000

D4LA 12 27 Manual 8,868 2,224

model 2D language information. Specifically, we represent
a document as a 2D token-level grid as in the grid-based
methods [45, 22, 47] and feed the grid into GiT. For bet-
ter token-level and segment-level semantic awareness, we
propose two new pre-training objectives for GiT. First, in-
spired by BERT [11], the Masked Grid Language Modeling
(MGLM) task is proposed to learn better token-level seman-
tics for grid features, which randomly masks some tokens
in the 2D grid input, and recovers the original text tokens
on the document through its 2D spacial context. Second,
the Segment Language Modeling (SLM) task is proposed
to enforce the understanding of segment-level semantics in
the grid features, which aims to align the segment-level se-
mantic representations from GiT with pseudo-features gen-
erated by existing language model (e.g. , BERT [3] or Lay-
outLM [43]) via contrastive learning. Both token-level
and segment-level features are obtained from the 2D grid
features encoded by GiT via RoIAlign [17], according to
the coordinates. Combining image features from Vision
Transformer (ViT) further, VGT can make full use of tex-
tual and visual features from GiT and ViT respectively and
leverage multi-modal information for better document lay-
out analysis, especially in text-related classes.

In addition, to facilitate the further advancement of DLA
research for real-world applications, we propose the D4LA
dataset, which is the most Diverse and Detailed Dataset ever
for Document Layout Analysis. The differences from the
existing datasets for DLA are listed in Table 2. Specifically,
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Figure 3. The model architecture of Vision Grid Transformer (VGT) with pre-training objectives for the GiT branch.

D4LA dataset contains 12 types of documents as shown in
Figure 1. We define 27 document layout categories and
manually annotate them. Some special layout classes are
illustrated in Figure 2, which are more challenging and text-
related. Experiment results on DocBank, PubLayNet and
D4LA show the SOTA performance of VGT.

The contributions of this work are as follows:

1) We introduce VGT, a two-stream Vision Grid Trans-
former for document layout analysis, which can lever-
age token-level and segment-level semantics in the text
grid by two new proposed pre-training tasks: MGLM
and SLM. To the best of our knowledge, VGT is the
first to explore grid pre-training for 2D semantic un-
derstanding in documents.

2) A new benchmark named D4LA, which is the most di-
verse and detailed manually-labeled dataset for docu-
ment layout analysis, is released. It contains 12 types
of documents and 27 document layout categories.

3) Experimental results on the existing DLA benchmarks
(PubLayNet and DocBank) and the proposed D4LA
dataset demonstrate that the proposed VGT model out-
performs previous state-of-the-arts.

2. Related Works
Document Layout Analysis (DLA) is a long-term re-

search topic in computer vision [4]. Previous methods
are rule-based approaches [5, 21] that directly use the im-
age pixels or texture for layout analysis. Moreover, some
machine learning methods [12, 14] employ low-level vi-
sual features for document parsing. Recent deep learning
works [37, 34] consider DLA as a classic visual object de-
tection or segmentation problem and utilize convolutional

neural networks (CNN) [19] to solve this task [36, 30, 35,
17].

Self-supervised pre-training techniques have given rise
to blossom in Document AI [43, 44, 27, 2, 33, 20, 25, 15,
32]. Some document pre-trained models [20, 25, 15] have
been applied to the DLA task and achieved good perfor-
mances. Inspired by BEiT [3], DiT [25] trains a document
image transformer for DLA and obtains promising perfor-
mance, while neglecting the textual information in docu-
ments. Unidoc [15] and LayoutLMv3 [20] model the doc-
uments in a unified architecture with the text, vision and
layout modalities, but they only use the vision backbone
without text embeddings for object detection during fine-
tuning the downstream DLA task. Different from the meth-
ods that regard DLA as a vision task, LayoutLM [43] re-
gards the DLA task as a sequence labeling task to explore
DLA only in text modality. The experimental results of
LayoutLM show the possibility to use NLP-based methods
to process DLA tasks. However, these methods solely use a
single modality for the DLA task, and most of them focus
on visual information and ignore textual information.

To model the documents in multi-modality for the DLA
task, like the grid-based models [23, 10, 29] in vision in-
formation extraction, some works [45, 47] use text and
layout information to construct the text grid (text embed-
ding map) and combine it with the visual features for DLA.
Yang et al. [45] build a sentence-level grid that is concate-
nated with visual features in the model for the DLA task.
VSR [47] uses two-stream CNNs where the visual stream
and semantic stream take images and text grids (char-level
and sentence-level) as inputs, respectively for the DLA
task. However, the text grids in these methods are only as
model inputs or extra features, there are no semantic super-
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visions during DLA task training. Therefore, it is difficult
to achieve remarkable semantic understandings.

Previous DLA datasets [1, 7, 45] often focus on news-
papers, magazines, or technical articles, the size of which
is relatively small. Recently, the introduction of large-
scale DLA datasets such as DocBank [26] and Pub-
LayNet [48] has promoted significant progress in DLA re-
search. DocBank [26] has 500K documents of scientific
papers with 12 types of layout units. PubLayNet [48] in-
cludes 360k scientific papers with 5 layout types such as
text, title, list, figure, and table. Since the majority of docu-
ments of them are scientific papers, the variety of document
types and layout categories are very limited. Furthermore,
the document layout categories designed for scientific pa-
pers in the existing DLA datasets are difficult to transfer to
other types of documents in real-world applications.

3. Vision Grid Transformer
The overview of Vision Grid Transformer (VGT) is de-

picted in Figure 3. VGT employs a Vision Transformer
(ViT) [13] and a Grid Transformer (GiT) to extract vi-
sual and textual features respectively, resulting in a two-
stream framework. Additionally, GiT is pre-trained with
the MGLM and SLM objectives to fully explore multi-
granularity textual features in a self-supervised and su-
pervised learning manner, respectively. Finally, the fused
multi-modal features generated by the multi-scale fusion
module are used for layout detection.

3.1. Vision Transformer

Inspired by ViT [13] and DiT [25] , we directly en-
code image patches as a sequence of patch embeddings for
image representation by linear projection. In Figure 3, a
resized document image is denoted as I ∈ RH×W×CI ,
where H , W and CI are the height, width and channel
size, respectively. Then, I is split into non-overlapping
P × P patches, and reshaped into a sequence of flattened
2D patches XI ∈ RN×(P 2CI). We linearly project XI into
D dimensions, resulting in a sequence of N = HW/P 2

tokens as FI ∈ RN×D. Following [13], standard learnable
1D position embeddings and a [CLS] token are injected.
The resultant image embeddings serve as the input of ViT.

3.2. Grid Transformer

The architecture of GiT is similar to ViT in Section 3.1,
while the input patch embeddings are grid [23, 10]. Con-
cretely, given a document PDF, PDFPlumber 2 is used to
extract words with their bounding boxes. While for images,
we adopt an open-sourced OCR engine. Then, a tokenizer
is used to tokenize the word into sub-word tokens, and the
width of the word box is equally split for each sub-word.

2https://github.com/jsvine/pdfplumber

Grid Transformer
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>
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Figure 4. Schematic overview of the pre-training for GiT.

The complete texts are represented as D = {(ck,bk)|k =
0, . . . , n }, where ck denotes the k-th sub-word token in the
page and bk is the associated box of ck. Finally, the grid
input G ∈ RH×W×CG is constructed as follows:

Gi,j =

{
E(ck), if (i, j) ≺ bk,

E([PAD]), otherwise,
(1)

where ≺ means point (i, j) is located in the box bk and thus
all pixels in bk share the same text embedding E(ck) of ck.
E(·) represents an embedding layer, which maps tokens into
feature space. The background pixels with non-text are set
as the embedding of a special token [PAD].

As in ViT, G is split into P × P patches and flattened
into a sequence of patches XG ∈ RN×(P 2CG). We also
utilize linear projection to transcribe XG into patch embed-
dings FG ∈ RN×D. Similarly, FG embeddings added with
learnable 1D position embeddings and a learnable [CLS]
token are transferred into GiT, generating 2D grid features.

3.3. Pre-Training for Grid Transformer

To facilitate the 2D understanding of token-level and
segment-level semantics in GiT, we propose Masked Grid
Language Modeling (MGLM) and Segment Language
Modeling (SLM) objectives for GiT pre-training. Notably,
we decouple visual and language pre-training and ONLY
pre-train GiT within grid inputs in VGT. The reasons are as
follows: (1) Flexibility: different pre-training strategies can
be used for ViT pre-training, such as ViT [13], BEiT [3] and
DiT[25]. (2) Alignment: language information rendered as
2D grid features by GiT are naturally well-aligned with im-
age ones in spatial position, and so that the alignment learn-
ing in [44, 20] is not that necessary. (3) Efficiency: it can
speed up the pre-training process. The schematic overview
of the pre-training for GiT is shown in Figure 4.
Masked Grid Language Modeling (MGLM). MLM ob-
jective [11] predicts the masked tokens based on the contex-
tual representations, of which the output features are read-
ily accessible from a 1D sequence via index. The input and
output of GiT, however, are 2D feature maps. We extract
the region textual feature with RoIAlign [18] as in Region-
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CLIP [49]. Specifically, we randomly mask some tokens in
G with [MASK] as the input of GiT, and utilize FPN [28]
to generate refined features of GiT as in Figure 3. Then,
the region feature eck of masked token ck is cropped on the
largest feature map (i.e.P2 of FPN) by RoIAlign with the
box bk. The pre-training objective is to maximize the log-
likelihood of the correct masked tokens ck based on eck as

LMGLM (θ) = −
NM∑
k=1

log pθ(ck | eck), (2)

where θ is the parameters of GiT and FPN, NM is the num-
ber of masked tokens.

MGLM also differs from variants of MLM used in most
of the previous works on layout-aware language modeling.
The key difference between them lies in the way they utilize
the 2D layout information. In MLM variants (e.g. , MVLM
in LayoutLM [35]), the 2D position embeddings of text
boxes ([T, 4, C]) are explicitly computed and added to the
embeddings of text sequences ([T,C]), whereas in MGLM
the 2D spatial arrangement is naturally preserved in the 2D
grid G ([H,W,C]) and explicit 2D position embeddings of
text are unnecessary.
Segment Language Modeling (SLM). Token-level repre-
sentation can be efficiently explored vis MGLM task. How-
ever, extremely precise token-level features may not be that
crucial in DLA. Segment-level representation is also essen-
tial for object detection. Thus, the SLM task is proposed
to explore the segment-level feature learning of text. Con-
cretely, we use PDFMiner 3 to extract text lines with bound-
ing boxes as segments. Then, an existing language model
(e.g. , BERT or LayoutLM) is used to generate the feature
e∗li of segment li as pseudo-target. The segment feature eli
of li is produced by RoIAlign with its line box. Given the
aligned segment-target feature pairs {(eli , e∗li)}, contrastive
loss [49] is used for SLM task, which is computed as

pθ(eli , e
∗
li) =

exp (eli · e∗li/τ)
exp (eli · e∗li/τ) +

∑
k∈Nli

exp (eli · e∗lk/τ)

LSLM (θ) = − 1

NS

∑
i=1

log pθ(eli , e
∗
li).

Here, · represents the cosine similarity between segment
feature eli from FPN and the pseudo-target feature e∗li gen-
erated by language model. Nli represents a set of negative
samples for segment li, and τ is a predefined temperature.
We sample NS segments on one page. Finally, LMGLM

and LSLM are equally used for GiT pre-training.

3.4. Multi-Scale Multi-Modal Feature Fusion

FPN [28] framework is widely used to extract multi-
scale features in object detection [18]. To adapt the single-

3https://github.com/euske/pdfminer

scale ViT to the multi-scale framework, we use 4 resolution-
modifying modules at different transformer blocks, follow-
ing [25]. In this way, we obtain multi-scale features of ViT
and GiT, denoted as {Vi ∈ RH/2i×W/2i×D|i = 2 . . . , 5}
and {Si ∈ RH/2i×W/2i×D|i = 2 . . . , 5}, respectively.
Then, we fuse the features at each scale i respectively as

Zi = Vi ⊕ Si, i = 2 . . . , 5, (3)

where ⊕ represents an element-wise sum function in our
implements. Then, we employ FPN to refine pyramid fea-
tures {Zi ∈ RH/2i×W/2i×D|i = 2 . . . , 5} further. Finally,
we can extract RoI features from different levels of the fea-
ture pyramid according to their scales for later object detec-
tion.

4. D4LA Dataset

In this section, we introduce the proposed D4LA dataset.

Document Description. The images of D4LA are from
RVL-CDIP [16], which is a large-scale document classifi-
cation dataset in 16 classes. We choose 12 types documents
with rich layouts from it, and sample about 1, 000 images of
each type for manual annotation. The noisy, handwritten,
artistic or less text images are filtered. The OCR results are
from IIT-CDIP [24]. The statistics on different document
types of D4LA dataset are listed in Table 3.

Category Description. We define detailed 27 layout cat-
egories for real-world applications, i.e. , DocTitle, List-
Text, LetterHead, Question, RegionList, TableName, Fig-
ureName, Footer, Number, ParaTitle, RegionTitle, Letter-
Dear, OtherText, Abstract, Table, Equation, PageHeader,
Catalog, ParaText, Date, LetterSign, RegionKV, Author,
Figure, Reference, PageFooter, and PageNumber. For ex-
ample, we define 2 region categories for information ex-
traction task, i.e. , RegionKV is a region that contains Key-
Value pairs and RegionList for wireless form as in Figure 2.
The statistics of each category of D4LA are listed in Table 4.
More detailed descriptions and examples can be found in
supplementary materials.

Characteristics. Documents in existing large-scale DLA
datasets [48, 26] are mainly scientific papers, where docu-
ments in real-world scenarios are not well represented. In
contrast, D4LA includes 12 diverse document types and 27
detailed categories. The variety of types and categories is
substantially enhanced, closer to the use of real-world ap-
plications. Moreover, the image quality of D4LA may be
poor, i.e. , scanning copies are noisy, skew or blurry. The
increased diversities and low-quality scanned document im-
ages constitute a more challenging benchmark for DLA.
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Table 3. Statistics of different document types of training and validation sets in the D4LA dataset.

Category
Budget
845 / 212

Email
780 / 195

Form
650 / 163

Invoice
574 / 144

Letter
793 / 199

Memo
817 / 205

Training / Validation
News article
682 / 171

Presentation
721 / 181

Resume
854 / 214

Scientific publication
760 / 190

Scientific report
616 / 155

Specification
776 / 195

Table 4. Statistics of different layout categories of training and validation sets in the D4LA dataset ( #instances / percentage %).
Category DocTitle ListText LetterHead Question RegionList TableName FigureName Footer Number
Training 7391 / 6.30 4581 / 3.90 570 / 0.49 113 / 0.10 3741 / 3.19 640 / 0.55 295 / 0.25 642 / 0.55 7289 / 6.21
Validation 1893 / 6.41 1137 / 3.85 127 / 0.43 56 / 0.19 891 / 3.02 178 / 0.60 85 / 0.29 170 / 0.58 1833 / 6.21

Total ParaTitle RegionTitle LetterDear OtherText Abstract Table Equation PageHeader Catalog
Training 4962 / 4.23 5469 / 4.66 871 / 0.74 15229 / 12.98 807 / 0.69 2733 / 2.33 54 / 0.05 3941 / 3.36 21 / 0.02
117322 1333 / 4.51 1352 / 4.58 228 / 0.77 3703 / 12.54 200 / 0.68 656 / 2.22 20 / 0.07 933 / 3.16 14 / 0.05

Total ParaText Date LetterSign RegionKV Author Figure Reference PageFooter PageNumber
Validation 32328 / 27.55 3148 / 2.68 738 / 0.63 12322 / 10.50 1384 / 1.18 2201 / 1.88 574 / 0.49 3164 / 2.70 2114 / 1.80
29524 8400 / 28.45 786 / 2.66 175 / 0.59 2947 / 9.98 371 / 1.26 592 /2.01 148 / 0.50 797 / 2.70 499 / 1.69

5. Experiments

5.1. Implementation Details

Model Configuration. VGT is built upon two ViT-Base
models, which adopt a 12-layer Transformer encoder with
12-head self-attention, D = 768 hidden size and 3, 072 in-
termediate size of MLP [13]. The patch size P is 16 as
in [13] for both ViT and GiT. For grid construction, Word-
Piece tokenizer [11] is used to tokenize words. We initialize
the text embeddings of GiT with those of LayoutLM [43]
and reduce the embedding size 768 to CG = 64 for mem-
ory constraints. G has the same shape as the original image.
Model Pre-Training. For ViT pre-training, we directly
use the weights of the DiT-base model [25]. For GiT, we
also initial it with the weights of the DiT-base model and
perform pre-training for GiT on a subset of IIT-CDIP [24]
dataset with about 4 million images via MGLM and SLM
tasks. Specifically, we randomly set some tokens as
[MASK] tokens, and recover the masked tokens on MGLM
task as in BERT [11]. For SLM task, we randomly select
NS = 64 segments of one page and employ LayoutLM [43]
to generate e∗ as pseudo-targets. We use Adam optimizer
with 96 batch size for 150,000 steps. We use a learning rate
5e−4 and linearly warm up 2% first steps. The image shape
is 768× 768 and τ is 0.01.
Model Fine-Tuning. We treat layout analysis as object de-
tection and employ VGT as the feature backbone in the Cas-
cade R-CNN [6] detector with FPN [28], which is imple-
mented based on the Detectron2 [41]. AdamW optimizer
with 1,000 warm-up steps is used, and the learning rate
is 2e − 4. We train VGT for 200,000 steps on DocBank
and 120,000 steps on PubLayNet with 24 batch size. Since
D4LA is relatively small, we train VGT for 10,000 steps on
it with 12 batch size. The other settings of Cascade R-CNN

are the same with DiT [25].

5.2. Datasets

Besides the proposed D4LA dataset, two benchmarks for
document layout analysis are used for evaluation. For the
visual object detection task, we use the category-wise and
overall mean average precision (mAP) @IOU[0.50:0.95] of
bounding boxes as the evaluation metric.
PubLayNet [48] contains 360K research PDFs for DLA re-
leased by IBM. The annotation is in object detection format
with bounding boxes and polygonal segmentation in 5 lay-
out categories (Text, Title, List, Figure, and Table). Fol-
lowing [15, 25, 48], we train models on the training split
(335,703) and evaluate on the validation split (11,245).
DocBank [26] includes 500K document pages with fine-
grained token-level annotations released by Microsoft.
Moreover, region-level annotations in 13 layout categories
(Abstract, Author, Caption, Equation, Figure, Footer, List,
Paragraph, Reference, Section, Table and Title) are pro-
posed for object detection. We train models on the training
split (400K), and evaluate on the validation split (5K) [26].

Since both PubLayNet and DocBank datasets are rela-
tively large, we construct two sub-datasets PubLayNet2K
and DocBank2K that sample 2, 000 images for training and
2, 000 images for validation respectively, to quickly verify
the effects of different modules of VGT in the early experi-
ments. We train VGT for 10, 000 steps on them.

5.3. Discussions on GiT

We deeply study the effectivenesses of GiT in Table 5,
where (a) is a single-stream baseline with only ViT.
Effectiveness of Only GiT. We can directly employ GiT
for layout detection since the grid input of GiT naturally
contains the fine-grained layout and textual information.
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Table 5. Effect of different modules of GiT on PubLayNet2K and
DocBank2K.

Tag Image Grid Grid PTM PubLayNet DocBank
Backbone Backbone Embedding 2K 2K

(a) ViT - - - 86.92 59.61
(b) ViT ViT Image ✗ 86.98 58.57
(c) - GiT [UNK] ✗ 64.12 40.56
(d) - GiT LayoutLM ✗ 65.88 49.15
(e) - GiT LayoutLM ✓ 74.96 55.46
(f) ResNeXt-101 - - - 83.54 57.04
(g) ResNeXt-101 GiT LayoutLM ✓ 85.58 63.05
(h) ViT GiT BERT ✗ 87.97 63.97
(i) ViT GiT LayoutLM ✗ 87.76 64.01
(j) ViT GiT LayoutLM ✓ 88.44 65.94

To disentangle the effect of layout and text, we use GiT
as the feature backbone and set all the sub-word tokens
as the [UNK] token in (c), where no textual messages are
used. We then adopt the original tokens as input in (d)
to verify the effectiveness of the text. Both (c) and (d)
are not pre-trained, and we pre-train GiT with MGLM and
SLM objectives in (e). We observe that only layout in-
formation can produce rough detection results, adding text
brings improvements, and pre-training objectives can fur-
ther exploit the ability of GiT. Notably, DocBank2K con-
tains more linguistic categories than PubLayNet2K, such as
“Date”, “Author” and so on. Therefore, the improvement on
DocBank2K is more remarkable than that on PubLayNet2K
in (d) and (e). These results demonstrate that sub-word lay-
out information can be directly used for layout analysis, tex-
tual cues of the grid can indeed facilitate layout analysis,
and a well pre-trained Grid Transformer for grid inputs is
indispensable.
Effectiveness of VGT. We compare the performance be-
tween different word embeddings, i.e. BERT [11] in (h) and
LayoutLM [43] in (i). The results show that the VGT with
both word embeddings can lead to better performance than
(a). Since LayoutLM is pre-trained on documents and pos-
sesses the capability of layout modeling, we use the embed-
dings of LayoutLM in the following experiments. More-
over, we introduce a pre-training mechanism in (j), resulting
in significant improvements over (i). These results verify
the effectiveness of VGT and the pre-training for GiT.
Compatibility of GiT. Due to the decoupling framework of
VGT, we can perform solely pre-training for GiT and fur-
ther integrate GiT with not only ViT but also CNNs. We
train a Cascade R-CNN with ResNeXt-101 [42] backbone
and FPN in (f) as a baseline. Typically, we construct a hy-
brid model (g) with ResNeXt-101 and the pre-trained GiT.
Clearly, the results of (g) can surpass that of (f), demonstrat-
ing the good compatibility of the pre-trained GiT.
Effect of Parameters. Using the two-stream framework
inevitably leads to an increase in the number of model pa-
rameters. We conduct experiments to analyze the effect of

Table 6. Ablation study of pre-training objectives.
Tag MGLM SLM DocBank2K
(a) - - 64.010
(b) ✓ ✗ 64.539
(c) ✗ ✓ 65.112
(d) ✓ ✓ 65.167

Table 7. Document Layout Detection mAP @ IOU [0.50:0.95] on
PubLayNet validation set.

Models Text Title List Table Figure mAP
ResNeXt-101 93.0 86.2 94.0 97.6 96.8 93.5

DiT-Base 94.4 88.9 94.8 97.6 96.9 94.5
LayoutLMv3-Base 94.5 90.6 95.5 97.9 97.0 95.1

VSR 96.7 93.1 94.7 97.4 96.4 95.7

VGT (ours) 95.0 93.9 96.8 98.1 97.1 96.2

model parameters. In (b), we replace GiT with one ViT, and
thus simply construct a two-stream ViT framework with two
image inputs. Comparing (b) with (a), introducing more pa-
rameters with double image inputs can not enhance the ca-
pability of the model. Referring to (g), (h), (i) and (j), GiT
models the layout and textual information as a supplement
to image information, resulting in obvious improvements.

5.4. Ablation Study of Pre-Training Objectives

We investigate the effect of the proposed pre-training ob-
jectives on more text-related DocBank2K in Table 6. Model
(a) is the baseline of VGT without pre-training. We pre-
train (b) with only MGLM and (c) with only SLM. Then,
both MGLM and SLM objectives are utilized for (d). All
models are trained on 0.5 million images with 525, 000
steps for experimental efficiency. Model (b) obtains bet-
ter performance than (a) indicating that predicting masked
tokens in MLM objective [11] makes sense in 2D textual
space. Notably, model (c) attains a small improvement over
(b). We speculate that the textual features of segments
are more suitable for the layout detection task, and thus
segment-level SLM works better than token-level MGLM.
Model (d) with MGLM and SLM can achieve the best re-
sults.

5.5. Comparison with State-of-the-arts

We evaluate the performance of VGT on three datasets,
namely PubLayNet, DocBank, and our proposed D4LA.
PubLayNet. The results of document layout detection
on PubLayNet are reported in Table 7. Generally, Pub-
LayNet contains 5 relatively simple layout categories, of
which the visual information may be sufficient for layout
detection. Thus, all of the methods can obtain promis-
ing mAPs (> 90%). The results of DiT-Base are better
than that of ResNeXt-101, showing the powerful capabil-
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Table 8. Document Layout Detection mAP @ IOU [0.50:0.95] on DocBank validation set.
Models Abstract Author Caption Date Equation Figure Footer List Paragraph Reference Section Table Title mAP

ResNeXt-101 89.7 72.6 82.3 69.7 76.4 73.6 78.2 78.3 66.2 81.7 75.9 77.3 84.1 77.4
DiT-Base 91.1 75.4 83.1 73.4 77.8 75.7 80.2 82.7 67.3 83.8 77.0 80.8 86.8 79.6

LayoutLMv3-Base 90.5 73.6 81.2 73.5 76.0 74.4 78.1 80.7 65.8 82.8 76.6 78.6 86.3 78.3

VGT (ours) 92.4 79.9 88.8 79.1 86.7 76.6 84.8 88.6 75.8 85.6 81.5 83.9 89.8 84.1

Table 9. Document Layout Detection mAP @ IOU [0.50:0.95] on D4LA validation set.
Models DocTitle ListText LetterHead Question RegionList TableName FigureName Footer Number

ResNeXt-101 70.6 71.0 82.8 48.4 76.1 66.0 45.9 76.2 83.0
DiT-Base 73.1 70.6 82.2 55.0 80.1 68.4 51.8 81.2 83.2

LayoutLMv3-Base 66.8 56.5 78.5 39.3 72.1 64.3 32.1 72.2 82.1
VGT (ours) 72.6 71.3 82.3 63.9 80.2 68.4 46.6 79.7 83.2

Models ParaTitle RegionTitle LetterDear OtherText Abstract Table Equation PageHeader Catalog
ResNeXt-101 60.3 63.8 73.4 56.4 65.7 86.3 11.5 53.7 32.0

DiT-Base 63.2 67.5 74.5 59.2 73.8 86.2 9.2 56.5 44.8
LayoutLMv3-Base 55.6 59.5 70.8 50.8 68.2 80.6 7.3 53.1 37.3

VGT (ours) 63.0 67.2 76.7 60.0 80.4 86.0 19.9 56.9 40.9
Models ParaText Date LetterSign RegionKV Author Figure Reference PageFooter PageNumber mAP

ResNeXt-101 85.2 68.4 69.3 68.2 62.6 76.7 83.4 62.2 57.9 65.1
DiT-Base 86.4 69.7 71.6 68.8 66.0 77.2 83.4 65.5 58.3 67.7

LayoutLMv3-Base 81.6 62.5 60.4 59.4 59.3 72.2 74.9 62.1 52.8 60.5
VGT (ours) 86.2 71.3 75.5 70.1 67.6 76.7 85.6 66.5 58.7 68.8

(1) Ground truth (2) DiT-Base (3) VGT

Figure 5. Qualitative comparison between DiT-Base and VGT on DocBank (1st row) and D4LA (2nd row). Best viewed in color.

ity of pre-trained ViT. LayoutLMv3 pre-trains multi-modal
Transformer with unified text and image masking objec-
tives. We feed only image tokens into LayoutLMv3 without
text embeddings as in [20]. LayoutLMv3 achieves better
results than pure visual methods (DiT-Base and ResNeXt-
101), especially in “Title” and “List” classes. Grid-based
VSR [47] method presents better results in “Title” class,
showing the effectiveness of grid for text-related classes.

VGT achieves the best average mAPs and presents a re-
markable improvement in “Title” and “List” classes over
VSR. We attribute this improvement to the textual model-
ing of GiT and the pre-training objectives.

DocBank. We measure the mAP performance on DocBank
and list the results in Table 8. The methods in Table 8
are implemented by the original codes, and the Cascade R-
CNN is used for layout detection. Since DocBank provides
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more detailed layout categories than PubLayNet, the mAPs
of the text-related categories of DocBank might reflect the
ability of textual modeling. Clearly, the performance of
DiT-Base is still better than that of ResNeXt-101, showing
the superiority of ViT backbone again. LayoutLMv3 ob-
tains a little worse result than DiT-Base. Since LayoutLMv3
is pre-trained with text but no explicit text embeddings are
used in DLA task, we conjecture that the text informa-
tion may be insufficient for detailed detection on DocBank.
VGT obtains the best mAPs of text-related categories and
exhibits substantial improvement over other methods, such
as “Caption”, “Date”, “Equation”, “List” and “Paragraph”,
verifying the effectiveness of VGT.

D4LA. Due to the more diverse document types and de-
tailed categories of D4LA, the detection results reported
in Table 9 are relatively lower, compared with the mAPs
of PubLayNet and DocBank. It reveals that the existing
methods do not work well on real-world documents. Sim-
ilarly, the DiT-Base backbone achieves better performance
than ResNeXt-101 in D4LA, due to the well-designed im-
age pre-training objective on documents. LayoutLMv3 ob-
tains worse results than DiT-Base, especially in the text-
related classes. VGT achieves the best results in most cat-
egories. The significant improvements on text-related cate-
gories (e.g. , 6.6% on “Abstract” over DiT-Base) verify the
superiority of VGT on textual modeling in 2D fashion.

5.6. Visualization Cases

We illustrate the detection results of DiT-Base and VGT
on samples from DocBank and D4LA in Figure 5. For the
sample of DocBank, the text in the chart is misidentified as
“Paragraph” in DiT-Base, while VGT removes the predic-
tions of them and produces a precise box of “Figure”. This
is because there is no text in the chart for grid construc-
tion, beneficial to false positive reduction. For the sample of
D4LA, the predictions of “ListText” are drastically reduced.
Visually, these regions alone are indeed like “ListText” re-
gions. However, they constitute a “RegionList” from the
contextual semantics. These qualitative results demonstrate
the ability of 2D language modeling in VGT.

6. Limitations

Due to the two-stream framework, VGT contains 243M
parameters, relatively larger than DiT-Base (138M), and
LayoutLMv3 (138M). The inference time of VGT (460ms)
is relatively longer than DiT-Base (210 ms) and Lay-
outLMv3 (270 ms). Thus, a more lightweight and efficient
architecture will be our future work. Moreover, since VGT
is an image-centric method, we will extend VGT to text-
centric tasks, such as information extraction in the future.

7. Conclusion
In this paper, we present VGT, a two-stream Vision

Grid Transformer for document layout analysis. VGT is
an image-centric method, that is more compatible with
object detection. The Grid Transformer of VGT is pre-
trained by MGLM and SLM objectives for 2D token-level
and segment-level semantic understanding. In addition, we
propose a new dataset D4LA, which is the most diverse
and detailed manually-annotated benchmark ever for docu-
ment layout analysis. Experimental results show that VGT
achieves state-of-the-art results on PubLayNet, DocBank
and the proposed D4LA.
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Rémy Mullot. Text/graphic labelling of ancient printed doc-
uments. In ICDAR, pages 1010–1014, 2005.

[22] Frédéric Kaplan, Sofia Ares Oliveira, Simon Clematide,
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