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Abstract

In Video Object Detection (VID), a common practice is
to leverage the rich temporal contexts from the video to en-
hance the object representations in each frame. Existing
methods treat the temporal contexts obtained from different
objects indiscriminately and ignore their different identities.
While intuitively, aggregating local views of the same object
in different frames may facilitate a better understanding of
the object. Thus, in this paper, we aim to enable the model
to focus on the identity-consistent temporal contexts of each
object to obtain more comprehensive object representations
and handle the rapid object appearance variations such as
occlusion, motion blur, etc. However, realizing this goal
on top of existing VID models faces low-efficiency prob-
lems due to their redundant region proposals and nonpar-
allel frame-wise prediction manner. To aid this, we propose
ClipVID, a VID model equipped with Identity-Consistent
Aggregation (ICA) layers specifically designed for mining
fine-grained and identity-consistent temporal contexts. It
effectively reduces the redundancies through the set pre-
diction strategy, making the ICA layers very efficient and
further allowing us to design an architecture that makes
parallel clip-wise predictions for the whole video clip. Ex-
tensive experimental results demonstrate the superiority of
our method: a state-of-the-art (SOTA) performance (84.7%
mAP) on the ImageNet VID dataset while running at a speed
about 7× faster (39.3 fps) than previous SOTAs.

1. Introduction
Video Object Detection (VID) aims to recognize and lo-

calize the objects in all frames given a video clip. It is a
challenging task as it must handle the complex appearance
variations of video objects, caused by motion blur, occlu-
sion, rotation, unusual poses, and deformable shapes, etc.
To tackle these issues, prior works [16, 26, 27, 53] utilize a
set of support frames (e.g., neighboring frames of the target
frame), which provide rich temporal contexts, to guide the
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Figure 1. Illustration of the temporal context aggregation in a typ-
ical VID method [45]. The region proposals from the support
frames (dashed boxes) are treated indiscriminately regardless of
their object identities. However, to detect the cat in the target
frame, the region proposals with red dashed boxes should provide
more relevant information, as they are obtained from the same cat.

object detection in the target frame. For example, [52, 43, 3]
build grid-level relations between the feature maps of the
support frames and the target frame to propagate temporal
contexts. More recent SOTA methods [45, 8, 19, 10, 28]
adopt object-level relation modules [24] to leverage the re-
gion proposals extracted from long-range support frames to
enhance the object representations in the target frame.

However, as shown in Figure 1, the temporal contexts
from the support frames usually contain irrelevant and noisy
information that may negatively affect the object represen-
tations. E.g., when detecting the cat in the target frame, the
yellow boxes in the support frames only provide informa-
tion from different objects and even from the background.
On the other hand, the red boxes are different local views
of the same cat, showing it from various perspectives. Intu-
itively, incorporating these local views into a unified repre-
sentation could lead to a more comprehensive understand-
ing of the object, and further facilitate the model to deal
with the rapid variations of the object appearance. Unfortu-
nately, existing methods make no distinction between these
two kinds of temporal contexts. In light of this, we propose
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an Identity-Consistent temporal context Aggregation (ICA)
approach, which aims to discover and utilize the local views
of each object to learn its global view to guide the detection.

To achieve this, a prerequisite is to ensure that the re-
gion proposals extracted from support frames have a high
recall rate for the video objects, so that each object in the
target frame can find its identity-consistent temporal con-
texts from them. This requires existing methods to extract a
large number of region proposals (e.g., 300) from each sup-
port frame due to the redundant predictions made by their
base detectors [11, 35]. However, the computation com-
plexity of the object relation module is usually quadratic to
the total number of region proposals in the video. There-
fore, existing methods have to lower the number of region
proposals extracted from the support frames to make the
computation feasible, decreasing the recall rate of the video
objects and hampering the ICA process. Worse still, the low
recall rate also leads to a low detection performance on the
support frames. Thus, given an input video clip, existing
methods only make predictions for one target frame, while
the support frames are merely used as guidance. This non-
parallel behavior further hampers the model efficiency.

For these reasons, we build our VID model based on the
DETR [5] framework. Specifically, instead of generating a
large number of redundant object candidates, we represent
each object in a video frame with a learnable embedding,
a.k.a. “object query”, and iteratively incorporate its object-
related visual content from the frame representation and its
identity-consistent temporal contexts from the video into
the object query. Hungarian algorithm is used to perform
one-to-one bipartite matching between the object queries
and the ground-truth objects. In this way, the total number
of object queries can be typically less than 100 per frame,
which is an order of magnitude smaller than the number of
region proposals in previous methods. Thus, the whole de-
tection process can be achieved efficiently, further allowing
our model to perform parallel clip-wise predictions.

The proposed model, termed ClipVID, adopts a clean
backbone + Transformer decoder architecture. It first ex-
tracts features from each frame separately using a CNN-
based [22] backbone. Then, the object queries for all input
frames are adaptively generated and are fed into a Trans-
former decoder jointly to propagate the temporal contexts.
To perform identity-consistent temporal context aggrega-
tion, we assign each object query with an object iden-
tity, and additionally predict an identity embedding for it,
which is then adopted to select the object queries from other
frames that are close in the embedding space. These se-
lected object queries are considered to have the same object
identity and are fed into an ICA module to maintain the
identity consistency of the video objects. Finally, the ob-
ject queries from all frames are fed into the detection head
jointly to obtain their predictions in parallel.

When evaluated on the ImageNet VID dataset [37],
ClipVID achieves a significant performance improvement
in fast-moving objects, which are the type of objects that
suffers mostly from the appearance variations in a video,
e.g., motion blur, occlusion, and deformation. This further
leads to a state-of-the-art overall performance (84.7% mAP)
without the need for post-processing. Moreover, our model
is able to run at 39.3 fps, which is about 7× faster than re-
cent SOTAs. In summary, our contributions are three-fold:

1. We propose the ClipVID model which is able to lever-
age the identity-consistent temporal contexts to obtain
comprehensive representations for the video objects,
leading to a SOTA performance on the VID task.

2. The proposed ClipVID makes clip-wise predictions
for the VID task, i.e., detects the objects on all in-
put frames simultaneously, which is significantly faster
than previous frame-wise prediction methods.

3. We conduct extensive experiments to analyze the per-
formance of the proposed ClipVID model.

2. Related Works
Images Object Detection. Object Detection methods in
the image domain have developed rapidly over the years
[35, 17, 34, 11, 32, 29, 30, 41]. Among them, Faster RCNN
[35] is one of the most popular object detectors. In Faster
RCNN, a backbone CNN extracts the image representation
and then feeds it into a region-proposing stage to gener-
ate a large number of region proposals, followed by a de-
tection stage to classify and refine the proposals. Non-
maximum suppression (NMS) is required in both stages to
remove redundancy. Deformable convolution [12] and Re-
lation Network [24] are two useful approaches to boost ob-
ject detection performance. Specifically, deformable convo-
lution samples feature from dynamic locations to facilitate
a more aligned receptive field. Relation Networks applies
self-attention [42] among the region proposals to enhance
their features with contextual information.
Video Object Detection. Leveraging temporal contexts as
guidance has been proven to be beneficial for frame-wise
VID. In FGFA [52], estimated flow fields [15] are used to
wrap the features of neighbor frames to enhance the fea-
ture of the target frame. In STSN [3], deformable con-
volutions [12] are used to sample features from neighbor
frames to boost the target frame representation. STMM [46]
and PSLA [18] propagate temporal contexts from neigh-
bor frames through a recurrent feature map memory, which
communicates with the target frame through grid-level at-
tention. To acquire more semantically diverse temporal
contexts, [45, 38] adopt long-range support frames as guid-
ance, by feeding the region proposals in the target frame
and support frames together into a Relation Network [24].
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MEGA [8] and OGEMN [13] propose memory mecha-
nisms to utilize temporal contexts from both long-range and
neighbor support frames. HVR-Net [19] further consid-
ers cross-video proposal relations to exploit more diverse
temporal cues. TF-Blender [10] inserts a grid-level fusion
layer into MEGA to leverage fine-grained and diverse tem-
poral contexts. In contrast to previous methods where they
treat the temporal contexts from different objects indiscrim-
inately, we propose to capture the identity-consistent tem-
poral contexts for each object explicitly.

There have also been attempts to accelerate the
frame-wise VID methods through sparse computation
[6, 53, 50, 25], i.e., assigning more computation budgets
(e.g., using heavier backbones or larger frame resolutions)
to the keyframes in the video, and assigning fewer compu-
tation budgets to the non-key frames. These strategies can
also be applied to our model to further accelerate its speed.

End-to-End Detectors for Images/Videos. The end-to-
end object detector DETR [5] has drawn great attention re-
cently. The core idea is to use the Hungarian algorithm to
perform a one-to-one label assignment between the ground-
truth objects and a set of learnable object queries during
training. The DETR framework effectively removes the
need for many hand-crafted components like NMS and an-
chor generation. The main limitation of DETR is its low
convergence speed. To aid this, [51, 40] adopt guided atten-
tion which only selects a subset of locations from the feature
map to perform cross attention according to learned refer-
ence points/boxes. Moreover, these reference points/boxes
are updated iteratively at each decoder layer.

The DETR architecture has been applied to the video
domain. TransVOD [23] is a recently proposed DETR-
based model which is able to perform end-to-end video
object detection. However, it is still a frame-wise prediction
method and contains complex sub-modules to process the
support and the target frames, respectively. Differently,
the proposed ClipVID is a clean backbone + Transformer
decoder architecture that performs clip-wise prediction,
which is simple and efficient. VisTR [44] for Video In-
stance Segmentation (VIS) proposes an Instance Sequence
Matching strategy that addresses the object linking problem
in VIS. it imposes an assumption that the differences
between input frames are mild, which generally does not
hold in practice. Different from VisTR, the proposed ICA
can be used to link objects across frames, and is especially
effective in dealing with large appearance variations.

Multi-Object Tracking (MOT) is also an extensively stud-
ied problem in computer vision. SOTA methods in MOT are
dominated by the tracking-by-detection paradigm [9, 47, 4].
I.e., the objects on each frame are first detected using object
detectors like Faster RCNN, then associated together. In

other words, the bounding boxes of these objects are pre-
given and the tracker only needs to solve the association
task. Differently, VID focuses on generating high-quality
detection results on each frame with the help of temporal
contexts. Some MOT methods [2, 49, 48] perform detec-
tion and tracking jointly, where the detected object in pre-
vious frames are used to detect and associate the objects
in the current frame. Following this, a more recent work
[39] adopts the DETR framework and uses object queries
to detect objects at the current frame and associate them
with existing tracklets. However, the dependence on previ-
ous frames enforces these methods to perform frame-wise
prediction, which is inefficient.

3. Method

The architecture of the proposed method is shown in Fig-
ure 2. Given the input video clip, the proposed ClipVID first
extracts the frame features using a backbone network. Then,
ClipVID generates object queries adaptively for each frame
and inputs them into a Transformer decoder where the self-
attention operations process object queries from all frames
in a unified manner to propagate temporal contexts. Then in
the cross-attention operations, the object queries attend to
their corresponding frame features to retrieve object-related
visual contents. In the last several decoder layers, Identity-
consistent Aggregation is performed to aggregate identity-
consistent temporal contexts into each object query. A feed-
forward network (FFN) with a detection head is applied to
all object queries to make parallel clip-wise predictions.

3.1. Clip-wise Video Object Detection

ClipVID is an end-to-end video object detector with a
backbone + Transformer decoder architecture. We detail its
basic components as follows.

Backbone. Given a video clip of T input frames
x = {xi}Ti=1, xi ∈ RH0×W0×3, the backbone model
extracts a lower-resolution feature map from each frame,
following by a 1× 1 convolution layer to reduce its dimen-
sion to d. We denote the frame features as f = {fi}Ti=1,
where fi ∈ RH×W×d is for each frame. Unlike DETR,
we do not adopt a transformer encoder to further encode f
since it is memory-consuming to process the long feature
sequences (T ×H ×W ) of the video clip.

Adaptive Object Queries. To handle input video clips with
arbitrary frame lengths, a naive approach is to share a fixed
set of object queries across all frames, which may lead to
a low semantic diversity. Instead, we generate L object
queries adaptively for each frame conditioned on a learn-
able embedding matrix e ∈ RL×d, resulting in T × L ob-
ject queries in total, denoted by q = {qij ∈ R1×d|i ∈
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Figure 2. The overview of ClipVID. fi and q indicate the frame feature and the object queries, respectively. “cls”, “reg”, and “ID” indicate
the classification branch, localization branch, and identity embedding branch of the prediction head, respectively. Two transformer layers
are shown. In the first one, the identity embedding branch predicts the identity embedding of each object query. Then in the second one, a
Matching module is used to group the object queries according to the distances of their identity embeddings, and an ICA module is used
to perform identity-consistent temporal context aggregation. For simplicity, only three frames and three queries per frame are shown.

[1, T ], j ∈ [1, L]}. Specifically, for i-th frame, its j-th adap-
tive object queries qij is obtained by

qij = softmax(ejm⊤
i )mi, (1)

where mi ∈ Rs2×d is obtained by firstly down-sampling
the spatial dimensions of fi to s × s and then flattening its
spatial dimensions, and ej ∈ R1×d is the j-th embedding.

Self Attention. The self-attention operation is performed
over all T×L object queries, propagating temporal contexts
among all frames to make parallel predictions for the input
video clip. In self-attention, the object query is updated by:

qij ←−LN(qij + MHA(qij , q, q)),

∀i ∈ [1, T ],∀j ∈ [1, L]
(2)

where MHA(q, k, v) indicates the multi-head attention [42]
operation using the query q, key k, and value v. LN
indicates the layer normalization operation [1]. After the
self-attention layer, each object query is enhanced with the
contextual information from the whole clip.

Guided Cross Attention. In the cross attention operation,
different from DETR where an object query attends to all lo-
cations in the feature map, here we adopt the idea of guided
attention [51, 40] to accelerate the convergence speed, i.e.,
the object query qij only performs cross attention with the
locations inside a reference box bij . Specifically, given
the frame feature fi, RoIPooling [21] is performed over fi

based on bij , to extract a s × s feature map. The feature

map is further flattened along the spatial dimensions, de-
noted by kij ∈ Rs2×d. Moreover, we propose to enhance
kij with the semantic information from its matched object
query through an element-wise adaptation operation:

kij ←− kij + reshape(qijW p), (3)

where W p ∈ Rd×s2d is a learnable parameter and qijW
p

is reshaped to s2 × d which is added to kij element-wisely.
This process is important as it fuses the grid-level and
instance-level features of an object (obtained from the back-
bone and the decoder, respectively) in a fine-grained man-
ner, leading to an improved object representation. Then,
cross-attention is performed using kij as the source and qij
as the query:

qij ←− LN(qij + MHA(qij ,kij ,kij)). (4)

Through this guided cross-attention, each object query
attends to a specific region in the corresponding frame,
acquiring its object-related visual contents.

Detection Head. A feed-forward network with a detection
head is append after each decoder layer to iteratively refine
the detection results. Taking an object query qij as input,
the detection head adopts a localization branch to predict a
box offsets δij to update the reference box bij ; and a clas-
sification branch to predict the class logits pij . Denote by
yi = {(pij , bij)}Lj=1 the predicted objects on the i-th frame
and y∗i = {(cij , b∗ij)}Lj=1 the corresponding ground-truth
objects padded with ∅. Following [5], ClipVID applies
the set prediction loss which first finds an optimal bipartite

13437



matching between yi and y∗i by searching for a permutation
of L elements σ ∈ SL with the lowest cost:

σ = arg min
σ∈SL

L∑
j=1

Lmatch(y
∗
ij , yiσ(j)), (5)

where Lmatch is defined as

Lmatch(y
∗
ij , yiσ(j)) = λclsLcls(cij , piσ(j))

+ λgiouLgiou(b
∗
ij , biσ(j))

+ λL1LL1(b
∗
ij , biσ(j)).

(6)

Here, Lcls indicates the focal loss [30], Lgiou and LL1 are
the GIoU loss [36] and L1 loss, respectively. λ∗ are co-
efficients of the loss terms. Then, the training objective is
defined to have the same form as Eq. (6), but it is only ap-
plied to the matched pairs. The final loss is the sum of all
matched pairs normalized by the number of objects inside
the whole video clip.

3.2. Identity-Consistent Aggregation

The ICA module is applied in the last several layers
of the transformer decoder. It consists of a Matching
step, which introduces an additional identity embedding
branch to the detection head of the previous decoder layer;
and an Aggregation step, where an identity-consistent
aggregation layer is inserted between the self-attention and
cross-attention operations of the current decoder layer.

Matching. The identity embedding branch is a two-layer
MLP followed by an L2 normalization layer that projects
the object query qij into an object identity embedding
hij ∈ Rd. Then, given the n-th object query on the m-th
frame, qmn, we select its most similar object query in each
of the rest frames according to their dot-product similarity.
The selected object queries are considered to have the same
identity with qmn, i.e., identity-consistent object queries of
qmn, denoted by {qiJmn(i)|i ∈ Im} where:

Jmn(i) = arg max
j∈[1,L]

hmn · hij ,

∀i ∈ Im, Im = {i|i ∈ [1, T ], i ̸= m}.
(7)

To train the identity embedding branch, suppose the set
I∗ and J∗ contain the frame indexes and the query indexes
of all object queries that are assigned to the same ground-
truth video object according to Eq. (6), respectively. Then,
any two indexes i and m in I∗ will give us a pair of object
queries qiJ∗(i) and qmJ∗(m) that are consistent in their ob-
ject identity, which should have a relatively small distance
in the embedding space. To achieve this, we use an addi-
tional contrastive loss to train the parameters for identity-
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Figure 3. Illustration of the ICA process. In this example, qmn

and qiJmn(i) indicate the same motorbike on the m-th frame and
i-th frame, respectively. Thus, to obtain the “global view” of the
object query qmn, only its identity-consistent temporal contexts,
i.e., the temporal contexts extracted from qiJmn(i), are used for
aggregation. The dashed lines indicate the positional embedding
generated from the object queries.

consistent feature aggregation:

Lcon = −
∑

∀m,i∈Z

log
exp(hmJ∗(m) · hiJ∗(i))∑L
j=1 exp(hmJ∗(m) · hij)

,

Z = {m, i|m, i ∈ I∗,m ̸= i}.
(8)

The final contrastive loss is the sum of Lcon for all video
objects, normalized by the number of all matched pairs.

Aggregation. For qmn and its identity-consistent object
queries {qiJmn(i)|i ∈ Im}, we reuse their corresponding
region features kmn and {kiJmn(i)|i ∈ Im} obtained in
Eq. (3), and stack them into a joint representation Kmn ∈
RTs2×d. Note that, Kmn consists of the fine-grained grid-
level feature representations of the same video object (ide-
ally) from multiple frames, which is adopted as the identity-
consistent temporal contexts for qmn. Finally, a cross-
attention operation is performed using qmn as the query and
Kmn as the source, where qmn attends to all T × s2 ele-
ments in Kmn to obtain its identity-related information at a
fine-grained level, results in a more comprehensive “global
view” of the corresponding video object. Taking this global
view as input, the guided cross-attention layer then retrieves
its local view from the region feature kmn. A detailed illus-
tration of the ICA process is given in Figure 3.

4. Experiments
Dataset. We conduct experiments on the widely used
benchmark dataset ImageNet VID [37]. It contains 30
object categories and has 3,862 training videos and 555
validation videos. Mean Average Precision (mAP) is
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Methods Backbone mAP fps

FGFA [52] R-101 76.3 -
PSLA [18] R-101 77.1 30.8
MANet [43] R-101 78.1 -
STSN [3] R-101 78.9 -
OGEMN [13] R-101 79.3 -
LRTRN [38] R-101 81.0 9.5
RDN [14] R-101 81.8 10.6
TransVOD [23] R-101 81.9 -
SELSA [45] R-101 82.7 9.6
MEGA [8] R-101 82.9 5.8
HVRNet [19] R-101 83.2 -
TF-Blender [10] R-101 83.8 < 5.8
DSFNet [28] R-101 84.1 < 5.8

*STMM [46] + SeqNMS [20] R-101 80.5 ∼ 1
*RDN [14] + BLR [14] R-101 83.8 ∼ 1
*HVRNet [19] + SeqNMS [20] R-101 83.8 ∼ 1
*MEGA [8] + BLR [14] R-101 84.5 ∼ 1

ClipVID R-101 84.7 39.3

RDN [14] X-101 83.2 -
MEGA [8] X-101 84.1 5.3
SELSA [45] X-101 84.3 -
HVRNet [19] X-101 84.8 -

*RDN [14] + BLR [14] X-101 84.7 ∼ 1
*MEGA [8] + BLR [14] X-101 85.4 ∼ 1
*HVRNet [8] + SeqNMS [20] X-101 85.5 ∼ 1

ClipVID X-101 85.8 25.1
Table 1. Comparisons with state-of-the-art methods on ImageNet
VID dataset. * indicates the use of sequence-level post-processing
methods like SeqNMS and BLR.

adopted as the evaluation metric.

Implementation Details. We use ResNet-101 [22] with di-
lated convolutions [7] in the last stage as the backbone for
analysis. The transformer decoder has 6 layers, 8 attention
heads, and a hidden dimension of d = 384. The number
of object queries for each frame is set to 72. The reference
boxes are initialized as the frame size, and the output size
of the RoIPooling operation is 7. By default, the identity-
consistent feature aggregation is only performed in the last
two decoder layers, within the top-10 object queries that
have the largest classification scores of each frame. λcls,
λgiou, and λL1 are set to 2, 2, 5, respectively, as in [5].

Following the common practice [8, 14], we utilize both
ImageNet VID and ImageNet DET datasets to train our
model. During training, we randomly sample T = 3 frames
from the same video. During inference, we use T = 30
frames by default. The frames are resized to a shorter side of
600 pixels. The backbone network is initialized with the Im-
ageNet pre-trained weights, the rest model parameters are
randomly initialized. The training process is separated into

Methods mAP(%) slow (%) medium (%) fast (%)

SELSA [45] 82.7 88.0 81.4 67.1
MEGA [8] 82.9 89.4 81.6 62.7
HVRNet [19] 83.2 88.7 82.3 66.6
DSFNet [28] 84.1 90.0 82.6 67.0

ClipVID w/o ICA 83.3 89.0 82.7 66.1
ClipVID 84.7 89.9 83.9 68.5
ClipVID (oracle ICA) 85.8 90.8 84.5 72.3

Table 2. Detailed performance comparisons on ImageNet VID.
”slow/medium/fast” indicates the mean Average Precision for
video objects with slow/medium/fast moving speed.

Encoder Adaptive Extend Guided 1 frame 5 frames 30 frames

Free Query SA CA mAP fps mAP fps mAP fps

61.8 24.4 N/A N/A
✓ ✓ 76.7 45.2 N/A N/A

✓ 63.2 24.4 63.5 14.2 OOM
✓ ✓ ✓ 78.1 43.5 79.6 43.1 82.4 41.9
✓ ✓ ✓ ✓ 78.3 43.5 80.1 43.1 83.3 41.7

Table 3. Performance analysis based on ClipVID w/o ICA. “SA”
and “CA” are short for Self-Attention and Cross-Attention, respec-
tively. The first row and the last row indicate the performance of
the original DETR and the ClipVID w/o ICA, respectively. The
mAP values are shown in percentage.

two stages. In the first stage, we train all model parameters
except those used by the ICA modules for 180k iterations
using the AdamW [33] optimizer with a total batch size of 4.
The initial learning rate is set to 1e-5 and is divided by 10
at the 120k-th iteration. We then train the whole model for
another 60k iterations, using an initial learning rate of 1e-6,
and divide it by 10 at the 40k-th iteration.

4.1. Comparisons with state of the arts

We first compare the proposed ClipVID with previous
SOTA methods. As shown in Table 1, ClipVID achieves
significantly faster (about 7×) inference speed than recent
SOTA methods like TF-Blender [10] and DSFNet [28],
while also outperforms them by a large margin in terms of
mAP, e.g., 84.7% vs. 84.1%. Compared with PSLA [18], a
VID model specifically optimized for efficient inference in
real-world scenarios, our model still outperforms its speed
clearly (39.3 fps vs 30.8 fps). More importantly, PSLA
uses sparse computation techniques to reduce computation,
which is also applicable to our model to further improve
the inference speed. In terms of performance, ClipVID
outperforms PSLA by 6.2%, making it a better choice for
deployment. Note that, the proposed ClipVID model is
fully end-to-end trainable. Still, it outperforms previous
SOTA approaches that are equipped with sequence-level
post-processing techniques like Seq-nms [20] and BLR
[14], while being nearly 40 times faster1. Compared with

1measured based on our implementations.
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Methods ClipVID Sparse RCNN Deformable DETR
w/ ICA w/o ICA w/ ICA w/o ICA w/ ICA w/o ICA

mAP (%) 84.7 83.3 84.1 82.5 83.9 82.2
FPS 39.3 41.7 35.0 36.8 33.1 34.7
Table 4. Results of ClipVID with different query-based object de-
tectors.

Method Last layer Last 2 layers Last 3 layers All

mAP (%) 84.4 84.7 84.5 83.9
Table 5. Performance analysis on the number of decoder layers
that adopt the Identity-consistent Aggregation module.

Method Top-5 Top-10 Top-15 All

mAP (%) 84.2 84.7 84.5 83.6
fps 39.8 39.3 38.5 30.3

Table 6. Performance and speed analysis on the number of object
queries that perform the identity-consistent temporal context ag-
gregation. Top-k denotes selecting the k object queries with the
highest classification scores.

TransVOD [23], an end-to-end VID model, our model ob-
tains a much better performance (84.7% vs. 81.9%) with a
much simpler network architecture. We obtain similar ob-
servations when using a stronger backbone ResNext-101-
32x8d for ClipVID, where it outperforms SOTA methods
in terms of both speed and accuracy. These results demon-
strate the effectiveness of the proposed method.

4.2. Performance Analysis of ClipVID

We first analyze the performance of the proposed
Identity-consistent Aggregation approach. As shown in Ta-
ble 2, there is a clear performance degradation (from 84.7%
to 83.3%) when removing ICA from the ClipVID model.
This degradation is more obvious for fast-moving objects,
where mAP fast drops significantly by 2.4%. Moreover,
compared with the previous method, our ClipVID is gen-
erally much more accurate in detecting fast-moving ob-
jects. These results show the effectiveness of our ICA
module in handling large appearance variations. Also note
that ClipVID w/o ICA is only slightly faster than ClipVID,
indicating that applying identity-consistent aggregation in
ClipVID is very efficient. We further conduct an experi-
ment using the oracle matching process, i.e., for each object
query, we find its identity-consistent object query by choos-
ing those that are assigned to the same video object. We find
that the performance improves clearly with the oracle query
matching, especially for the fast-moving objects, where the
mAP is booted by 3.8%.

Besides the proposed ICA module, ClipVID makes sev-
eral modifications to the DETR framework, including 1) re-
moving the transformer encoder; 2) using adaptive object
queries; 3) extending the self-attention across frames; and

# infer frames 1 10 15 25 30 45

mAP (%) 78.3 82.1 82.7 83.2 83.3 83.4
fps 43.5 42.7 42.4 41.9 41.7 37.3

Table 7. Performance and speed analysis on the number of infer-
ence frames in ClipVID w/o ICA.

# object queries 48 64 72 80 100

mAP (%) 80.6 82.4 83.3 82.9 82.1
fps 45.7 44.4 41.7 40.0 37.2

Table 8. Performance and speed analysis on the number of object
queries per frame in ClipVID w/o ICA.

# decoder layers 4 5 6 7

mAP (%) 81.9 82.8 83.3 83.3
fps 45.6 44.1 41.7 38.0

Table 9. Performance and speed analysis on the number of decoder
layers in ClipVID w/o ICA.

4) using guided cross-attention. Here, we analyze how our
model benefits from them in Table 3. Note that we use
ClipVID w/o ICA as the base model to better reveal the
contributions of these modifications. From the table, the
first two rows indicate performing image-level object de-
tection without considering the temporal contexts. We find
that the original DETR (the first row) produces much worse
performance compared to its “encoder-free + guided cross-
attention” counterpart (row 2), which may be largely due to
its low convergence speed. Besides, the encoder also slows
down the inference speed by nearly 2 times. In terms of
video object detection, DETR trained with extended self-
attention (row 3) improves the performance clearly over its
original results in the single-frame inference setting. In the
multi-frame setting, however, the performance is only im-
proved marginally (from 63.2% to 63.5%) when using 5
inference frames, while suffering from a severe slowdown
of the inference speed. We believe that the extremely-long
feature sequences in the video setting not only dramatically
increase the computation complexity of the encoder but also
hampers the learning of the encoder and prevent it from
leveraging useful information from the temporal contexts.
Moreover, using more inference frames failed in this setting
due to memory limitation.

On the other hand, our ClipVID w/o ICA model (the last
row) enjoys having more inference frames, where its per-
formance is boosted from 78.3% in the single-frame set-
ting to 80.1% in the 5-frame setting and is further increased
significantly to 83.3% when using 30 inference frames.
This observation verifies the effectiveness of extended self-
attention in propagating temporal information. Meanwhile,
the inference speed of our model is consistently fast (more
than 40 fps) in all inference settings thanks to the elimina-
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Figure 4. Visualization of the detection results. “w/o ICA” indicates the ClipVID w/o ICA model. For simplicity, we only show the
detection results with confidence scores higher than 0.1.

tion of the transformer encoder and its clip-wise prediction
manner. Comparing the last two rows shows that the adap-
tive object queries perform better than fixed object queries,
especially when the number of input frames is large.

Lastly, we show the performance of using different
query-based object detection methods for ClipVID in Ta-
ble 4. We consider Sparse RCNN [40] and Deformable
DETR [51], which are widely used and have shown strong
performance in still image object detection. However, we
find that they perform inferior to our simple detector mod-
ified from DETR, and are also slightly slower. Notably,
both Sparse RCNN and Deformable DETR adopt a heavy
decoder (i.e., having more parameters and incurring more
computation cost) which may lead to overfitting in the rela-
tively small ImageNet VID dataset.

4.3. Hyper-parameter Analysis

In this section, we analyze the hyper-parameters in our
model design. We first analyze the effect of applying the
Identity-consistent Aggregation for different numbers of de-
coder layers (Table 5), as well as the effect of using it for
different numbers of object queries (Table 6). From Table
5, our model achieves the best result when applying ICA in
the last two decoder layers. Moreover, using it for the last
one or three decoder layers yields similar performances to
the best setting. When using the ICA module for all decoder

layers, the performance degrades to 83.9, showing that the
early decoder stages may not be able to capture the object
identity. From Table 6, applying ICA on the top-5, top-
10, and top-15 object queries all bring clear gains over the
baseline model ClipVID w/o ICA. Among them, choosing
the top-10 scored object queries to perform ICA achieves
the best result. When applying identity-consistent tempo-
ral context aggregation for all object queries, a clear per-
formance degradation is observed. We hypothesize that the
object queries with low classification scores may hamper
the matching step of ICA and further introduce noises to
the temporal contexts. Besides, the inference speed is also
decreased clearly in this setting.

We provide more hyper-parameter analysis based on the
ClipVID w/o ICA model. Specifically, we analyze how the
number of inference frames per input clip influences the
performance. From Table 7, our model benefits from larger
temporal receptive fields, which is aligned with previous
works. Thanks to the clip-wise prediction manner of our
method, the inference speed is only mildly reduced when
increasing the number of inference frames from 1 to 45.
Then, we study the effect of the number of object queries
per frame on the model performance. As shown in Table
8, with 72 object queries, our model yields the best perfor-
mance. This is different from DETR which benefits from
having more than 100 object queries. The reason could be

13441



that the MSCOCO [31] dataset used by DETR is much more
complex than ImageNet VID, in terms of the object cate-
gories and the number of objects per image. Thus, DETR
requires more object queries to increase its object represen-
tation capacity. Lastly, we show the performance of our
model with different numbers of transformer decoder layers
in Table 9. From the table, 6 decoder layers are sufficient
for ClipVID to achieve strong performance. Using fewer
decoder layers can increase the inference speed but at the
cost of clear performance degradation.

4.4. Visualization

We further visualize some detection results of the pro-
posed methods in Figure 4. From the figures, the proposed
ICA module qualitatively improves the detection perfor-
mance. On some hard cases, ClipVID w/o ICA fails to
make accurate predictions, e.g., in the first column and last
two columns of the first example, ClipVID w/o ICA mistak-
enly recognizes the squirrel as a monkey due to occlusion
and the unusual pose of the squirrel. Besides, for some ob-
jects, ClipVID w/o ICA makes low confident predictions,
like the cat in the third column of the first example and the
squirrel in the fourth column of the second example, due to
occlusion and motion blur, respectively.

5. Conclusion

Existing VID models usually treat the temporal contexts
from different video objects indiscriminately despite their
different identities. This may hamper the learning of object
representations due to the irrelevant and noisy information
contained in the temporal contexts. In this paper, we aim
to perform Identity-Consistent temporal context Aggrega-
tion (ICA) to enhance the video object representations. To
achieve this, we first need to reduce the redundancies in
the temporal context so that ICA can be done efficiently.
Thus, we proposed a VID model called ClipVID which is
based on the DETR framework. ClipVID is able to per-
form identity-consistent aggregation, while also effectively
removing the redundancies and making predictions for all
input frames simultaneously, making the model very effi-
cient. In the experiment, our ClipVID model outperforms
previous SOTAs on the benchmark ImageNet VID dataset
in terms of both speed and accuracy.
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