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Abstract

Cross-modal pre-training has shown impressive perfor-
mance on a wide range of downstream tasks, benefiting from
massive image-text pairs collected from the Internet. In
practice, online data are growing constantly, highlighting
the importance of the ability of pre-trained model to learn
from data that is continuously growing. Existing works on
cross-modal pre-training mainly focus on training a net-
work with fixed architecture. However, it is impractical
to limit the model capacity when considering the continu-
ously growing nature of pre-training data in real-world ap-
plications. On the other hand, it is important to utilize the
knowledge in the current model to obtain efficient training
and better performance. To address the above issues, in
this paper, we propose GrowCLIP, a data-driven automatic
model growing algorithm for contrastive language-image
pre-training with continuous image-text pairs as input. Spe-
cially, we adopt a dynamic growth space and seek out the
optimal architecture at each growth step to adapt to online
learning scenarios. And the shared encoder is proposed in
our growth space to enhance the degree of cross-modal fu-
sion. Besides, we explore the effect of growth in different
dimensions, which could provide future references for the
design of cross-modal model architecture. Finally, we em-
ploy parameter inheriting with momentum (PIM) to main-
tain the previous knowledge and address the issue of the
local minimum dilemma. Compared with the existing meth-
ods, GrowCLIP improves 2.3% average top-1 accuracy on
zero-shot image classification of 9 downstream tasks. As for
zero-shot image retrieval, GrowCLIP can improve 1.2% for
top-1 image-to-text recall on Flickr30K dataset.

*Corresponding author.

Figure 1. Top-1 accuracy (%) of zero-shot image classification on
ImageNet of GrowCLIP and baselines during training at step 4,
where the horizontal dotted lines mean the process of supernet
training. Our GrowCLIP has the best performance and is more
efficient compared with other baselines.

1. Introduction

Recently, large-scale pre-trained models illustrate the
potential performance among different fields including
computer vision (CV) [24, 25, 11] and natural language pro-
cessing (NLP) [15, 44, 33]. Cross-modal models like CLIP
[52], ALIGN [28], FILIP [65], BLIP [36] also demonstrate
remarkable success across various vision-language down-
stream tasks. Note that these models are usually built in
dual-stream architectures, which consist of the image and
text encoders to extract the feature of image and text inputs,
respectively. The alignment between these two features is
then performed under the contrastive objective to learn the
alignment between different modals.

However, training these cross-modal models requires a
large amount of image-text pairs collected from the In-
ternet, e.g., 400M image-text pairs for CLIP [52] and
300M for FILIP [65]. Most existing cross-modal methods
[52, 28, 65, 39, 36, 68, 63, 1] directly train the final large-
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CC12M 10% 20% 50% 100%

CLIP-0.5-ViT-B/16 6.6 11.1 19.0 25.7
CLIP-ViT-B/16 6.5 11.6 20.9 28.3

Table 1. Result of different model sizes with different data sizes:
Top-1 accuracy (%) of zero-shot image classification on ImageNet.
The depth and the width of 0.5-ViT-B/16 are both one half of ViT-
B/16. The relative performance ranking is dependent on the size
of the training data.

scale model using the completed image-text pair datasets
collected at some point in time. However, it is impracti-
cal to regard cross-modal pre-training as “disposable” train-
ing without considering the continuously growing nature
of pre-training data or domain in real-world applications.
For instance, mountains of new knowledge is generated on
the Internet every day, which can be used to further im-
prove the performance of existing pre-trained cross-modal
models. Therefore, in this paper, we consider the training
of large-scale cross-modal pre-trained models as an online
learning problem [17, 56, 57] with continuous image-text
pairs as input. Different from the standard continual learn-
ing setting [59, 55, 22, 31, 2, 7], the previous image-text
pairs can also be achieved in our setting since we assume
the size of training data is gradually increased over time.

One tough problem in the online learning scenario is that
the model capacity should be related to the size of training
data [16, 69, 29, 26]. For example, it’s observed that large
ViT models perform worse than ResNets when pre-trained
on small datasets, while the result is opposite when they are
both pre-trained on larger datasets [16]. To verify the re-
lationship between model capability and data size, we split
Conceptual 12M (CC12M) dataset [9] and test the perfor-
mance of ViT-B/16 with different scales [52]. As shown in
Table 1, the relative performance ranking is dependent on
the size of the training data. Given a smaller dataset (e.g.,
10% CC12M), the performance of 0.5-ViT-B/16 is compa-
rable with ViT-B/16. In contrast, when data is sufficient
(e.g., 100% CC12M), the performance of ViT-B/16 is bet-
ter than the smaller model. Thus, the unchanged model is
not practical for this real-time learning setting and it’s still
an open issue on how to modify and train our model with
the growing data. Besides, how to efficiently make use of
knowledge of previous model when new data is coming re-
mains an open problem. One direct solution is to fine-tune
the model with the updated training dataset. However, train-
ing with previous pre-trained parameters of the same model
will deteriorate the performance [4] due to the parameter
inheriting issue. As shown in Figure 1, the CLIP training
with pre-training (TWP) have worse performance than the
one training from scratch (TFS).

To address the above issues, we propose a data-aware au-
tomatic model growing method (denoted as GrowCLIP) for
large-scale contrastive language-image pre-training, which

performs a model growth process considering the grad-
ually increased pre-training data. Specially, when train-
ing data grows dynamically, we adopt different cross-
modal network architectures via the customized neural ar-
chitecture search (NAS) to make the network pre-training
more efficient. Different from traditional NAS approaches
[70, 53, 64], we introduce a cross-modal customized NAS
by defining a dynamic search space named growth space,
which is enlarged when more data comes, and proposing a
shared encoder search space to enhance the degree of cross-
modal fusion. To utilize the architecture at the previous step
more efficiently, the parameters of the new architecture are
also inherited from the old one with momentum to maintain
the previous knowledge and address the issue of local min-
imum dilemma. Finally, growth architecture selection pro-
cedure is performed to select the optimal model architecture
at each step, considering the performance and model size.

Experiments are conducted by averagely dividing the
Conceptual 12M (CC12M) into 4 growth steps under the
online learning setting. As depicted in Table 1, compared
with the existing methods, our GrowCLIP has the best per-
formance and is more efficient. Specially, experimental re-
sults show that our GrowCLIP can improve up to 2.3% av-
erage top-1 accuracy on zero-shot image classification of 9
downstream tasks compared with the existing methods. As
for zero-shot image-text retrieval, GrowCLIP has a 1.2%
improvement for top-1 image-to-text recall on Flickr30K
[50] dataset and 0.8% on MSCOCO [40].

To summarize, the contributions of this paper are listed
as follows: (i) To adapt to the growing data scenario, we
propose a data-aware automatic model growing method,
named GrowCLIP. (ii) We provide some insights for the
design of cross-modal model architecture. (iii) The exten-
sive experiment results illustrate the effectiveness of our ap-
proach on zero-shot classification and retrieval tasks.

2. Related Work
Vision-Language Pre-training Models Inspired by

the success of pre-training in computer vision (CV) and
natural language processing (NLP), a boosting number
of research works in the domain of vision-language pre-
training (VLP) has recently surged to pursue a uni-
fied multi-modality representation. Vision-language pre-
training trains the model on large-scale image-text pairs to
improve performance of downstream vision and language
tasks including image classification [14, 35, 32], retrieval
[50, 40], Image Captioning (IC) [43, 13, 27, 26], Visual
Question and Answer (VQA) [3, 46, 67] and so on. The
VLP model can be categorized into two categories: (i) The
dual-stream model, e.g., CLIP [52], ALIGN [28], FILIP
[65], processes visual and textual tokens separately with
two parallel streams to acquire the representation and then
fuse them through interactive module. (ii) The single-
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stream model, e.g., Oscar [38], ViLT [30], VisualBERT
[37], directly combines the extracted visual and textual to-
kens and feeds them into the transformer-based model. The
public pre-training datasets of VLP model include available
datasets like YFCC100M [61] and CC12M [9]. CLIP [52],
ALIGN [28], FILIP [65] and LEMON [26] adopt large-
scale image-text pairs crawled from the web to show more
powerful models. Different from these works that treat this
process as offline learning, we investigate the online learn-
ing case in vision-language pre-training.

Online Learning Online learning is a problem setting
of machine learning in which data becomes available in
a sequential order [17, 56, 57]. Different from continual
learning [22, 31, 2, 7], online learning can reach previous
data all the time. As opposed to batch learning techniques
which generate the best model by learning on the entire
training dataset at once, online learning is used to update
our predictor for future data at each growth step. Follow
the leader [58] is the simplest learning rule which assumes
the hypothesis that the leader has the least loss overall past
rounds. Follow the regularised leader [51] is a modifica-
tion variant and obtain better regret bounds by learning a
regularisation function. Online convex optimization [23] is
a general algorithm framework for decision making which
targets convex optimization. To adapt online learning sce-
nario, we propose a data-aware automatic model growing
algorithm that grows the model with increasing training
data.

Neural Architecture Search Neural Architecture
Search (NAS) aims to automatically design the state-of-the-
art neural networks. Early works [70, 54, 60] are based on
reinforcement learning and evolutionary algorithms. In the
later work, various techniques are used to reduce the com-
putational complexity. Gradient-based methods [42, 41] re-
gard the network architecture as a set of parameters and
adopt back-propagation algorithm to optimize them. One-
shot NAS methods [49, 10, 20] train a supernet to avoid
training each subnet from scratch. Unfortunately, one-shot
NAS methods have to spend lots of resources to train the
supernet. In contrast, the method we propose inherits the
parameters of the old model with momentum, which only
takes few epochs to train the supernet. Furthermore, Grow-
CLIP can modify the neural architecture to adapt to the size
of the training data.

3. Methodology
In this section, we describe the online learning problem

setting and its challenges for cross-modal pre-training (Sec-
tion 3.1). To adapt the growth data, we propose a dynamic
growth space, including a proposed shared encoder (Sec-
tion 3.2). To rise to the challenge of the local minimum
dilemma, we propose parameter inheriting with momentum
(Section 3.3). The whole pipeline of our method is illus-

trated in Section 3.4.

3.1. Problem Setting and Challenges

Problem Setting The target of online learning is ob-
taining the optimal model at each growth step of the data.
Let Dt−1 = {xI

i ,x
T
i }ki=1 be the training data at growth step

t − 1, where xI and xT are image and text samples and k
is the training data size. At the next growth step t, the en-
larged training dataset Dt satisfies Dt−1 ⊆ Dt due to the
incoming data. Given an optimal model from growth step
t−1, our aim is to achieve the optimal model (with optimal
architecture ψ∗ and parameters ω∗) based on the enlarged
dataset Dt:

{ψ∗,ω∗} = argmin
ψ,ω

L(ψ,ω;Dt). (1)

Challenge of Data Growth As discussed in Table 1,
the size of the training dataset is related to the optimal archi-
tecture selection. Given a smaller dataset, the small-scale
architecture has comparable performance to large-scale ar-
chitecture but fewer parameters are deployed. When data
grows, the small-scale architecture may limit the final per-
formance due to the limited parameters. However, few
works notice the effect of data size in online learning set-
tings.

Challenge of Parameter Inheriting As investigated,
the performance of model trained from scratch is much bet-
ter than trained with pre-training. This is probably caused
by the influence of the inheriting parameters trained with
the previous smaller dataset, which makes it difficult for
the model to escape from the local minima in the grown
dataset. However, training from scratch is costly due to
multiple growth steps in online learning. The balance be-
tween training from scratch and training with pre-training
is worthy of consideration.

To solve the above problems, we propose an automatic
model growing method - GrowCLIP (shown in Figure 2),
which can modify the neural architecture at different growth
steps in online learning case. To adapt to the growing data
scenario, we propose a growth space for each growth step,
where the scale of architecture candidates among this space
is larger when data grows. To alleviate the parameter inher-
iting issue with efficiency, we perform parameter inherit-
ing with momentum such that the trade off between training
from scratch and training with pre-training is balanced.

3.2. Growth Space

Model Architecture Following the basic neural archi-
tecture in CLIP [52], we adopt a dual-stream model with
image encoder f(·) and text encoder g(·). To adapt the
cross-modality scenarios, we propose a shared encoder h(·),
in which the image and text share the transformers except
layernorm layers. The shared encoder not only can reduce
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Figure 2. The overview of GrowCLIP. As shown in Figure (a), when the data grows from growth step t − 1 to growth step t, our model
grows adaptively as well. Figure (b) illustrates the detail of model growing and we simplify the representation of model architecture.

model parameters, but also enhance the degree of cross-
modal fusion. Given an image xI

i and a text xT
j , the model

outputs the image representations Ii = h(f(xI
i )) and text

representations Tj = h(g(xT
j )). The similarity score com-

putation of between image xI
i and text xT

j is:

si,j = h(f(xI
i ))

⊤h(g(xT
j )), (2)

where si,j denotes the similarity of the i-th image to the j-th
text.

In each training batch, we sample n image-text pairs
{xI

i ,x
T
i }ni=1 from the dataset. For image xI

i in the image-
text pair < xI

i ,x
T
i >, xT

i is its positive, while the other
texts will be used as in-batch negatives. The image-to-text
contrastive loss LI

i for xI
i can be formulated as:

LI
i

(
xI
i , {xT

j }nj=1

)
= − 1

n
log

exp(si,i)∑
j exp(si,j)

, (3)

Similarly, the text-to-image contrastive loss for xT
i is:

LT
i

(
xT
i , {xI

j}nj=1

)
= − 1

n
log

exp(si,i)∑
j exp(si,j)

, (4)

Totally, the contrastive loss of this mini-batch can be repre-
sented by L = 1

2

∑a
i=1

(
LI
i + LT

i

)
.

Growth Space of image encoder For the image en-
coder, we adopt a mixed architecture of convolutional layer
and transformer block [62]. There are three variable factors
in our growth space design: (i) the number of convolutional
layers lI ; (ii) the number of transformer blocks bI ; (iii) the
number of transformer heads hI .

Growth Space of text encoder The text encoder part
is a transformer-based architecture, whose growth space in-
cludes two variable factors: (i) the number of transformer
blocks bT and (ii) the number of transformer heads hT .

Growth Space of shared encoder The shared encoder
is a transformer-based architecture, whose growth space in-
cludes the number of transformer blocks bS .

Image encoder Text encoder Shared encoder

Transformer blocks {bIt−1, bIt−1 + 4} {bTt−1, bTt−1 + 4} {bSt−1, bSt−1 + 4}
Transformer heads {hI

t−1, hI
t−1 + 4} {hT

t−1, hT
t−1 + 4} -

Convolutional layers {lIt−1, lIt−1 + 2} - -

Table 2. The growth space Φ of GrowCLIP at the growth step t.
bIt−1, bTt−1, bSt−1, hI

t−1, hT
t−1, lIt−1 are the hyperparameters of

model architecture at growth step t− 1.

The detailed descriptions of growth space for three en-
coders are shown in Table 2. At each new growth step,
the variable factors are enlarged to adapt the growth data.
Specifically, the numbers of transformer blocks and trans-
former heads are both increased by 4, and the number of
convolutional layers is increased by 2.

3.3. Parameter inheriting with momentum

Some previous papers utilize the training results of the
old model and transfer the knowledge to the new model
[18, 19, 25, 4, 34]. Inspired by the above methods, we pro-
pose parameter inheriting with momentum (PIM) to avoid
local minimum dilemma. The illustration of our parameter
inheriting with momentum is shown in Figure 3. To pre-
serve the knowledge from the old model, we extend the size
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Figure 3. Take image encoder for example of our proposed pa-
rameter inheriting with momentum. As for the initialization of
the enlarged model, we preserve the existing parameters of the old
model for exploitation and combine it with random initialization
for exploration.

of the old model to the enlarged model and maintain the
parameters in existing parts. As for the extended layers,
we copy the parameters from the last layers directly. ωold

denotes the parameters of extension of the old model. Be-
sides the above parameter inheriting term, we also add a
re-initialization term with randomly initialized parameters
ωrand to avoid the parameter inheriting issue. The final ini-
tialized supernet is a combination of the above two terms as
follows:

ωinherit = β · ωold + γ · ωrand, (5)

where β and γ are two hyperparameters related to exploita-
tion and exploration. Additionally, the parameters of new
transformer heads are randomly initialized, which makes
that different heads in transformer are orthogonal and the
new heads learn new features from different perspectives.

3.4. Growth Pipeline

The growth pipeline at growth step t (except the first one)
includes three sequential phases as shown in Figure 2 (b) .

Phase 1: Supernet Fine-tuning As for a new growth
step, a supernet Ψ covering the whole growth space is con-
structed by enlarging the current model. First, we use the
PIM method described in Section 3.3 to initialize the su-
pernet. However, there are some newly added layers in the
supernet compared with the old model from the last growth
step, which brings a performance gap between the subnets
with new layers and others. To make the supernet more ro-
bust, we slightly fine-tune the parameters of the full super-
net for a few epochs to mitigate the performance gap among
subnetworks after PIM initialization.

Phase 2: Growth Architecture Selection Growth Ar-
chitecture Selection (GAS) is the main phase in our algo-
rithm where we select the optimal architecture in the growth
space. The whole GAS process can be divided into two
steps: training and searching.

First, to find the optimal architecture ψ∗, we need to
fully optimize all the subnet in the supernet, which covers
all the candidate growth architecture:

ω∗
super = argmin

ωsuper

Eψ∈Ψ {L(ψ,ωsuper;Dt)}. (6)

Inspired by one-shot neural architecture search [8], we opti-
mize ωsuper in Equation 6 by uniformly sampling subnets ψ
from the growth space Φ and update the parameters of the
sampled subnets in each iteration. More specifically, at each
step, we first randomly sample a subnet ψ from the growth
space Ψ, then optimize the parameter of this subnet by min-
imizing the contrastive loss between image and text. This
can be considered as solving Equation 6 via Monte Carlo
sampling. By iterative training, these subnets can be fully
optimized in a few epochs.

Second, after training the supernet, we search for the op-
timal subnet in the growth space Φ. Here, we consider both
the performance and the number of parameters of the ar-
chitecture, and select the optimal architecture ψ∗ using the
composite metric:

ψ∗ = argmax
ψ∈Ψ

{
A(ψ) + α

N t−1

N t

P(Ψ)

P(ψ)

}
, (7)

where A(·) is the top-1 accuracy of test dataset, N t denotes
the number of data on growth step t, P(·) represents the
total amount of model parameters and α is the trade-off hy-
perparameter. When we get a large number of new coming
data, N t−1

N t will get small, which means that we focus more
on the performance and encourage the growth of models.
As our growth space is relatively small, traversal evaluation
of all the candidate architectures is affordable. Therefore,
we simply test all candidate subnets in the growth space Φ
using the parameters inherited from the supernet Ψ and se-
lect the optimal one for the next stage via the composite
metric of Equation 7.

Phase 3: Selected Model Training To alleviate the
influence of supernet training on the grown model, we also
use PIM to initialize the parameter ω of selected modelψ∗:

ω = β · ω∗
super + γ · ωrand. (8)

After the parameter inheriting, we keep training the selected
model, to obtain its final optimal parameters:

ω∗ = argmin
ω

L(ψ∗,ω;Dt). (9)

4. Experiments
In this section, we firstly describe the experiment setting

and implementation details (Section 4.1). Then we show
the results on zero-shot image classification (Section 4.2)
and image-text retrieval (Section 4.3). Finally, we conduct
ablation study on our GrowCLIP to validate the effective-
ness of components (Section 4.4) and analyse (Section 4.5).

4.1. Experiment Setting

Benchmark Protocol Conceptual 12M (CC12M) [9]
collects about 12 million image-text pairs from the Internet.
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Step 1

CLIP (TWP) 3M 149.6M 42.8 37.6 14.5 10 9.3 16.1 21.6 22.0 14.0 20.9
CLIP (TFS)[52] 3M 149.6M 42.8 37.6 14.5 10 9.3 16.1 21.6 22.0 14.0 20.9

MS-CLIP (TFS)[21] 3M 129M 47.1 35.5 14.4 10.0 12.9 17.3 30.1 24.7 18.1 23.3
CLIP (SAP)[4] 3M 149.6M 42.8 37.6 14.5 10 9.3 16.1 21.6 22.0 14.0 20.9

NAS-S1 3M 30.0M 40.5 31.2 13.3 9.0 8.9 15.8 20.2 23.2 13.7 19.5
GrowCLIP-S1 (ours) 3M 30.0M 40.5 31.2 13.3 9.0 8.9 15.8 20.2 23.2 13.7 19.5

Step 2

CLIP (TWP) 6M 149.6M 50.3 36.1 16.0 11.3 12.4 21.2 27.1 25.8 17.9 24.2
CLIP (TFS)[52] 6M 149.6M 58.5 52.0 22.3 12.1 13.1 25.0 33.6 30.1 20.9 29.7

MS-CLIP (TFS)[21] 6M 129M 60.6 50.0 18.3 13.4 17.4 27 42.4 32.6 25.2 31.8
CLIP (SAP)[4] 6M 149.6M 61.9 49.0 21.4 12.4 15.5 24.6 35.4 31.6 22.6 30.5

NAS-S2 6M 96.9M 59.4 41.8 18.3 13.3 15.8 26.7 37.3 33.8 24.4 30.1
GrowCLIP-S2 (ours) 6M 116.6M 57.7 48.0 21.2 13.7 18.0 29.5 39.5 34.5 25.7 32.0

Step 3

CLIP (TWP) 9M 149.6M 55.2 40.1 19.7 13.1 15.7 23.8 30.9 28.9 20.4 27.5
CLIP (TFS)[52] 9M 149.6M 63.3 54.6 24.5 14.5 17.5 29.5 36.9 33.8 25.3 33.3

MS-CLIP (TFS)[21] 9M 129M 65.0 48.2 22.5 13.9 20.6 31.0 42.6 35.7 29.2 33.0
CLIP (SAP)[4] 9M 149.6M 67.8 53.9 26.7 15.1 21.2 32.9 41.4 36.0 28.2 35.9

NAS-S3 9M 287.4M 66.7 46.8 22.2 14.9 19.7 35.4 46.1 39.3 30.1 35.8
GrowCLIP-S3 (ours) 9M 168.6M 69.6 53.9 25.8 18.4 18.7 36.3 46.2 41.6 32.6 38.1

Step 4

CLIP (TWP) 12M 149.6M 57.5 44.4 20.5 12.1 14.2 24.1 34.7 30.3 22.2 28.9
CLIP (TFS)[52] 12M 149.6M 65.9 57.3 29.7 16.3 18.5 32.9 45.5 36.7 28.3 36.8

MS-CLIP (TFS)[21] 12M 129M 65.3 50.9 26.3 16.2 21.9 35.9 50.1 38.4 32.0 37.4
CLIP (SAP)[4] 12M 149.6M 69.8 60.6 31.9 12.4 21.0 36.7 47.0 40.4 32.2 39.1

NAS-S4 12M 325.9M 70.8 53.9 28.3 16.7 21.7 39.5 51.2 41.3 34.2 39.7
GrowCLIP-S4 (ours) 12M 188.4M 71.9 60.7 28.3 17.3 23.3 42.5 52.4 45.5 36.1 42.0

Table 3. Top-1 accuracy(%) of zero-shot image classification on 9 datasets. Our GrowCLIP outperforms the baseline methods in terms of
average top-1 accuracy over 9 datasets at each growth step except step 1.

The CC12M is randomly divided into 4 subsets. We select
one subset as the training set for the first growth step and
adds one subset to the training set at each subsequent growth
step such that there are total 4 growth steps in our experi-
ments. At each growth step, we evaluate the corresponding
model on the downstream tasks including zero-shot image
classification and zero-shot image-text retrieval. The grown
architecture of each growth step is shown in Appendix.

Comparison Methods To demonstrate the effective-
ness of our method, we compare it with the following
baselines: (i) Training with pre-training (TWP) is a usual
method in transfer learning. (ii) Training from scratch
(TFS) [52] is used as a basic method to train language-
image pre-trained model. (iii) MS-CLIP [21] is a hand-
crafted framework with a shareable module and modality-
specific auxiliary module (the early specialization). (iv) The
shrink and perturb (SAP) [4] is a method of parameter in-
heriting in warm-starting learning. (v) Neural architecture
search (NAS) [49, 10] is an important research field of auto
machine learning, in which we use the same search space as
the growth space of GrowCLIP.

Implementation Details A dual-stream model follow-

ing CLIP [52] without shared encoder is used as basic ar-
chitecture at the first growth step. The image encoder is
stacked with 6 transformer blocks with the following hy-
perparameters: number of self-attention heads is 6 and the
hidden layer size is 384. As for the text encoder, 6 trans-
former blocks are stacked and the number of the attention
heads and the width are 4 and 256 respectively. The resolu-
tion of input in the images encoder is resized to 224 and the
maximum sequence in the text encoder is limited to 77. The
center crop is the only data augmentation method for train-
ing. We use the prompts like CLIP1 on the zero-shot image
classification. We adopt LAMB optimizer [66] with learn-
ing rate 0.01 and weight decay 0.0001, and cosine learning
rate schedule [45] with a 4000-iteration linear warmup. For
the hyperparameters, the proportion of the old model and
the new one in the parameter inheriting β = 0.3, γ = 0.001.
The model parameter coefficient in growth architecture se-
lection α = 0.5. We train the model with a total batch
size of 1536 for 30 epochs at each growth step, which in-
cludes 2 epochs for supernet fine-tuning, 2 epochs for su-

1https://github.com/openai/CLIP/blob/main/data/
prompts.md
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Growth step Method
Flickr30K MSCOCO

image-to-text text-to-image image-to-text text-to-image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Step 1

CLIP (TWP) 19.6 45.3 56.4 14.3 33.5 44.1 10.7 26.3 36.8 7.0 19.1 27.5
CLIP (TFS) [52] 19.6 45.3 56.4 14.3 33.5 44.1 10.7 26.3 36.8 7.0 19.1 27.5

MS-CLIP (TFS)[21] 27.4 51.8 63.3 18.1 39.2 50.7 12.9 31.9 43.2 8.8 23.5 33.1
CLIP (SAP) [4] 19.6 45.3 56.4 14.3 33.5 44.1 10.7 26.3 36.8 7.0 19.1 27.5

NAS-S1 22.8 45.2 57.8 13.5 34.2 46.0 10.6 27.4 37.5 7.0 19.9 28.8
GrowCLIP-S1 (ours) 22.8 45.2 57.8 13.5 34.2 46.0 10.6 27.4 37.5 7.0 19.9 28.8

Step 2

CLIP (TWP) 26.6 51.0 62.0 17.4 39.8 50.7 12.8 30.5 40.8 8.3 22.5 31.9
CLIP (TFS) [52] 31.4 57.7 68.1 21.2 46.7 57.1 17.1 37.4 48.7 10.9 27.3 37.4

MS-CLIP (TFS)[21] 35.8 65.1 75.0 25.8 53.1 64.6 19.3 43.0 55.2 13.1 31.5 42.6
CLIP (SAP) [4] 33.6 60.9 72.0 24.1 48.2 59.3 17.1 38.0 50.2 10.9 28.0 28.1

NAS-S2 36.9 63.0 74.0 25.2 51.7 62.3 18.4 41.6 53.7 12.9 30.9 41.7
GrowCLIP-S2 (ours) 37.5 63.7 74.2 25.9 51.1 62.8 19.1 42.8 54.7 12.9 30.8 41.9

Step 3

CLIP (TWP) 28.3 54.4 66.6 20.6 42.2 54.7 14.4 34.1 45.0 9.6 25.2 34.9
CLIP (TFS) [52] 37.5 63.5 74.2 26.0 52.1 64.0 19.7 43.2 55.1 13.3 31.8 42.6

MS-CLIP (TFS)[21] 40.0 67.7 78.2 29.8 57.0 68.8 22.9 47.9 59.1 15.3 35.2 46.6
CLIP (SAP) [4] 40.7 68.0 78.3 28.1 55.3 67.1 22.8 45.7 58.8 14.2 33.4 44.6

NAS-S3 43.2 72.8 80.7 32.1 59.9 70.2 23.4 48.3 61.0 15.7 36.8 48.3
GrowCLIP-S3 (ours) 44.6 73.1 80.7 33.2 60.7 70.9 23.5 48.8 61.0 15.8 36.9 48.4

Step 4

CLIP (TWP) 30.2 56.3 66.3 21.7 46.6 57.6 15.6 36.2 47.8 10.4 26.5 36.9
CLIP (TFS) [52] 41.5 68.6 80.0 30.0 56.9 68.0 21.8 45.5 57.3 14.3 33.8 45.1

MS-CLIP (TFS)[21] 44.3 72.8 81.1 32.6 61.3 72.1 25.2 50.5 62.0 16.6 37.7 49.0
CLIP (SAP) [4] 46.9 74.7 83.7 33.7 61.3 72.1 25.2 50.8 62.8 16.6 37.4 49.1

NAS-S4 49.6 75.2 83.3 37.0 65.2 75.4 26.8 53.0 64.6 17.7 39.6 51.5
GrowCLIP-S4 (ours) 50.8 75.8 84.0 37.2 65.3 76.2 27.6 53.2 64.9 18.1 40.3 52.0

Table 4. Results of zero-shot image-text retrieval on Flickr30K and MSCOCO datasets. R@K means top-K recall.

pernet training and 26 epochs for grown model training.
For the baselines, the CLIP adopts the same usual architec-
ture (ViT-B/16), which has 12-layer 768-wide transformer
blocks with 12 attention heads for image encoder and 12-
layer 512-wide transformer blocks with 8 attention heads
for text encoder and are trained for 30 epochs. For NAS,
we first train the supernet for 30 epochs to select the best
architecture, and then train the selected model from scratch
for another 30 epochs. All experiments are performed on
16 NVIDIA Tesla V100 GPUs.

4.2. Zero-shot Image Classification

At each growth step, we evaluate the model on zero-
shot image classification task. The downstream datasets in-
cludes 9 typical settings, Caltech101 [35], CIFAR10 [32],
CIFAR100 [32], Describable Textures Dataset (DTD) [12],
Flowers102 [47], Food101 [6], OxfordPets [48], SUN39 [5]
and ImageNet [14]. We apply prompt ensemble evaluation
like CLIP for each dataset. Results are given in Table 3. Our
model performs growth process at each growth step except
step 1, where the parameter grows from 30.0M to 188.4M .
It outperforms the baseline methods in terms of average top-
1 accuracy over 9 datasets at the last three growth steps. For
example, at the third growth step, our model improves the
average top-1 accuracy from 35.9% to 38.1% (+2.2%).

4.3. Zero-shot Image-Text Retrieval

The zero-shot image-text retrieval consists of two sub-
tasks: image-to-text retrieval and text-to-image retrieval.
We evaluate the model of each growth step on two re-
trieval benchmark datasets: Flickr30K [50] and MSCOCO
[40]. As shown in Table 4, our model gets better as model
grows and data grows. At the last two growth steps, it can
be observed that our method has great performance on all
metrics. Particularly, our method improves from 49.6% to
50.8% (+1.2%) for top-1 image-to-text recall on Flickr30K
dataset and from 26.8% to 27.6% (+0.8%) on MSCOCO at
the last growth step.

4.4. Ablation Study

Here, we conduct the ablation study on our GrowCLIP.
All experiments are built at the growth step 2 and we eval-
uate the models on zero-shot image classification of Ima-
geNet. To verify the effectiveness of each module in our
proposed GrowCLIP, we conduct ablation experiments at
some core steps mentioned in Section 3.4 as follows. (i)
Parameter inheriting with momentum in phase 1 (PIM@1).
(ii) Supernet fine-tuning in phase 1 (ST). (iii) Growth ar-
chitecture selection in phase 2 (GAS). (iv) Parameter in-
heriting with momentum in phase 3 (PIM@3). The accu-
racy on zero-shot image classification of ImageNet is re-
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PIM@1 ST GAS PIM@3 Para. Acc.

✓ ✓ ✓ ✓ 116.6M 25.7
✓ ✓ ✓ ✗ 116.6M 24.5
✓ ✓ ✗ ✗ 109.5M 22.6
✓ ✗ ✗ ✗ 109.5M 21.1
✗ ✗ ✗ ✗ 109.5M 20.8

Table 5. Ablation analysis of each module in GrowCLIP at Growth
Step 2. (Para.: parameter of the model. Acc.: top-1 accuracy (%)
of zero-shot image classification on ImageNet.)

Para. Acc.

CLIP-ViT-B/16 (TFS) 149.6M 28.3
CLIP-ViT-L/16 (TFS) 431.1M 29.9
GrowCLIP-S4 (TFS) 188.4M 33.3
GrowCLIP-S4 (ours) 188.4M 36.1

Table 6. Ablation analysis of GrowCLIP-S4.

ported for comparison and the results of the ablation study
are shown in Table 5. As can be seen, all above four compo-
nents have positive effects on the final results. Specifically,
the supernet training will influence the grown model with-
out PIM@3, which results in 1.2% drop. Compared with
GAS method, we randomly choose an architecture in the
growth space, which has a worse performance from 24.5%
to 22.6%. With ST, we observe a remarkable improvement
of 1.5%. GrowCLIP with PIM@1 solves the problem of
local minimum dilemma and brings a 0.3% improvement.

4.5. Analysis

Why can GrowCLIP improve the performance?
Compared with baseline models, the gains of our Grow-
CLIP come from two folds: (i) GrowCLIP can search the ar-
chitecture that matches the current data with Growth archi-
tecture selection (GAS). (ii) Parameter inheriting with mo-
mentum (PIM) benefits GrowCLIP from yesterday’s model.
To demonstrate their effectiveness, we train the architecture
selected by GrowCLIP at step 4 from scratch, and the re-
sult is shown in Table 6. Compared with ViT-B/16, the
growth architecture selection can bring 5% improvement on
zero-shot image classification of ImageNet. Furthermore,
it is even better than ViT-L/16, which is two and a half
times as big as our model. More experiments have proved
the effectiveness of GAS in the appendix. Comparing our
GrowCLIP-S4 with GrowCLIP-S4 (TFS), we observe a re-
markable improvement of 2.8% with PIM.

Why can GrowCLIP improve the training efficiency?
Our GrowCLIP can improve training efficiency, due to GAS
and PIM, and the result is shown in Table 7. (i) Com-
pared with the fixed architecture method, GrowCLIP has
a smaller model with the GAS, so we reduce training costs

Para. Acc. Epoch Cost

CLIP-S2(TFS) 149.6M 20.9 30 336
GrowCLIP-S2 (ours) 116.6M 25.7 30 288

GrowCLIP-S4 (TFS) 188.4M 33.3 30 1230
GrowCLIP-S4 (ours) 188.4M 33.3 9 722

NAS-S4 325.9M 34.2 60 5280
GrowCLIP-S4 (ours) 188.4M 36.1 30 1583

Table 7. Efficiency analysis. (Cost: GPU hours)

Para. Acc.

GrowCLIP-S1 431.1M 14.6
GrowCLIP-S2 431.2M 26.2

Table 8. The architecture of GrowCLIP-S1 with bigger initialized
model (ViT-L/16).

at the early steps (48 GPU hours saved at step 2). At the
later steps, GrowCLIP uses fewer epochs to achieve good
performance because of PIM. As shown in Figure 1, Grow-
CLIP has far outperformed CLIP (TFS) only after supernet
training. To demonstrate the effectiveness of PIM, we com-
pare GrowCLIP-S4 with GrowCLIP-S4 (TFS). GrowCLIP
only uses 9 epochs to achieve comparable performance with
PIM. (ii) Compared with the NAS method, GrowCLIP in-
herits the parameters of the old model with momentum,
which only takes 2 epochs to fine-tune the supernet and
2 epochs to train the supernet. In contrast, one-shot NAS
methods consume about 3.3X resources.

Can GrowCLIP find the relationship between model
and data? When the model scale is sufficient large, there
is no need to enlarge the model. We conduct the experiment
started from ViT-L/16. And the result in Table 8 shows that
the larger model startpoint hardly grows at step 2, which
means that our GrowCLIP can find the relationship between
the model and data. In our online learning scenario, the ini-
tial architecture of the model is not important due to our
growth pipeline. If the model scale is smaller at the be-
ginning, GrowCLIP will select a larger enough model for
growth. In contrast, if the model scale is too large initially,
GrowCLIP will stop growing.

What is the influence when growth happens in differ-
ent dimensions? As shown in Table 9, different growth
dimensions have different influences on the performance.
By analyzing the experimental results, we conclude 4 laws,
which can provide a reference for the design of cross-modal
model architecture: (i) Enlarging the smaller model bring
a greater improvement than the bigger one. For example,
when the growth appears in transformer blocks in the image
encoder, the accuracy can gain 0.93% improvement at step
2 but only 0.12% at step 4. (ii) We need to leave the image
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Step 2 Step 3 Step 4

Dimension Para. Acc. Para. Acc. Para. Acc.

+ 4 bI +7.1M +0.93 +19.7M +0.46 +19.7M +0.12
+ 4 hI +20.1M +0.34 +67.3M +0.12 +105.1M +0.03
+ 2 lI +0.1M +0.84 +0.1M +0.07 +0.1M +0.10
+ 4 bT +3.2M +0.01 +12.6M +0.08 +12.6M +0.01
+ 4 hT +27.0M +0.22 +45.0M +0.01 +69.5M -0.04
+ 4 bS +7.1M +1.03 +19.7M +0.19 +19.7M -0.07

Table 9. The ablation of growth space corresponding to different
dimensions. (+ 4 bI : the number of transformer blocks in image
encoder is increased by 4)

encoder with more capacity. Compared with text encoder,
the improvement of growing the image encoder is more sig-
nificant at each step. (iii) The convolutional layers is a very
important component in the image encoder, which can help
the model to better extract visual feature. (iv) The shared
encoder can enhance the degree of cross-modal fusion and
bring a remarkable improvement. However, do not use a
large number of transformers in the shared encoder, or the
model become redundant with no noticeable performance
improvement.

5. Conclusion
In this paper, we study the online learning case in cross-

modal pre-trained models. The small-scale architecture
may limit the final performance due to the limited param-
eters when data grows. Based on this real-world scenario,
we propose a data-driven automatic model growing algo-
rithm for language-image pre-training - GrowCLIP, which
upgrades the model size when abundant new data arrives.
We adopt parameter inheriting with momentum (PIM) to
utilize the knowledge in yesterday’s model and seek out the
optimal growth architecture at each growth step with growth
architecture selection (GAS). GrowCLIP improves the per-
formance on downstream tasks, including zero-shot image
classification and retrieval. The effectiveness of each com-
ponent of GrowCLIP is proved on ablation studies. And
we provide a reference for the design of cross-modal model
architecture.

Limitations In this work, we only prove the effec-
tiveness of GrowCLIP with public pre-training dataset -
CC12M. In future works, we will extend our method to a
real-world scenario, where the VLP model keeps training
with constantly updated data crawled from the web.
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