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Abstract

Automatically producing instructions to modify one’s
posture could open the door to endless applications, such as
personalized coaching and in-home physical therapy. Tack-
ling the reverse problem (i.e., refining a 3D pose based
on some natural language feedback) could help for as-
sisted 3D character animation or robot teaching, for in-
stance. Although a few recent works explore the connec-
tions between natural language and 3D human pose, none
focus on describing 3D body pose differences. In this pa-
per, we tackle the problem of correcting 3D human poses
with natural language. To this end, we introduce the Pose-
Fix dataset, which consists of several thousand paired 3D
poses and their corresponding text feedback, that describe
how the source pose needs to be modified to obtain the tar-
get pose. We demonstrate the potential of this dataset on
two tasks: (1) text-based pose editing, that aims at gener-
ating corrected 3D body poses given a query pose and a
text modifier; and (2) correctional text generation, where
instructions are generated based on the differences be-
tween two body poses. The dataset and the code are avail-
able at https://europe.naverlabs.com/research/
computer-vision/posefix/.

1. Introduction

How many puzzles could you solve with two human
body poses and a description of their differences? Call this
description a feedback. It could be automatically generated
by a fitness application based on the comparison between
the gold standard fitness pose and the pose of John Doe,
exercising in front of their smartphone camera in their liv-
ing room (“straighten your back”). In another context, the
feedback can be considered a modifying instruction, pro-
vided by a digital animation artist to automatically modify
the pose of a character, without having to redesign every-
thing by hand. This feedback could be some kind of con-
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Figure 1: Illustration of the tasks addressed with the new
PoseFix dataset, which consists of textual descriptions of
the difference between two 3D body poses.

straint, to be applied to a whole sequence of poses (make
them run, but “with hands on the hips!”). It could also be a
hint, to guide pose estimation from images in failure cases:
start from an initial 3D body pose fit, and give step-by-step
instructions for the model to improve its pose estimation
(“the left elbow should be bent to the back”).

In this paper, we focus on free-form feedback describing
the change between two static 3D human poses (which can
be extracted from actual pose sequences). Why so static?
There exist many settings that require the semantic under-
standing of fine-grained changes of static body poses. For
instance, yoga poses are extremely challenging and specific
(with a lot of subtle variations), and they are static. Some
sport motions require almost-perfect postures at every mo-
ment: for better efficiency, to avoid any pain or injury, or
just for better rendering e.g. in classical dance, yoga, karate,
etc. What is more, the realization of complex motions some-
times calls for precise step-to-step instructions, in order to
assimilate the gesture or to perform it correctly.

Natural language can help in all these scenarios, in that it
is highly semantic and unconstrained, in addition of being a
very intuitive way to convey ideas. While 3D poses can be
manually edited within a design framework [38], language
is particularly efficient for non-experts or when direct ma-
nipulation is not possible. The pose semantic we propose
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Bring your right knee up towards your right 
chest. Pull your right hand back in front of 

your face. Bend your left elbow a little.

1

2

Bend your right knee at a right angle like 
your left leg, and bring your left leg on top 
of your right leg. Rotate a bit your chest 
towards the right and make it face the 

ground.

Stand up more so your back is bent 
at a forty-five degree angle. Keep 

your legs spread but straighten your 
knees. Lift your head.

Turn your head to your left. Lift your 
right hand. Move your left shin next 

to your right calf.

Straighten your torso and bring your right 
leg behind your left leg. Extend both hands 
up in the air to your left side. Look up and to 

your left.

Move both your arms in front of you and 
down towards the ground, adjust your body 

entirely so that is pointing down as if you 
were in a downward push-up position with 

your legs elevated towards the sky.

Bring the right arm, the 
left leg and the left hand 
up, bring the right hand 
slightly to the left and 
move both hands 
backward a little, stretch 
the left arm, the left thigh 
must be parallel to the 
ground. Bring the left foot 
slightly to the left and a 
bit to the back.

Your right thigh must be 
parallel to the floor while 
your right knee is bent to 
maximum, bring your 
right foot forward slightly, 
your right hand must be 
on the floor and your 
hands should be shoulder 
width apart.
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OOS

ISISIS
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Figure 2: Examples of pose pairs and their annotated modifier in PoseFix. The source pose is shown in gray and the
target pose in purple. Poses from in-sequence (IS) pairs are from the same motion clip; unlike out-of-sequence (OOS) pairs.

to learn here can be leveraged for other modalities (e.g. im-
ages) or in other settings (e.g. robot teaching).

While the link between language and images has been
extensively studied in tasks like image captioning [32, 21]
or image editing [64], the research on leveraging natu-
ral language for 3D human modeling is still in its in-
fancy. A few works use textual descriptions to generate
motion [18, 54], to describe the difference in poses from
synthetic 2D renderings [25] or to describe a single static
pose [12]. Nevertheless, there currently exists no dataset
that associates pairs of 3D poses with textual instructions to
move from one source pose to one target pose. In this work,
we thus introduce the PoseFix dataset, which contains over
6,000 textual modifiers written by human annotators for this
scenario. In addition, we design a pipeline similar to [12],
to generate modifiers automatically and increase the size of
the data, see Figure 2 for some examples.

Leveraging the PoseFix dataset, we tackle two tasks:
text-based pose editing, where the goal is to generate new
poses from an initial pose and modification instructions, and
correctional text generation where the objective is to pro-
duce a textual description of the difference between a pair
of poses (see Figure 1). For the first task, we use a base-
line consisting in a conditional Variational Auto-Encoder
(cVAE). For the second, we consider a baseline built from
an auto-regressive transformer model. We provide a de-
tailed evaluation of both baselines, and show promising re-
sults.

In summary, our contributions are threefold:
◦ We introduce the PoseFix dataset (Section 3) that as-

sociates pairs of 3D human poses and human-written
textual descriptions of their differences.

◦ We introduce the task of text-based pose editing (Sec-
tion 4), that can be tackled with a cVAE baseline.

◦ We study the task of correctional text generation with
a conditioned auto-regressive model (Section 5).

2. Related Work

3D pose and text datasets. AMASS [36] gathers sev-
eral datasets of 3D human motions in SMPL [35] for-
mat. BABEL [47] and HumanML3D [18] build on top of
it to provide free-form text descriptions of the sequences,
similarly to the earlier and smaller Kit Motion-Language
dataset [46]. These datasets focus on sequence semantic
(high-level actions) rather than individual pose semantic
(fine-grained egocentric relations). To complement, Pos-
eScript [12] links static 3D human poses with descriptions
in natural language about fine-grained pose aspects. How-
ever, PoseScript does not make it possible to relate two
poses together in a straightforward way, as we attempt by
introducing the new PoseFix dataset. In contrast to FixMy-
Pose [25], the PoseFix dataset we introduce comprehends
poses from more diverse sequences and the textual annota-
tions were collected based on actual 3D data and not syn-
thetic 2D image renderings (reduced depth ambiguity).

3D human pose generation. Previous works have mainly
focused on the generation of pose sequences, conditioning
on music [28, 29], context [10], past poses [61, 62], text la-
bels [20, 44] and mostly on text descriptions [30, 1, 59, 2,
17, 45, 18, 54, 19, 26]. Some works push it one step further
and also attempt to synthesize the mesh appearance [23, 60],
leveraging large pretrained models like CLIP [48]. Simi-
larly to PoseScript [12], we depart from generic actions and
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focus on static poses and fine-grained aspects of the human
body, to learn about precise egocentric relations. However,
we consider two poses instead of one to comprehend de-
tailed pose modifications. Different from ProtoRes [38],
which proposes to manually design a human pose inside a
3D environment based on sparse constraints, we use text
for controllability. As PoseScript and VPoser [42], an (un-
conditioned) pose prior, we use a VAE-based [27] model to
generate the 3D human poses.

Pose correctional feedback generation. Recent advances
in text generation have led to a shift from recurrent neural
networks [53] to large pretrained transformer models, such
as GPT [8]. These models can be effectively conditioned
using prompting [39] or cross-attention mechanisms [49].
While multi-modal text generation tasks, such as image cap-
tioning, have been extensively studied [32, 21, 56] no previ-
ous work has focused on using 3D human poses to generate
free-form feedback. In this regard, AIFit [15] extracts 3D
data to compare the video performance of a trainee against
a coach’s and provides feedback based on predefined tem-
plates. [63] also outputs predefined texts for a small set of
exercises and [33] does not provide any natural language
instructions, either. Besides, FixMyPose [25] is based on
highly-synthetic 2D images.

Compositional learning consists in using a query made of
multiple distinct elements, which can be of different modal-
ities, as for visual question answering [4] or composed im-
age retrieval [57]. Similarly to the latter, we are interested
in bi-modal queries composed of a textual “modifier” which
specifies changes to apply on the first element. Modifiers
first took the form of single-word attributes [41, 37, 14] and
evolved into free-form texts [58, 34]. While a large body of
works focus on text-conditioned image editing [24, 7, 22]
or text-enhanced image search [57, 5, 11], few study 3D
human body poses. ClipFace [3] proposes to edit 3D mor-
phable face models and StyleGAN-Human [16] generates
2D images of human bodies in very model-like poses. Pose-
Tutor [13] provides an approach to highlight joints with in-
correct angles on 2D yoga/pilate/kung-fu images. More re-
lated to our work, FixMyPose [25] performs composed im-
age retrieval. Conversely to them, we propose to generate
a 3D pose based on an initial static pose and a modifier ex-
pressed in natural language.

3. The PoseFix dataset

To tackle the two pose correctional tasks considered in
this paper, we introduce the new PoseFix dataset. It con-
sists of 135k triplets of {pose A, pose B, text modifier},
where pose B (the target pose) is the result of the correc-
tion of pose A (the source pose), as specified by the text
modifier. The 3D human body poses were sampled from
AMASS [36]. All pairs were captioned in Natural Lan-

guage thanks to our automatic comparative pipeline; 6157
pairs were additionally presented to human annotators on
the crowd-source annotation platform Amazon Mechanical
Turk. We next present the pair selection method, the anno-
tations process and some dataset statistics.

3.1. Pair selection process

In- and Out-of-sequence pairs. Pose pairs can be of two
types: “in-sequence” (IS) or “out-of-sequence” (OOS). In
the first case, the two poses belong to the same AMASS se-
quence and are temporally ordered (pose A happens before
pose B). We select them with a maximum time difference
of 0.5 second, to have both textual modifiers describing pre-
cisely atomic motion sub-sequences and ground-truth mo-
tion. For an increased time difference between the two
poses, they could be an infinity of plausible in-between mo-
tions, which would weaken such supervision signal. Out-
of-sequence pairs are made of two poses from different se-
quences; to help generalize to less common motions and to
study poses of similar configuration but different style, em-
powering “pose correction” beside “motion continuation”.
Selecting pose B. As we aim to obtain pose B from pose A,
we consider that pose B is guiding the most the annotation:
while the text modifier should account for pose A and refer
to it, its true target is pose B. Thus, to build the triplets, we
first choose the set of poses B. So to maximize the diversity
of poses, we follow [12], and get a set S of 100k poses
sampled with a farthest-point algorithm. Poses B are then
iteratively selected from S.
Selecting pose A. The paired poses should satisfy two main
constraints. First, poses A and B should be similar enough
for the text modifier not to become a complete description
of pose B: if A and B are too different, it is easier for the an-
notator to just ignore A and directly characterize B [58, 34].
Yet, we aim at learning fine-grained and subtle differences
between two poses. Hence, we rank all poses in S with re-
gard to each pose B based on the cosine similarity of their
PoseScript semantic pose features [12]. Pose A is to be se-
lected within the top 100. Second, the two poses should be
different enough, so that the modifier does not collapse to
oversimple instructions like ‘raise your right hand’, which
would not compare to realistic scenarios. While we expect
the poses to be quite different as they belong to S, we go one
step further and leverage posecode information [12] to en-
sure that the two poses have at least 15 (resp. 20) low-level
different properties for IS (resp. OOS) pairs.
One- and Two-way pairs. We consider all possible IS pairs
A → B, with A and B in S, that meet the selection con-
straints. Then, following the order defined by S, we sam-
ple OOS pairs: for each selected pair A → B, if A was
not already used for another pair, we also consider B → A.
We call such pairs ‘two-way’ pairs, as opposed to ‘one-way’
pairs. Two-way pairs could be used for cycle consistency.
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Pose A
(view at 315°)

Pose B
(view at 315°)

Figure 3: Left: Data presented to the annotators. The
slider makes it possible to look at the poses under different
viewpoints. Right: word cloud of the PoseFix annotations.

Property Proportion Example

Egocentric relations 74% Join your hands in front of your chest.
Analogies 5% ... like you’re about to clap your hands.
Implicit side description 25% Place your left toes on the ground

and extend your Ø leg slightly.

Table 1: Semantic analysis on 104 sampled human texts.

Splits. We use the same sequence-based split as [12], and
perform pose pair selection independently in each subset.
Since we also use the same ordered set S, some poses are
annotated both with a description and a modifier: such com-
plementary information can be used in a multitask setting.

3.2. Collection of human annotations

We collected the textual modifiers on Amazon Mechan-
ical Turk from English-speaking annotators with a 95% ap-
proval rate who already completed at least 5000 tasks. To
limit perspective-based mistakes, we presented both poses
rendered under different viewpoints (see Figure 3, left). An
annotation could not be submitted until it was more than
10 words and several viewpoints were considered. The ori-
entation of the poses was normalized so they would both
face the annotator in the front view. Only for in-sequence
pairs, we would apply the normalization of pose A to pose
B, to stay faithful to the global change of orientation in the
ground-truth motion sequences.

The annotators were given the following instruction:
“You are a coach or a trainer. Your student is in pose A,
but should be in pose B. Please write the instructions so
they can correct the pose on at least 3 aspects.”. Annota-
tors were required to describe the position of the body parts
relatively to the others (e.g. ‘Your right hand should be close
to your neck.’), to use directions (such as ‘left’ and ‘right’)
in the subject’s frame of reference and to mention the rota-
tion of the body, if any. They were also encouraged to use
analogies (e.g. ‘in a push-up pose’). For the annotations to
size-agnostic, distance metrics were prohibited.

The task was first made available to any worker by tiny
batches. Annotations were carefully scrutinized, and only
the best workers were qualified to pursue to larger batches,
with lighter supervision. In total, about 15% of the annota-
tions were manually reviewed, and corrected when needed.
We further cleaned the annotations by fixing misspelled and
duplicated words, detected automatically. Figure 2 shows
some pose pairs and their annotated modifiers.

automatic human

in-sequence 25,201 2,615
out-of-sequence 110,104 3,542

both-way 93,180 2,710
one-way 42,125 3,447

total 135,305 6,157

Table 2: Number of pairs of
each set and type.

automatic human

different poses 99,231 7,433
different poses A 87,793 5,343
different poses B 98,939 5,922

in PoseScript 6,249 3,551
A in PoseScript 6,160 2,753
B in PoseScript 6,226 3,143

Table 3: Number of poses
per type or shared with [12].

3.3. Generating annotations automatically

To scale up the dataset, we design a pipeline to automat-
ically generate thousands of modifiers, by relying on low-
level properties as in [12]. The process takes as input the
3D keypoint positions of two poses A and B, and outputs
a textual instruction to obtain pose B from pose A. First,
it measures and classifies the variation of atomic pose con-
figurations to obtain a set of “paircodes”. For instance, we
attend to the motion of the keypoints along each axis (“move
the right hand slightly to the left” (x-axis), “lift the left knee”
(y-axis)), to the variation of distance between two keypoints
(“move your hands closer”) or to the angle change (“bend
your left elbow”). We further define “super-paircodes”, re-
sulting from the combination of several paircodes or posec-
odes [12]; e.g. the paircode “bend the left knee less”, as-
sociated to the posecode “the left knee is slightly bent” on
pose A leads to the super-paircode “straighten the left leg”.
The super-paircodes make it possible to describe higher-
level concepts or to refine some assessments (e.g. only tell
to move the hands farther away from each other if they are
close to begin with). The paircodes are next aggregated us-
ing the same set of rules as in [12], then they are structurally
ordered, to gather information about the same general part
of the body within the description. Ultimately, for each pair-
code, we sample and complete one of the associated tem-
plate sentences. Their concatenation yields the automatic
modifier. Please refer to the supplementary for more de-
tails. The whole process produced 135k annotations in less
than 15 minutes. Some examples are shown in Figure 2. In
this paper, we use the automatic data for pretraining only.

3.4. Statistics and semantic analysis

PoseFix contains 6157 (resp. 135k) human- (resp.
automatically-) annotated pairs, split according to a 70%-
10%-20% proportion. In average, human-written text mod-
ifiers are close to 30 words long with a minimum of 10
words. All together, they form a cleaned vocabulary of 1068
words, a wordcloud of which is shown in Figure 3 (right).

Negation particles were detected in 3.6% of the anno-
tations, which makes textual queries with negations a bit
harder, akin to similar datasets [58, 12]. A semantic analysis
carried out on 104 annotations taken at random is reported
in Table 1. We found that textual modifiers provide correc-
tional instructions about 4 different body parts in average,
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which vary depending on the context (pose A).
A few other annotation behaviors were found to be quite

difficult to quantify, in particular “missing” instructions.
Sometimes, details are omitted in the text because the con-
text given by pose A is “taken for granted”. For instance, in
the 3rd example shown in Figure 2, the “45-degree angle” is
to be understood with regard to the “0 degree” plan defined
by the back of the body in pose A. Moreover, the annotator
did not specify how the position of the arms have changed,
supposedly because this change comes naturally once the
back is straighten up, from the structure of the kinematic
chain. These challenges are inherent to the task.

Detailed statistics are presented in Tables 2 and 3.

4. Application to Text-based Pose Editing
We introduce a VAE [27] baseline to perform text-based

3D human pose editing. Specifically, we aim to generate
plausible new poses based on two input elements: an initial
pose A providing some context (a starting point for modifi-
cations), and a textual modifier which specifies the changes
to be made. Figure 4 gives an overview of our model.
Data processing. Poses are characterized by their SMPL-
H [50] body joint rotations in axis-angle representation.
Their global orientation is first normalized along the y-axis.
For in-sequence pairs, the same normalization that was ap-
plied to pose A is applied to pose B in order to preserve
information about the change of global orientation.
Training phase. During training, the model encodes both
the query pose A and the ground-truth target pose B us-
ing a shared pose encoder, yielding respectively features a
and b in Rd. The tokenized text modifier is fed into a pre-
trained embedding module to extract expressive word en-
codings. These are further processed by a learned textual
model, to yield a global textual representation m ∈ Rn.
Next, the two input embeddings a and m are provided to
a fusing module which outputs a single vector p ∈ Rd.
Both b and p then go through specific fully connected lay-
ers to produce the parameters of two Gaussian distribu-
tions: the posterior Nb = N (·|µ(b),Σ(b)) and the prior
Np = N (·|µ(p),Σ(p)) conditioned on p from the fusion
of a and m. Eventually, a sampled latent variable zb ∼ Nb

is decoded into a reconstructed pose B̂.
The loss consists in the sum of a reconstruction term

LR(B, B̂) and the Kullback-Leibler (KL) divergence be-
tween Nb and Np. The former enables the generation of
plausible poses, while the latter acts as a regularization term
to align the two spaces. The combined loss is then:

Lpose editing = LR(B, B̂) + LKL(Nb,Np). (1)

We use the same negative log likelihood-based recon-
struction loss as in [12]: it is applied to the output joint
rotations in the continuous 6D representation [65], and both

the joint and vertices positions inferred from the output by
the SMPL-H [50] model.
Inference phase. The input pose A and the text modifier
are processed as in the training phase. However, this time
we sample zp ∼ Np to obtain the generated pose B̂.
Evaluation metrics. We report the Evidence Lower Bound
(ELBO) for the size-normalized rotations, joints and ver-
tices, as well as the Fréchet inception distance (FID) which
compares the distribution of the generated poses with the
one of the expected poses, based on their semantic Pos-
eScript features. The ELBO and the FID are mostly sen-
sitive to complementary traits (sample quality and support
coverage respectively). When some settings do not improve
all metrics; we then base our decisions on the metrics with
the highest differential. While the ELBO is better suited to
evaluate generative models than reconstruction metrics, for
intuitiveness, we also report the the MPJE (mean-per-joint
error, in mm), the MPVE (mean-per-vertex error, in mm)
and the geodesic distance for joint rotations (in degrees) be-
tween the target and the best (i.e., closest) generated sample
out of N=30 in all experiments.
Architecture details and ablations. We use the
VPoser [42] architecture for the pose auto-encoder, result-
ing in features of dimension d = 32. The variance of the
decoder is considered a learned constant [51]. We experi-
ment with two different text encoders (Table 4, top): (i) a
bi-GRU [9] mounted on top of pretrained GloVe word em-
beddings [43], or (ii) a transformer followed by average-
pooling, processing frozen DistilBERT [52] word embed-
dings. We find that the transformer pipeline outperforms
the other in terms of ELBO (+0.24 in average) when no ad-
ditional pretraining is involved, supposedly because it uses
already strong general-pretrained weights. Pretraining on
our automatic modifiers brings the bi-GRU pipeline on par
with the transformer one (+0.04). For simplicity, we will
thereafter resort to the former.

For fusion, we use TIRG [57], a well-spread module for
compositional learning. It consists in a gating mechanism
composed of two 2-layer Multi-Layer Perceptrons (MLP) f
and g balanced by learned scalars wf and wg such that:

p = wff([a,m])⊙ a+ wgg([a,m]). (2)

It is designed to ‘preserve’ the main modality feature a
while applying the modification as a residual connection.
Training data and augmentations ablations. We exper-
iment with several kinds of data augmentations and train-
ing data. Corresponding results are reported in Table 4
(bottom). First, we try left/right flipping by swapping the
rotations of the left and right body joints (e.g. the left
hand becomes the right hand) and changing the text ac-
cordingly. This improves the quality of the samples signif-
icantly (ELBO), especially when the model did not benefit
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Figure 4: Overview of our text-based pose editing baseline. The top part represents a standard VAE, where poses are
encoded into a Gaussian distribution. At training time, a latent variable is sampled and decoded into a pose to learn pose
reconstruction. The bottom left part represents the conditioning: the text is encoded using a frozen DistilBERT with a
small transformer on top. It is combined with source pose features in the fusion module, from which we predict a Gaussian
distribution. A KL loss ensures the alignment of the distributions from the standard VAE and the conditioning. At test time,
we sample from the latter to predict the target pose.

FID ↓ ELBO ↑ Reconstruction ↓ (best of 30)

jts v2v rot MPJE MPVE Geodesic

Text Encoder (with/without pretraining)

without
GloVe + bi-GRU 0.28 0.61 1.51 0.50 278 217 9.89
DistilBERT+transformer 0.36 0.95 1.51 0.63 226 180 9.22

with
GloVe + bi-GRU 0.14 1.40 1.88 0.99 199 165 8.59
DistilBERT+transformer 0.17 1.37 1.84 0.93 201 167 8.70

Data augmentations (with/without pretraining, GloVe+bi-GRU config)

without

no augmentation 0.28 0.61 1.51 0.50 278 217 9.89
+ L/R flip 0.28 1.10 1.73 0.58 250 196 9.57
+ paraphrases 0.31 0.90 1.45 0.58 233 186 9.44
+ PoseMix 0.33 0.63 1.12 0.58 254 202 9.61
+ PoseMix & PoseCopy 0.22 1.03 1.50 0.78 221 178 9.07

with

no augmentation 0.14 1.40 1.88 0.99 199 165 8.59
+ L/R flip 0.14 1.47 1.94 0.97 197 163 8.65
+ paraphrases 0.13 1.43 1.90 0.97 198 164 8.58
+ PoseMix 0.19 0.68 1.13 0.91 214 174 8.74
+ PoseMix & PoseCopy 0.12 1.23 1.71 0.98 208 172 8.75
+ L/R flip & paraphrases 0.13 1.44 1.92 0.97 196 162 8.62

Table 4: Text-based pose editing results for various ar-
chitectures, data augmentations and training strategies. We
show the best result in bold and underline the second best.

from pretraining on diverse synthetic data (+37% average
improvement of the ELBO).

Next, we use InstructGPT [39] to obtain 2 paraphrases
per annotation. This form of data augmentation was found
helpful, particularly when training on a small amount of
data, i.e., without pretraining (+20%).

In order to encourage the model to fully leverage the tex-
tual cue, we define PoseMix, which gathers both the Pos-
eScript [12] and the PoseFix datasets. When training with
PoseScript data, which consist in pairs of poses and textual
descriptions, we set pose A to 0. We notice a mitigated im-
provement, and even a drop in performance in the pretrained
case. One possible reason for that is the difference in for-

mulation between PoseScript descriptions (“The person is
... with their left hand...”) and PoseFix modifiers (“Move
your left hand...”). Another is that the model then learns to
ignore A, which is nonetheless crucial in the PoseFix set-
ting. To circumvent this last-mentioned issue, we improve
the balance of the training data by introducing PoseCopy.
This consists in providing the model with the same pose in
the role of pose A and pose B, along with an empty mod-
ifier, assuming that a non-existent textual query will force
the model to attend pose A. The PoseMix & PoseCopy set-
ting yields a great improvement over all metrics for the non-
pretrained case (+41%). This further shows that the formu-
lation gap was not the main issue. As a side product, the
fusing branch is now able to work as a pseudo auto-encoder,
and to output a copy of the input pose when no modification
instruction is provided.

Eventually, the pretraining has a more significant impact
than using any kind of data augmentation (+84%). Besides,
the data augmentations become much less effective in this
setting (+1%). The model thus benefits better from pretrain-
ing on a large set of new pairs with synthetic instructions,
than training on more human-written modifiers of the same
pose pairs. We overall obtain our best model by combining
pretraining, left/right flip and paraphrases (last row).

Detailed analysis. In Table 5, we evaluate our best pose
editing model on several subsets of pairs and with different
input types.

First, we notice higher ELBO performance on the out-of-
sequence (OOS) pair set compared to the in-sequence (IS)
set, suggesting that pairs in the latter are harder. This can
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Lower your shoulders and chest so 
you are bent at the hips slightly more 
than 90 degrees. Bend your left knee. 
Raise your right arm behind you. Bend 
your left elbow inward, so it's almost 

touching the inside of your knee.

Kick your right leg out a little more 
such that it remains horizontally 

straight and then swing your both 
hands backward widely apart.

Move your left hand to the right. 
Extend your right arm behind you. 
Turn your head slightly to the right.

Works well, simple modifier
  "48":
"pose_A": 2694,
"pose_B": 173,

raise your right knee off the 
floor until your right elbow is 
touching it, turn your torso 

slightly to the right, bring your 
left hand to line up with your 
right leg, look down at your 

right hand

Works well, Egocentric relation; 
variation extend L leg to the L
  "278"

Longer modifier, with egocentric relations

 "109": 
"pose_A": 1399,
"pose_B": 423,

(maybe less 
convincing)

Good example

"28":
"pose_A": 7345,
"pose_B": 68,

Failure case: complicated pose

"39": 
"pose_A": 558,
"pose_B": 161,

Works OK, difficult pose
  "59":

Turn to the right. Raise your 
right elbow slightly. Extend 

your left leg to the left. Extend 
your left arm down your side.

Bring your body 
forward. Straighten 

your left arm pointed 
down. Extend your 
right arm and leg 

forward.

Raise your right hand 
above your head. Extend 
your left arm down. Twist 

your torso to the right.

Figure 5: Generated poses for the text-based pose editing task on PoseFix queries from the left blocks. Two views of each
pose are shown on the same ground plane for better visualization of the 3D. Generated poses are shown in blue. Original
poses B from the PoseFix dataset are in the supplementary material.

FID ↓ ELBO ↑ Reconstruction ↓ (best of 30)

jts v2v rot MPJE MPVE Geodesic

Pair subset
in-sequence (530) 0.20 1.33 1.78 0.88 188 154 8.47
out-of-sequence (709) 0.11 1.53 2.02 1.04 206 168 8.80
full PoseFix test set (1239) 0.13 1.44 1.92 0.97 196 162 8.62

Input type (full PoseFix test set - 1239)
pose A only 0.17 1.43 1.92 0.97 219 180 8.91
modifier only 1.05 1.30 1.92 0.92 378 339 13.03
pose A + modifier 0.13 1.44 1.92 0.97 196 162 8.62

Table 5: Pose editing results for various subsets and in-
put types, using the best model as per Table 4.

be due to pose A and pose B being more similar in IS than
OOS, as they belong to the same sequence with a maximum
delay of 0.5s. We indeed measure a mean per joint distance
of 311mm between A and B in IS vs. 350mm in OOS: the
differences between IS poses thus ought to be more sub-
tle, yielding more complex modifiers. This drop in ELBO
performance shows also that the model struggles more with
IS modifiers, meaning that it most probably generates, in
average, poses that are close to pose A, – in other words,
it would takes guesses in the surroundings of pose A. This
would actually be a good fall-back strategy, because the two
poses are rather similar in general. In the IS case, since pose
A and pose B are particularly close to each other, the model
may end up finding, with enough guesses, a pose closer to
pose B than it would in the OOS case, where the two poses
are more different. This could explain why the reconstruc-
tion metrics using the best sample out of 30 are lower for
the IS subset than the OOS subset.

Next, we compare the results when querying with the
pose A only or the modifier only. The former achieves
already high performance, showing that the initial pose A

alone provides a good approximation of the expected pose
B – indeed, the pair selection process constrained pose A
and pose B to be quite similar. The latter yields poor FID
and reconstruction metrics: the textual cue is only a modi-
fier, and the same instructions could apply to a large variety
of poses. Looking around pose A remains a better strategy
than sticking to the sole modifier in order to generate the
expected pose. Eventually, both parts of the query are com-
plementary: pose A serves as a strong contextual cue, and
the modifier guides the search starting from it (the pose be-
ing provided through the gating mechanism in TIRG). Both
are crucial to reach pose B (last row).
Qualitative results. Last, we present qualitative results for
text-based 3D human pose editing in Figure 5. It appears
that the model has a relatively good semantic comprehen-
sion of the different body parts and of the actions to mod-
ify their positions. Some egocentric relations (“Raise your
right elbow slightly.”, first row) are better understood than
others, in particular contact requirements (“Bend your el-
bow so it’s almost touching the inside of your knee”, second
row). When missing some specifications, the model gener-
ates various pose configurations (e.g. the extent of the left
leg extension in the first example). It can handle a number
of instructions at once (third row), but may fail to attend
all of them. Crouching and lying-down poses are the most
challenging (see failure case in the last row, and how the
crouch is hardly preserved in the third row).

5. Application to correctional text generation
We next present a baseline for correctional text genera-

tion. We aim to produce feedback in natural language ex-
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Straighten your right leg 
so it is sticking straight 
out and not bent at the 
knee. Straighten both 

arms so they are above 
your head in a Y shape.

<BOS>

ax
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Figure 6: Overview of our baseline for correctional text generation. The bottom part represents a standard auto-regressive
transformer model: the next word is predicted from the previously generated tokens. The decoder outputs a distribution of
probabilities over the vocabulary for each token. The top part represents the conditioning on the pose pair: the two pose
embeddings are fused together into a set of “pose tokens”, further used for conditioning via prompting or via cross-attentions
in the transformer. At inference, the modifier is generated iteratively using the greedy approach.

plaining how the source pose A should be modified to ob-
tain the target pose B. We rely on an auto-regressive model
conditioned on the pose pair, which iteratively predicts the
next word given the previous generated ones (see Fig. 6).
Training phase. Let T1:L be the L tokens of the text mod-
ifier. An auto-regressive generative model seeks to predict
the next token l+1 from the first l tokens T1:l. Let p(·|T1:l)
be the predicted probability distribution over the vocabu-
lary. The model is trained, via a cross-entropy loss, to max-
imize the probability of generating the ground-truth token
Tl+1 given previous ones: p(Tl+1|T1:l).

To predict p(·|T1:l), the tokens T1:l are first embedded,
and positional encodings are injected. The result is fed to a
series of transformer blocks [55], and projected into a space
whose dimension is the vocabulary size q. Let t ∈ Rq de-
note the outcome. The probability distribution over the vo-
cabulary for the next token p(·|T1:l) could be obtained from
Softmax(t).

Transformer-based auto-regressive models can be
trained efficiently using causal attention masks which, for
each token l, prevent the network from attending all future
tokens l′ > l, in a single pass.

Now, how do poses come into the picture? Pose A and
pose B are encoded using a shared encoder, and combined
in the fusing module, which outputs a set of N ‘pose’ to-
kens. To condition the text generation on pose information,
we experiment with two alternatives: those pose tokens can
either be used for prompting, i.e., added as extra tokens at

the beginning of the text modifier, or serve in cross-attention
mechanisms within the text transformer.
Inference phase. For inference, we provide the model with
the pose tokens and the special <BOS> token which indi-
cates the sequence beginning. We decode the output t2 in a
greedy fashion, i.e., we predict the next token as the word
that maximizes the negative log likelihood. We proceed iter-
atively, giving previously decoded tokens T1:l to the model
so to obtain the subsequent token l + 1, until the <EOS>
token (denoting the end of the sequence) is decoded.
Evaluation metrics. We resort to standard natural language
metrics: BLEU-4 [40], Rouge-L [31] and METEOR [6],
which measure different kinds of n-grams overlaps between
the reference text and the generated one. Yet, we notice that
these metrics do not reliably reflect the model quality for
this task. Indeed, we only have one reference text and, given
the initial pose, very different instructions can lead to the
same result (e.g. “lower your arm at your side” and “move
your right hand next to your hip”); it is not just a matter
of formulation. Thus, we report the top-k R-precision met-
rics proposed in TM2T [19]: we use contrastive learning to
train a joint embedding space for the modifiers and the con-
catenation of poses A and B, then we look at the ranking
of the correct pose pair for each generated text within a set
of 32 pose pairs. We also report reconstruction metrics on
the pose generated thanks to our best model from Section 4
using the generated text. These added metrics assess the
semantic correctness of the generated texts.

15025



R Precision ↑ NLP ↑ Reconstruction ↓ (best of 30)

R@1 R@2 R@3 BLEU-4 ROUGE-L METEOR MPJE MPVE Geodesic

Control measures
random text 3.13 6.25 9.38 7.11 26.33 26.88 225 185 9.07
original text 62.71 74.01 79.26 100.00 100.00 100.00 196 162 8.62

Injection type (with/without pretraining)

without
prompt 3.63 7.10 10.73 9.74 31.88 27.72 226 184 8.94
cross-attention 6.78 12.27 17.35 10.62 31.66 28.74 220 180 8.85

with
prompt 15.09 22.28 30.35 11.15 32.58 29.76 211 175 8.79
cross-attention 58.43 71.35 77.56 12.19 33.94 31.30 192 161 8.55

Data augmentations (with pretraining & cross-attention injection)
no augmentation 58.43 71.35 77.56 12.19 33.94 31.30 192 161 8.55
with L/R flip 60.69 71.51 78.85 12.14 34.02 30.90 189 159 8.54
with paraphrases 53.91 67.72 74.98 10.56 33.07 30.15 194 162 8.65
with PoseMix 45.12 56.66 64.89 10.94 33.22 30.12 197 164 8.74

Table 6: Correctional text generation results for various pose injections and data augmentations. For reference, we also
provide numbers for the ground-truth texts and an annotated text chosen at random.

Test 138 / ID 698

Bend over more. Move 
your right arm down. 

Move your left arm to the 
right.

Raise your left leg and 
extend it out to the side. 

Turn your head to the left.

Test 0 / ID 8

Move your left leg back and point 
your left foot on the floor. Move 
your left arm forward and bend 
your forearm down. Move your 

right elbow back slightly.

Straighten your legs and 
lean back. Lower your 

arms to your chest.

Bend your elbows and 
move your hands closer 
to each other. Turn your 

head to the right.

Bend over more. Move your 
right arm down. Move your left 

arm to the right.

Bend over more and put your 
hands together in front of you.

Bend over more. Move your right 
arm to the left. Move your left arm 

to the right.

Test 0 / ID 8

Test 2 / ID 18

Raise your left leg and extend it out 
to the side. Turn your head to the 
left.

Raise your left leg up so it is parallel 
with the ground. Raise your right leg up 
so it is extended straight out from the 
body.

Kick your right leg over so it is 
horizontal. Bring your left leg so it is 
almost pointing straight up. Rotate your 
body slightly to your right.

Failure case: L/R, 
upside-down

Test 10 / ID 58

Turn to the right. Move your right 
knee to the right. Move your left 
hand to the right in front of your face. 
Move your right hand down slightly.

Bend your right knee and move 
your right arm back. Move your 
left arm forward.

Lower your left knee and stick your 
right elbow out to the side. Look up to 
your right, straighten your left arm at 
your side, and raise your left shoulder.

Test 15 / ID 79

Bring your right foot forward about one 
step so your body turns slightly, instead 
of reaching across and up reach across 
and over your left shoulder. Bend your 
left arm in at your torso and widen your 
stance.

Straighten your legs and lean back. Lower 
your arms to your chest.

Lean to the left. Extend your right leg out to 
the right. Move your left leg back.

egocentric

Test 20 / ID 108

Raise your left hand over your head. 
Bring your right arm up a little. Bend 
your left knee more.

Raise your left arm up and bend your left 
elbow slightly. Raise your right arm slightly.

Raise your left arm up and bend your elbow 
slightly. Move your right arm to the right 
slightly.

Test 26 / ID 138

Extend your right arm. Bring your right 
foot behind your left leg.

Raise your right arm slightly. Move your left 
arm to the left. Move your right leg back.

Raise your right leg higher and bend your right 
knee. Move your left leg back and bend your 
left knee.

Bring your head forward slightly. Bend your right 
arm. Bend your left arm and bring in front of your 
torso.

Test 32 / ID 168

Bend your elbows and move your hands closer 
to each other. Turn your head to the right.

Bend your right knee more. Bend your right 
elbow. Bend your left elbow. Move your left hand 
to the right.

Egocentric + “hard” 
pose + small confusion 
(head)

Test 38 / ID 198

Raise your upper body so it's almost straight but still tilted 
slightly back. Rest your knees flat. Bring both arms in. Your 
right arm should be bent at the elbow but at your side. Your 
left hand should be away from your body at a 45 degree 
angle.

Lean back and to the left. Lower your arms to 
your sides. Turn your head to the right.

ede

A/B confusion

Bend your left knee more. Lower 
your right elbow to your waist. Pull 
your left elbow in, closer to your 
chest.

Move your left leg back and point your left foot on the floor. 
Move your left arm forward and bend your forearm down. 
Move your right elbow back slightly.

Lean back and to the left. 
Lower your arms to your sides. 

Turn your head to the right.

Several instructions, L/R confusion 
on the forearm

ID 698

Test 703 / ID 3482

Move your right leg to the left and bend 
your right knee slightly. Move your left 

leg back and to the right. Turn your 
head to the right. Move your right arm 
to the right and bend your right elbow. 

Move your left hand to the right.

Several instructions, 
grouping body part infos

Figure 7: Generated correctional texts for PoseFix pose pairs (pose A is grey, pose B is purple). The original human
annotations for these pose pairs are available in the supplementary material.

Quantitative results are presented in Table 6. We exper-
iment with the same fusing module as before: TIRG [57],
where the gating applied on the pair leading pose (pose B);
thus using N = 1. We try prompting and cross-attention to
inject the pose information in the text decoder, and found
the latter to yield the best results. Pretraining on automatic
modifiers significantly boosts the performance, e.g. with
cross-attention injection, the R@2 increases from 12.27%
to 71.35%. Regarding data augmentations, the left/right flip
yields additional gains (+1.7% of average R Precision) with
results close to those obtained with the ground-truth texts,
both for R-precision and reconstruction. Even if the gen-
erated text does not have the same wording as the original
text (low NLP metrics), combined with pose A, it achieves
to produce a satisfactory pose B̂, meaning that it carries the
right correctional information. Of course, one should recall
that the added metrics rely on imperfect models, which have
their own limitations. Finally, we observe a decrease in per-
formance with the paraphrases or the PoseMix settings: we
hypothesize that these settings are harder than the regular
one for this task, due to new words and formulations.

Qualitative results. Fig. 7 shows some generated texts.

The model is able to produce satisfying feedback, it gen-
erates egocentric relations (third and fourth examples) and
groups indications by body part (second column). However,
it tends to mix up pose A and B (last two examples). It also
sometimes describes only a subset of the differences.

6. Conclusion
This paper lays the groundwork for investigating the

challenge of correcting 3D human poses using natural lan-
guage instructions. Going beyond existing methods that uti-
lize language to model global motion or entire body poses,
we aim to capture the subtle differences between pairs of
body poses, which requires a new level of semantic under-
standing. For this purpose, we have introduced PoseFix,
a novel dataset with paired poses and their corresponding
correctional descriptions. We also presented promising re-
sults for two baselines which address the deriving tasks of
text-based pose editing and correctional text generation.
Acknowledgments. This work is supported by the Spanish gov-
ernment with the project MoHuCo PID2020-120049RB-I00, and
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