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Abstract

We introduce a novel generative model for video predic-
tion based on latent flow matching, an efficient alternative
to diffusion-based models. In contrast to prior work, we
keep the high costs of modeling the past during training and
inference at bay by conditioning only on a small random set
of past frames at each integration step of the image gener-
ation process. Moreover, to enable the generation of high-
resolution videos and to speed up the training, we work in
the latent space of a pretrained VQGAN. Finally, we pro-
pose to approximate the initial condition of the flow ODE
with the previous noisy frame. This allows to reduce the
number of integration steps and hence, speed up the sam-
pling at inference time. We call our model Random frame
conditioned flow Integration for VidEo pRediction, or, in
short, RIVER. We show that RIVER achieves superior or
on par performance compared to prior work on common
video prediction benchmarks, while requiring an order of
magnitude fewer computational resources. Project website:
https://araachie.github.io/river.

1. Introduction

Video prediction, i.e., the task of predicting future
frames given past ones, is a fundamental component of an
agent that needs to interact with an environment [5]. This
capability enables planning and advanced reasoning, espe-
cially when other agents are in the scene [21, 20, 74]. More
in general, however, a video prediction model that can gen-
eralize to new unseen scenarios needs to implicitly under-
stand the scene, i.e., detect and classify objects, learn how
each object moves and interacts, estimate the 3D shape and
location of the objects, model the laws of physics of the en-
vironment, and so on. In addition to naturally leading to
rich and powerful representations of videos, this task does
not require any labeling and is thus an excellent candidate
for learning from readily available unannotated datasets.

While the literature in video prediction is by now rela-
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Figure 1. RIVER achieves an ideal trade-off between quality of
generated videos and compute needed to train the model. This
makes research on video models more easily scalable.

tively rich [13, 5, 39], the quality of the predicted frames has
been achieving realistic levels only recently [67, 33, 27, 76].
This has been mostly due to the exceptional complexity of
this task and the difficulty of training models that can gen-
eralize well to unseen (but in-domain) data.

To address these challenges, we propose a novel train-
ing procedure for video prediction that is computationally
efficient and delivers high quality frame prediction. One of
the key challenges of synthesizing realistic predicted frames
is to ensure the temporal consistency of the generated se-
quence. To this aim, conditioning on as many past frames
as possible is a desirable requirement. In fact, with only
two past frames it is possible to predict only constant mo-
tions at test time, and for general complex motions, such
as object interactions (e.g., a ball bouncing off a cube in
CLEVRER [77]), many more frames are needed. However,
conditioning on many past frames comes either at the sac-
rifice of the video quality or at a high computational cost,
as shown in Figure 1. In the literature, we see two main ap-
proaches to address these issues: 1) models that take a fixed
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large temporal window of past frames as input and 2) mod-
els that compress all the past into a state, such as recurrent
neural networks (RNNs) [4, 13, 5]. Fixed window models
require considerable memory and computations both during
training and at inference time. Although methods such as
Flexible Diffusion [27] can gain considerable performance
by choosing carefully non contiguous past frames, their
computational cost still remains demanding. RNNs also re-
quire considerable memory and computations resources at
training time, as they always need to feed a sequence from
the beginning to learn how to predict the next frame. More-
over, training these models is typically challenging due to
the vanishing gradients.

In the recent growing field of diffusion models for image
generation, the 3DiM method [70] introduces the idea of a
sparse conditioning on randomly chosen scene views dur-
ing the diffusion process, and showed impressive results in
novel view synthesis. In our approach, we adapt this idea to
the case of video prediction by also conditioning the gen-
eration of the next frame on a randomly chosen sparse set
of past frames during the diffusion process. In practice, this
is an effective remedy to limit the computational complex-
ity of the model at both training and test time, because the
conditioning at each training step is limited to a small set
of past frames, but the frame prediction at test time can
incorporate an arbitrary number of past frames (also effi-
ciently). To further speed up the training and generation of
videos at test time, we compress videos via VQGAN au-
toencoding [19] and work in the latent space. This design
choice has been shown to work well in the case of image
generation [54] and to enable the efficient generation of im-
ages at high resolution. Unlike other methods that employ
a temporal VQGAN [75, 26], we adopt a per-frame VQ-
GAN approach to minimize the training cost. Additionally,
we incorporate a refinement network (more details in sec-
tion 3.3) to improve the frame quality and to correct any
temporal inconsistencies between pairs of frames during
post-processing. We gain another significant performance
boost both in terms of better convergence at training time
and in terms of better image quality generation, by adapting
Flow Matching [42] to video prediction. The key insight
is that it is possible to build an explicit mapping of a noise
instance to an image sample, and diffusion models are the
result of a specific choice of such mapping, which has been
shown experimentally to be sub-optimal [42]. Finally, to
make our method more efficient at inference time, we intro-
duce a warm-start sampling. In the case of video prediction,
the content changes slowly over time. Thus, we expect that
a very good guess for the next frame is the current frame
itself. Therefore, we propose to speed up the integration of
the flow to generate the next frame by starting from a noisy
current frame rather than from zero-mean Gaussian noise.
We call our method Random frame conditioned flow In-

tegration for VidEo pRediction (RIVER). We demonstrate
RIVER on common video prediction benchmarks and show
that it performs on par or better than state of the art methods,
while being much more efficient to train. We also show that
RIVER can be used for video generation and interpolation
and can predict non-trivial long-term object interactions. In
summary, our contributions are the design of a video pre-
diction model that

1. Extends flow matching to video prediction;

2. Is efficient to train and to use at test time;

3. Can be conditioned on arbitrarily many past frames;

4. Is efficient at test time (via warm-start sampling).

2. Prior work
Conventional Methods. Video prediction models are used
to generate realistic future frames of a video sequence based
on past frames. Up until recently, most video prediction
models relied on Recurrent Neural Networks (RNNs) in
the bottleneck of a convolutional autoencoder [5]. Training
such models is known to be challenging, but so is handling
the stochastic nature of generative tasks. Most approaches
in this domain benefit from variational methods [36]. These
methods usually use a recurrent network [32] conditioned
on a global [4] or a per-frame [13, 5] latent variable.
To model longer sequences, hierarchical variational mod-
els have been proposed [72, 40]. Another approach that
scales to long sequences is keypoint-based video predic-
tion [49, 35, 23], where they cast the problem into first
keypoint dynamics prediction (with a variational method)
and then pixel prediction. The usage of such methods in
complex datasets with non homogeneous keypoints is yet
to be seen. To overcome the blurry results that variational
methods have been known for, SAVP [39] combined both
an adversarial loss [25] and a VAE [36]. Instead, Math-
ieu et al. [47] used a multiscale network for video predic-
tion. Many methods deal with motion and content sep-
arately [60, 66, 41, 14]. The fundamental problem with
using GANs for video prediction is to ensure long-term
temporal consistency [3]. This issue is tackled in recent
works [12, 45], but at a huge computational cost.
Transformers and Quantized Latents. Following the suc-
cess of large language models [8], autoregressive trans-
formers [64] emerged in the video synthesis domain and
are replacing RNNs. However, because of the attention
mechanism, transformers incur high computational cost that
scales quadratically with the number of inputs. In or-
der to scale these methods to long and higher-resolution
videos, an established method is to predict vector-quantized
codes [63] (usually obtained with VQGAN [19]) either per
frame [38, 52, 26, 57] or a set of frames [75], instead of
pixels.
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Diffusion Methods. Following the impressive results of
score-based diffusion models [59] on image generation [15,
53], several researchers extended these models for either
video generation [31] or video prediction [67, 33, 27, 28,
76]. Even though unconditional models can be used to
approximate conditional distributions (as in video predic-
tion) [31], it has been shown that directly modeling the
conditional distribution yields a better performance [61].
MCVD [67] uses masking to train a single model capable
of generating past, future, or intermediate frames. Masking
allows this model to generate longer sequences by applying
a moving window, even though it was only trained with a
fixed number of frames. However, a common shortcoming
of all these methods is that conditioning on past frames in-
creases the number of input frames, and thus also the com-
putational cost of training.

Conditions for generative models are usually formulated
as a fixed window of previous frames. However, FDM [27]
uses a per-frame UNet [55] and attention to take a variable
number of frames as input. Each input frame can be set
as a conditioning input or as a prediction target, and hence
this model can be conditioned on frames arbitrarily far in
the past and can even predict multiple frames at the same
time. More recently 3DiM [70] introduced the idea of “im-
plicit” conditioning in the task of 3D multi-view reconstruc-
tion. The idea is that at each step of the image generation in
the diffusion process, the denoising network is conditioned
only on a random view, instead of all the views. In this way
the conditioning on multiple frames can be distributed over
the denoising steps. In RIVER we extend this idea to the
case of videos, where instead of views we use past frames.

Recently, [42] introduced conditional flow matching.
They showed that it generalizes diffusion models, and it
achieves faster training convergence and better results than
other denoising diffusion models. Thus, we adopt this
framework in our generative model.There are many ways to
accelerate or improve vanilla diffusion models [37, 34, 16].
Among all, CCDF [11] is the most relevant to our warm-
start sampling scheme. CCDF starts the backward denois-
ing process from some time t other than T (which is the
final time of the forward diffusion process) using an initial
guess of the final output (e.g., a low-resolution sample). In
RIVER, we develop an analogous technique within the for-
mulation of flow matching for video generation.

3. Method

Let x = {x1, . . . , xm}, where xi ∈ R3×H×W , be a
video consisting of m RGB images. The task of video pre-
diction is to forecast the upcoming n frames of a video given
the first k frames, where m = n+k. Thus, it requires mod-

elling the following distribution:

p(xk+1, . . . , xk+n | x1, . . . , xk) =

=

n∏
i=1

p(xk+i | x1, . . . , xk+i−1). (1)

The decomposition in eq. (1) suggests an autoregressive
sampling of the future frames. However, explicitly condi-
tioning the next frame on all the past frames is computation-
ally and memory-wise demanding. In order to overcome
this issue, prior work suggests to use a recurrently updated
memory variable [68, 50, 65, 10] or to restrict the condition-
ing window to a fixed number of frames [71, 67, 33, 76].
We instead propose to model each one-step predictive con-
ditional distribution as a denoising probability density path
that starts from a standard normal distribution. More-
over, rather than using score-based diffusion models [59]
to fit those paths, we choose flow matching[42], a simpler
method to train generative models. We further leverage the
iterative nature of sampling from the learned flow and use
a single random conditioning frame from the past at each
iteration. This results in a simple and efficient training. An
idea similar to ours was first introduced in [70] for novel
view synthesis in 3D applications. In this paper, however,
we made some design choices to adapt it to videos.

3.1. Latent Image Compression

Although we could operate directly on the pixels of the
frames xi, we introduce a compression step that reduces
the dimensionality of the data samples and thus the overall
numerical complexity of our approach. Given a dataset of
videos D, we train a VQGAN [19] on single frames from
that dataset. The VQGAN consists of an encoder E and
a decoder D and allows to learn a perceptually rich latent
codebook through a vector quantization bottleneck and an
adversarial reconstruction loss [63]. A trained VQGAN is
then used to compress the images to much lower resolution
feature maps. That is, z = E(x) ∈ Rc×H

f ×W
f , where x ∈

R3×H×W . Commonly used values for c are 4 or 8 and for
f are 8 or 16, which means that a 256 × 256 image can be
downsampled to up to a 16 × 16 grid. Following [54], we
let the decoder D absorb the quantization layer and work in
the pre-quantized latent space. Further in the paper, when
referring to video frames we always assume that they are
encoded in the latent space of a pretrained VQGAN.

3.2. Flow Matching

Flow matching was introduced in [42] as a simpler al-
beit more general and more efficient alternative to diffusion
models [29]. A similar framework incorporating straight
flows has also been proposed independently in [43, 2]. We
assume that we are given samples from an unknown data
distribution q(z). In our case, the data sample z is the
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Figure 2. Inference with RIVER. In order to generate the next frame zT (top-right), we sample an initial estimate from the standard normal
distribution zTt (bottom-left) and integrate the ODE (2) by querying our model at each step with a random conditioning frame from the
past zc and previous frame zT−1 (top). We omitted the encoding/decoding for simplicity.

encoding of a video frame x via VQGAN. The aim of
flow matching is to learn a temporal vector field vt(z) :
[0, 1] × Rd → Rd, with t ∈ [0, 1], such that the following
ordinary differential equation (ODE)

ϕ̇t(z) = vt(ϕt(z)) (2)
ϕ0(z) = z (3)

defines a flow ϕt(z) : [0, 1]×Rd → Rd that pushes p0(z) =
N (z | 0, 1) towards some distribution p1(z) ≈ q(z) along
some probability density path pt(z). That is, pt = [ϕt]∗p0,
where [·]∗ denotes the push-forward operation. If one were
given a predefined probability density path pt(z) and the
corresponding vector field ut(z), then one could parameter-
ize vt(z) with a neural network and solve

min
vt

Et,pt(z)∥vt(z)− ut(z)∥2. (4)

However, this would be unfeasible in the general case,
because typically we do not have access to ut(z). Lip-
man et al. [42] suggest to instead define a conditional flow
pt(z | z1) and the corresponding conditional vector field
ut(z | z1) per sample z1 in the dataset and solve

min
vt

Et,pt(z | z1),q(z1)∥vt(z)− ut(z | z1)∥2. (5)

This formulation enjoys two remarkable properties: 1) all
the quantities can be defined explicitly; 2) Lipman et al. [42]
show that solving eq. (5) is guaranteed to converge to the
same result as in eq. (4). The conditional flow can be
explicitly defined such that all intermediate distributions
are Gaussian. Moreover, Lipman et al. [42] show that a
linear transformation of the Gaussians’ parameters yields

the best results in terms of convergence and sample qual-
ity. They define pt(z | z1) = N (z |µt(z1), σ

2
t (z1)), with

µt(x) = tx1 and σt(x) = 1 − (1 − σmin)t. With these
choices, the corresponding target vector field is given by

ut(z | z1) =
z1 − (1− σmin)z

1− (1− σmin)t
. (6)

Sampling from the learned model can be obtained by first
sampling z0 ∼ N (z | 0, 1) and then numerically solving
eq. (2) for z1 = ϕ1(z0).

3.3. Video Prediction

We introduce the main steps to train and use RIVER.
First, as described in sec. 3.1 we use a per-frame percep-
tual autoencoder to reduce the dimensionality of data. Since
the encoding is per-frame and thus the reconstruction error
could be temporally inconsistent, we improve the quality of
a generated video by also introducing an optional small au-
toregressive refinement step in the decoding network. Sec-
ond, we train a denoising model via flow matching in the
space of encoded frames with our distributed conditioning.
Moreover, we accelerate the video generation by introduc-
ing a warm-start sampling procedure.
Training. We adapt Flow Matching [42] to video predic-
tion by letting the learned vector field vt condition on the
past context frames. Furthermore, we randomize the con-
ditioning at each denoising step to only 2 frames. This re-
sults in a very simple training procedure, which is described
in Algorithm 1. Given a training video z = {z1, . . . , zm}
(pre-encoded with VQGAN), we randomly sample a target
frame zτ and a random (diffusion) timestep t ∼ U [0, 1].
We can then draw a sample from the conditional probability
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Algorithm 1 Video Flow Matching with RIVER
Input: dataset of videos D, number of iterations N
for i in range(1, N ) do

Sample a video x from the dataset D
Encode it with a pre-trained VQGAN to obtain z
Choose a random target frame zτ , τ ∈ {3, . . . |x|}
Sample a timestamp t ∼ U [0, 1]
Sample a noisy observation z ∼ pt(z | zτ )
Calculate ut(z | zτ )
Sample a condition frame zc, c ∈ {1, . . . τ − 2}
Update the parameters θ of vt via gradient descent

∇θ∥vt(z | zτ−1, zc, τ − c ; θ)− ut(z | zτ )∥2 (7)

end for

distribution z ∼ pt(z | zτ ) and calculate the target vector
field ut(z | zτ ) using eq. (6). We then sample another index
c uniformly from {1, . . . , τ − 2} and use zc, which we call
context frame, together with zτ−1, which we call reference
frame, as the two conditioning frames. Later, we show that
the use of the reference is crucial for the network to learn
the scene motion, since one context frame carries very little
information about such motion. The vector field regressor
vt is then trained to minimize the following objective

LFM(θ) = ∥vt(z | zτ−1, zc, τ − c ; θ)− ut(z | zτ )∥2, (8)

where θ are the parameters of the model. Note that at no
point during the training the whole video sequence must be
stored or processed. Moreover, the generation of frames is
never needed, which further simplifies the training process.
Inference. At inference time, in order to generate the T -th
frame, we start from sampling an initial estimate zT0 from
the standard normal distribution (see Figure 2). We then use
an ODE solver to integrate the learned vector field along the
time interval [0, 1]. At each integration step, the ODE solver
queries the network for vt(zTt | zT−1, zc, T − c), where c ∼
U{1, . . . , T − 2}. In the simplest case, the Euler step of the
ODE integration takes the form

zTti+1
= zTti +

1

N
vti(z

T
ti | z

T−1, zci , T − ci), (9)

ci ∼ U{1, . . . , T − 2}, (10)

zTt0 ∼ N (z | 0, 1), (11)

ti =
i

N
, i ∈ {0, . . . , N − 1}, (12)

where N is the number of integration steps. We then use zT1
as an estimate of zT .
Refinement. When using a per-frame VQGAN [19], the
autoencoded videos may not always be temporally consis-
tent. To address this issue without incurring a significant

Figure 3. Higher values of s for warm-start sampling lead to faster
sampling, but worse FVD. Interestingly, s = 0.1 acts like the trun-
cation trick [46, 7] and slightly improves the FVD.

computational cost, we optionally utilize a refinement net-
work that operates in the pixel space. This deep convolu-
tional network, based on the architecture of RCAN [79], is
trained using the previous frame and the decoded next frame
to refine the second frame. We train the model using an L2

and a perceptual loss by refining 16 consecutive frames in-
dependently and then by feeding all frames to a perceptual
network (I3D [9] in our case). We train the refinement net-
work separately after training the autoencoder.

Sampling Speed. A common issue of models based on de-
noising processes is the sampling speed, as the same denois-
ing network is queried multiple times along the denoising
path in order to generate an image. This is even more appar-
ent for the video domain, where the generation speed scales
with the number of frames to generate. Some video diffu-
sion models [27, 67] overcome this issue by sampling mul-
tiple frames at a time. However, the price they have to pay is
the inability to generate arbitrarily long videos. We instead
leverage the temporal smoothness of videos, that is, the fact
that subsequent frames in a video do not differ much. This
allows us to use a noisy previous frame as the initial con-
dition of the ODE instead of pure noise. More precisely,
instead of starting the integration from z0 ∼ N (z | 0, 1),
we start at z′s ∼ ps(z | zT−1), where 1 − s is the speed up
factor. We call this technique warm-start sampling. Intu-
itively, larger s results in a lower variability in the future
frames. Moreover, we found that starting closer to the end
of the integration path reduces the magnitude of the mo-
tion in the generated videos, since the model is required to
sample closer to the previous frame. Therefore, there is a
tradeoff between the sampling speed and the quality of the
samples. We further emphasize this tradeoff by comput-
ing the FVD [62] of the generated videos depending on the
speed up factor 1− s (see Figure 3).
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Figure 4. Video prediction on the KTH dataset. In order to predict the future frames, the model conditions on the first 10 (context) frames.
Of this sequence, only the last context frame is shown. By definition, a proper stochastic predictive model generates realistic predictions
of future frames that do not necessarily match the GT data.

Method FVD↓ PSNR↑ SSIM↑
10→30

SRVP [22] 222 29.7 0.87
SLAMP [1] 228 29.4 0.87
MCVD [67] 323 27.5 0.84
RIVER (ours) 180 30.4 0.86

10→40
MCVD [67] 276.7 26.4 0.81
GridKeypoints [24] 144.2 27.1 0.84
RIVER (ours) 170.5 29.0 0.82

Table 1. KTH dataset evaluation. The evaluation protocol is to
predict the next 30/40 frames given the first 10 frames.

3.4. Implementation

A commonly leveraged architecture for flow matching
and diffusion models is UNet [55]. However, we found that
training UNet could be time demanding. Instead, we pro-
pose to model vt(z | zτ−1, zc, τ − c ; θ) with the recently
introduced U-ViT [6]. U-ViT follows the standard ViT [17]
architecture and adds several long skip-connections, like in
UNet. This design choice allows U-ViT to achieve on par
or better results than UNet on image generation benchmarks
with score-based diffusion models.

The inputs to the network are HW/f2 tokens constructed
by concatenating z, zτ−1 and zc in feature axis as well as
one additional time embedding token t that makes the net-
work time-dependent. We additionally add spatial position
encondings to the image tokens and augment zτ−1 and zc

with an encoded relative distance τ − c to let the network
know how far in the past the condition is. That is, the over-
all input to the network is of size [HW/f2 +1, 3× d], where
the first dimension refers to the number of tokens, while the
second refers to the number of channels. For further details,
see the supplementary material.

4. Experiments
In section 4.1, we report our results on several video pre-

diction benchmarks. We evaluate our method using stan-
dard metrics, such as FVD [62], PSNR and SSIM [69]. We
additionally show in section 4.2 that our model is able to
perform visual planning. Video generation is demonstrated
in section 4.3. Note that if not explicitly specified, we use
the model without the refinement stage and with s = 0 in
warm-start sampling. For additional results and training de-
tails, see the supplementary material.

4.1. Conditional Video Prediction

We test our method on 2 datasets. First, to assess the
ability of RIVER to generate structured human motion, we
test it on the KTH dataset [56]. KTH is a dataset contain-
ing 6 different human actions performed by 25 subjects in
different scenarios. We follow the standard evaluation pro-
tocol predicting 30/40 future frames conditioned on the first
10 at a 64× 64 pixel resolution. The results are reported in
Table 1. We show that RIVER achieves state of the art pre-
diction quality compared to prior methods that do not use
domain-specific help. For instance, [24] models the motion
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of the keypoints, which works well for human-centric data,
but does not apply to general video generation. Figure 4
shows qualitative results.

Additionally, in Table 2 we evaluate the capability of
RIVER to model complex interactions on BAIR [18],
which is a dataset containing around 44K clips of a robot
arm pushing toys on a flat square table. For BAIR, we gen-
erate and refine 15 future frames conditioned on one initial
frame at a 64×64 pixel resolution. Due to the high stochas-
ticity of motion in the BAIR dataset, the standard evalua-
tion protocol in [5] is to calculate the metrics by comparing
100×256 samples to 256 random test videos (i.e., 100 gen-
erated videos for each test video, by starting from the same
initial frame as the test example). Additionally, we report
the compute (memory in GB and hours) needed to train the
models. RIVER reaches a tradeoff between the FVD and
the compute and generates smooth realistic videos while re-
quiring much less computational effort (see also Figure 1).
In addition, we calculate the FVD vs the autoencoded test
set, as we find that FVD (like FID [51]) can be affected even
by different interpolation techniques. This way we elimi-
nate the influence of potential autoencoding artifacts on the
metrics in order to assess the consistency of the motion only.
In fact, there is an improvement of about 30% in the FVD.
Furthermore, although the standard benchmark on BAIR
uses 64×64 pixels resolution, with the help of the percep-
tual compression, we are able to generate higher-resolution
videos under the same training costs. See Figure 5 for qual-
itative results on the BAIR dataset at 256×256 resolution.
Finally, we would like to point out that we observed DDPM
fail to converge on BAIR, which further justifies our choice
of flow matching (see also the supplementary material).

4.2. Visual Planning

One way to show the ability of the model to learn the
dynamics of the environment is to do planning [21, 20, 74].
With a small change to the training of our model, RIVER is
able to infill the video frames given the source and the tar-
get images. The only change to be done to the model is to
remove the reference frame and to let two condition frames
be sampled from both the future frames and the past ones.
At inference time, given the source and the target frames,
our model sequentially infills the frames between those. We
show in Figure 6 some qualitative results of video interpola-
tion on the CLEVRER [77] dataset, which is a dataset con-
taining 10K training clips capturing a synthetic scene with
multiple objects interacting with each other through colli-
sions. It is a dataset suitable for planning, as it allows to
show the ability of the method to model the dynamics of the
separate objects and their interactions. We test our model at
the 128×128 pixels resolution. Note how the model has
learned the interactions between the objects and is able to
manipulate the objects in order to achieve the given goals.

Method FVD↓ Mem (GB) Hours
TriVD-GAN-FP [44] 103.0 1024 280
Video Transformer [71] (L) 94.0 512 336
CCVS [38] (low res) 99.0 128 40
CCVS [38] (high res) 80.0 - -
LVT [52] (nc = 4) 125.8 128 48
FitVid [5] 93.6 1024 288
MaskViT [26] 93.7 - -
MCVD [67] (concat) 98.8 77 78
MCVD [67] (spatin) 103.8 86 50
NÜWA [73] 86.9 2560 336
RaMViD [33] 84.2 320 72
VDM [31] 66.9 - -
RIVER w/ refine 106.1 25 25
RIVER w/o refine 145.8 - -
RIVER w/o refine vs ae GT 73.5 - -
Table 2. BAIR dataset evaluation. We follow the standard evalu-
ation protocol, which is to predict 15 future frames given 1 ini-
tial frame. The common way to compute the FVD is to com-
pare 100×256 generated sequences to 256 randomly sampled test
videos. Additionally, we report the numbers of the network with-
out the refinement stage versus the original ground truth (RIVER
w/o refine) and the autoencoded ground truth (RIVER w/o refine
vs ae GT) to highlight the influence of the VQGAN’s artifacts on
the assessment of the motion consistency.

Method FVD↓ PSNR↑
w/ reference 94.38 30.53
w/o reference 217.13 26.95

Table 3. Ablations on the use of the reference frame. We generate
14 frames given 2 initial ones and the metrics are calculated on
256 test videos with 1 sample per video and 10 integration steps
per frame. All models are trained for 80K iterations.

4.3. Video Generation

RIVER can be easily adapted to support video genera-
tion. Inspired by the classifier-free guidance [30] we train
a single model to both generate (the first frame of a video)
and predict the next frames by simply feeding noise instead
of the condition frames 10% of the times during training.
Then, during inference we generate the first frame and then
predict the rest of the video given the first frame. Figure 7
shows our results for video generation on CLEVRER [77]
(FVD = 23.63). Other methods [48, 78, 58] have difficul-
ties in modeling the motions and interactions of objects. For
videos and qualitative comparisons, visit our website1.

4.4. Ablations

In this section, we ablate several design choices in order
to illustrate their impact on the performance of RIVER.

First, we ablate the importance of using the reference

1https://araachie.github.io/river
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initial frame time →

Figure 5. Video prediction on the BAIR dataset. The model predicts future frames conditioned on a single initial frame. Thanks to VQGAN,
RIVER can be used to generate high resolution videos.

source frame time → target frame

Figure 6. Visual planning with RIVER on the CLEVRER dataset. Given the source and the target frames, RIVER infills the frames
inbetween. Note how the model manipulates the objects by forcing them to interact in order to achieve the goal. In some cases this even
requires introducing new objects into the scene.

frame in the condition. In [70], where the stochastic con-
ditioning was first introduced, only one view from the
memory was used at each denoising step for generating a
novel view. However, conditioning on one frame from the
past does not work for video prediction, since one frame
does not contain any information about pre-existing mo-
tion. We train a model, where we remove the reference
frame from the condition and compare its performance to
the full model. For this ablation we test RIVER on the
CLEVRER [77] dataset. We found that without the refer-
ence frame in the condition the model is confused about the
direction of the motion, which results in jumping objects
(see Figure 8). For the quantitative results, check Table 3.

Given a model trained so that the context frames are
sampled from the whole past of a sequence, at infer-
ence time we ablate the size of the past window used
for the context frames to better understand the impact of
the history on the video generation performance. In this
ablation, we uniformly sample the context frames from
{τ − 1 − k, . . . , τ − 2} for k = 2, 4, 6, 8, and show
which past frames better support RIVER’s predictions. For
this experiment we use our trained model on the BAIR [18]

Context BAIR / PSNR↑ KTH / PSNR↑
2 frames 25.64 28.53
4 frames 25.94 29.07
6 frames 26.00 30.17
8 frames 25.28 29.40

Table 4. Ablations on the context size. Using a pretrained model
on BAIR [18] and KTH [56] we observe a trade-off wrt the number
of conditioning frames. We believe that datasets with more chal-
lenging scenes and dynamics may require more context frames.

and KTH [56] datasets. Since there are occlusions in BAIR,
we suspect that having more context can help to predict
the future frames more accurately. Having more context
frames also helps to predict a smoother motion for humans
in KTH. Table 4 shows that there is a trade-off in context
size and although having more context can be useful, on
simple datasets having only a few frames is better to solve
the prediction task.

Finally we show in Figure 3 that warm-start sampling
can be used to generate samples faster (with fewer integra-
tion steps) but with a cost on quality. Interestingly we ob-
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time →

T = 1 T = 15 T = 30 T = 45 T = 60 T = 75 T = 90 T = 105 T = 120
Figure 7. Long video generation examples on the CLEVRER dataset. We generate the first frame and predict the next frames.

last context frame time →

G
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Figure 8. Video prediction on the CLEVRER dataset. The model trained with two frames is consistent, while the model w/o reference
changes the type of green object and does not model motion correctly. The green object hits the blue cube and then comes back to hit it
again (last frames of the picture).

served that a small speed up factor actually helps the sam-
pling and despite having fewer integration steps leads to bet-
ter performance. We suspect that this effect is similar to the
truncation trick [46, 7] in GANs. Notice however, that com-
pared to other diffusion-based video generation approaches,
RIVER conditions only on 2 past frames for a single neural
function evaluation (NFE). Hence, a single NFE is gener-
ally less expensive. For instance, it takes 9.97 seconds for
RIVER to generate 16 frames video, while RaMViD [33]
requires 40.47 seconds with a vanilla scheduler on a single
Nvidia GeForce RTX 3090 GPU (on BAIR with 64×64 res-
olution). For more results, see the supplementary material.

5. Conclusion
In this paper we have introduced RIVER, a novel training

procedure and a model for video prediction that are based

on the recently proposed Flow Matching for image synthe-
sis. We have adapted the latter to videos and incorporated
conditioning on an arbitrarily large past frames window
through randomly sampling a new context frame at each in-
tegration step of the learned flow. Moreover, working in the
latent space of a pretrained VQGAN enabled the genera-
tion of high-resolution videos. All these have resulted in a
simple and effective training procedure, which we hope fu-
ture works on video synthesis will largely benefit from. We
have tested RIVER on several video datasets and found that
it is not only able to predict high-quality videos, but is also
flexible enough to be trained to perform other tasks, such as
visual planning and video generation.
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