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Abstract

Unsupervised semantic segmentation is a long-standing
challenge in computer vision with great significance. Spec-
tral clustering is a theoretically grounded solution to it
where the spectral embeddings for pixels are computed to
construct distinct clusters. Despite recent progress in en-
hancing spectral clustering with powerful pre-trained mod-
els, current approaches still suffer from inefficiencies in
spectral decomposition and inflexibility in applying them to
the test data. This work addresses these issues by casting
spectral clustering as a parametric approach that employs
neural network-based eigenfunctions to produce spectral
embeddings. The outputs of the neural eigenfunctions are
further restricted to discrete vectors that indicate clustering
assignments directly. As a result, an end-to-end NN-based
paradigm of spectral clustering emerges. In practice, the
neural eigenfunctions are lightweight and take the features
from pre-trained models as inputs, improving training effi-
ciency and unleashing the potential of pre-trained models
for dense prediction. We conduct extensive empirical stud-
ies to validate the effectiveness of our approach and observe
significant performance gains over competitive baselines on
Pascal Context, Cityscapes, and ADE20K benchmarks. The
code is available at https://github.com/thudzj/
NeuralEigenfunctionSegmentor.

1. Introduction
Semantic segmentation is essential in understanding the

inherent structure and fine-grained information of images.
However, current approaches often hinge on a vast amount
of manual annotations to train neural networks (NNs) effec-
tively in an end-to-end manner [5, 40]. This is problematic,
as obtaining these annotations can be both time-consuming
and costly, particularly in fields such as autonomous driving
and medical image processing, where annotations are usu-
ally collected from domain experts. Thus, finding a way to
perform semantic segmentation without manual annotation
remains a crucial unresolved problem.

Unsupervised semantic segmentation has recently at-
tracted a great deal of attention. A number of methods at-
tempt to tackle it by learning fine-grained image features
using self-supervised objectives and then applying cluster-
ing or grouping techniques [46, 41]. They tend to recog-
nize single objects or single semantic categories and strug-
gle with complex images. Other approaches have tried to
use vision-language cross-modal models (e.g., CLIP [35])
to achieve zero-shot semantic segmentation [48, 39], but
they heavily rely on carefully-tuned text prompts and self-
training. Compared to the recent approaches, the classic
spectral clustering [38], which has stood the test of time,
remains an appealing option. In particular, it enjoys solid
foundations in spectral graph theory—it finds the minimum
cut of the connectivity graph over pixels.

However, traditional spectral clustering exhibits limita-
tions in three aspects: (i) it operates on raw image pix-
els, thus is sensitive to color transformations and unable
to recognize semantic similarities; (ii) it is computation-
ally inefficient due to the involved spectral decomposition;
(iii) unlike NN-based methods, it is nontrivial and costly to
extend to non-training samples because of its transductive
manner. Thus it cannot be performed end-to-end in the test
phase. Recent work reveals that pre-trained models such as
ViTs [14] can mitigate the first limitation, significantly im-
proving the applicability and effectiveness of spectral clus-
tering [30]. Its core contribution is to build the connectivity
graph over image patches based on an affinity matrix com-
puted with the dense features from pre-trained models. Still,
the limitations regarding efficiency and flexibility remain.

The present paper aims to overcome the remaining lim-
itations, rendering spectral clustering a simple yet effec-
tive baseline for unsupervised semantic segmentation. To
tackle the inefficiency issue, we propose to cast the involved
spectral decomposition problem as an NN-based optimiza-
tion one using the recently developed neural eigenfunction
(NeuralEF) technique [12]. Concretely, we first measure the
similarities between image patches using both the features
extracted from pre-trained models and raw pixels. Treat-
ing the similarity matrix (or its variants) as the output of a
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kernel function, we then optimize NNs to approximate its
principal eigenfunctions. Consequently, our method consti-
tutes an NN-based counterpart of spectral embedding. We
eliminate the need for an additional grouping step, which
is required in prior work [30], by constraining the NN out-
put to one-hot vectors that indicate clustering assignments
directly. To accomplish this, we use the Gumbel-Softmax
estimator [20] for gradient-based optimization during train-
ing. These strategies transform spectral clustering from
a non-parametric approach to a parametric one, enabling
easy and reliable out-of-sample generalization and avoiding
solving complex matrix eigenvalue problems during testing.

We perform extensive studies to evaluate the effective-
ness of our approach for unsupervised semantic segmenta-
tion. We first experiment on the popularly used benchmarks
Pascal Context [31] and Cityscapes [9] based on pre-trained
ViTs, and report superior results compared to leading meth-
ods MaskCLIP [48] and ReCo [39]. We further consider the
sliding-window-based evaluation protocol [40] and experi-
ment on the challenging ADE20K dataset [47] to system-
atically study the behavior of our method. In addition, we
conduct thorough ablation studies to gain insights into the
specification of several core hyper-parameters.

2. Related Work
Unsupervised segmentation. Image segmentation has nu-
merous practical applications in various industries and sci-
entific fields. In order to alleviate the burden of collecting
annotations, prior works have comprehensively studied the
problem of learning image segmenters in semi- and weakly-
supervised settings [24, 18, 4, 23]. Recently, there have
been increasing efforts to tackle unsupervised segmenta-
tion based on the progress in related fields like deep gen-
erative models (DGMs) and self-supervised learning (SSL).
On the one hand, DGM-based segmentation approaches
train specialized image generators to separate foreground
from background [6, 2, 1] or extract saliency masks directly
from pre-trained generators [42]. Yet, it is technically non-
trivial to extend them to cope with semantic segmentation.
On the other hand, SSL-based methods define objectives to
perform clustering [19, 7], mutual information maximiza-
tion [21, 33], contrastive learning [41] or feature correspon-
dence distillation [16] to learn image features suitable for
grouping. However, most of these methods only recog-
nize single objects or single semantic categories and strug-
gle with complex images. With the increasing accessibility
of pre-trained image-text cross-modal models, considerable
efforts have been devoted to performing zero-shot semantic
segmentation with them [48, 39]. Nevertheless, the entan-
glement with cross-modal models places high demands on
the quality of the text prompts, which correspond to the se-
mantic categories of concern, and hinders the methods from
choosing backbone models freely.

Spectral clustering. As a classic solution to image seg-
mentation, spectral clustering [38, 32] frames the original
problem as a graph partitioning one defined on the connec-
tivity graph over image pixels. Typically, spectral cluster-
ing exploits the eigenvectors of graph Laplacians to con-
struct minimum-energy graph partitions [13, 15]. Spectral
clustering is closely related to Kernel PCA [37] as they are
both learning eigenfunctions [3]. Recently, spectral clus-
tering has been combined with pre-trained models to enjoy
rich semantic information [30]. Yet, it remains unsolved
that spectral decomposition is expensive for big data, and
the non-parametric nature hinders out-of-sample general-
ization. This paper aims to address these issues.
The deep learning variant of spectral methods. Refur-
bishing spectral methods with deep learning techniques is
beneficial to improve the scalability and flexibility of the
former. The spectral inference networks (SpIN) [34] is a
seminal work in this direction. Yet, the learning objec-
tive of SpIN is ill-defined, which leads to only the sub-
space spanned by the principal eigenfunctions instead of the
eigenfunctions themselves. SpIN hence introduces convo-
luted and expensive strategies to solve this problem. The
recent NeuralEF technique [12] alternatively defines a new
series of objective functions to break the symmetry among
eigenfunctions explicitly. NeuralEF is further enhanced by
weight sharing and extended to handle indefinite kernels in
[11], constituting a more amenable choice for learning spec-
tral embeddings given pre-defined kernels. We also note
that there are several attempts to develop deep spectral clus-
tering methods based on supervisions [28] or a dual autoen-
coder network [45], but they cannot be trivially applied to
the task of unsupervised semantic segmentation due to the
absence of annotations or other inefficiency issues.

3. Methodology
We begin with a brief review of the relevant background

and then build up our approach step by step. We provide an
overview of the proposed method in Figure 1.

3.1. Background

Semantic segmentation essentially targets determining
the semantic consistency among image pixels. In the ab-
sence of annotations, the problem boils down to an unsuper-
vised clustering one. Spectral clustering [38, 32] is a long-
standing solution to it with solid theoretical foundations. It
proceeds by partitioning a connectivity graph over image
pixels. The resulting algorithm typically involves eigen-
decomposing the graph Laplacian matrix and stacking its
eigenvectors, which are then used in a Euclidean clustering
algorithm to obtain a fixed number of partitions.

Traditional spectral clustering operates on raw image
pixels, making it sensitive to color transformations and un-
able to identify semantic similarities. To address this, a
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Figure 1. Method overview. We establish an end-to-end NN-based pipeline for spectral clustering to perform unsupervised semantic
segmentation. The box highlights modules that exist only during training. The nearest neighbor graph over pixels only has edges between
pixels from the same images, while the other one is built over dense features from various images. The pre-trained model is fixed.

natural idea is to include the inductive bias of NNs. In
this spirit, the deep spectral method (DSM) [30] lever-
ages powerful pre-trained models to translate the learning
from raw pixels to patch-wise features that embed rich lo-
cal semantics and are widely applicable. Specifically, let
xi ∈ RH×W×3 denote an image and f : RH×W×3 →
RH/P×W/P×C denote the pre-trained model with P as a
down-sampling factor. DSM constructs a semantic affin-
ity matrix using both the patch-wise features fi,j,k =
f(xi)j,k ∈ RC and image pixels, and performs spectral
clustering on the corresponding connectivity graph. Sub-
sequently, DSM performs bi-linear interpolation to convert
patch-wise segments to pixel-wise ones. This simple work-
flow has surpassed various competitors regarding unsuper-
vised semantic segmentation performance.

Denote by N the size of the dataset of concern. Seman-
tic segmentation requires classifying pixels in different im-
ages yet with the same semantics into the same category.
Thereby, it needs to ensure semantic consistency across the
dataset. Therefore, DSM should, in principle, work on an
affinity matrix of size RNHW/P 2×NHW/P 2

, but this is com-
putationally infeasible as the involved spectral decomposi-
tion has a cubic complexity w.r.t. NHW/P 2. DSM alter-
natively conducts spectral clustering separately for each im-
age and then performs cross-image synchronization, but this
is inflexible compared to NN-based pipelines and arguably
suboptimal. Additionally, existing spectral clustering meth-
ods, including DSM, are non-parametric, relying on costly
spectral decomposition when faced with new test data.

In order to address the limitations discussed above, we
leverage a parametric approach to spectral decomposition
based on the recent NeuralEF technique [12] and learn dis-
crete neural eigenfunctions directly. These innovations help
to scale our method to large datasets, enable the straightfor-
ward and cheap out-of-sample extension for test data, and
establish an NN-based spectral clustering workflow.

3.2. From Eigenvectors to Eigenfunctions

Spectral clustering involves the spectral decomposition
of a matrix and hence is seemingly incompatible with the
parametric NN models. To bridge this gap, we move our
viewpoint from the eigenvectors to eigenfunctions.

Specifically, abstracting the graph Laplacian matrix as
the evaluation of some kernel function κ on the dense fea-
tures, the eigenfunctions of κ form a function-space gener-
alization of the aforementioned eigenvectors. Formally, the
eigenfunction ψ of a kernel κ(x,x′) satisfies that∫

κ(x,x′)ψ(x′)p(x′)dx′ = µψ(x), (1)

where µ is the corresponding eigenvalue and p a probability
measure. By definition, the eigenfunction should be nor-
malized, and different eigenfunctions are orthogonal.

As shown, the eigenfunction takes input from the origi-
nal space and maps it to the eigenspace specified by the ker-
nel, where the local neighborhoods on data manifolds are
preserved. Naturally, we can incorporate NNs as function
approximators to the eigenfunctions. In this way, we bypass
the need for expensive spectral decomposition of a matrix
and can easily perform out-of-sample extension thanks to
the generalization ability of NNs. Fortunately, the recently
proposed NeuralEF [12] offers tools to realize this. We also
note that the effectiveness of the spectral embedding yielded
by neural eigenfunctions has been empirically validated in
self-supervised learning [11].

3.3. Setting up the Graph Kernel

To set up the kernel for spectral clustering, as suggested
by DSM [30], we construct two graphs with patch-wise
features from pre-trained models and down-sampled im-
age pixels, respectively. We then define the kernel with the
weighted sum of the corresponding normalized graph adja-
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cency matrices. By doing so, the high-level semantics and
low-level details are conjoined.

Denote by F = {fi}Ni=1 ∈ RNHW/P 2×C the collection
of patch-wise features over the dataset. Considering that the
feature space shaped by large-scale pre-training is highly
structured where simple distance measures suffice to rep-
resent similarities, we leverage cosine similarity to specify
a nearest neighbor graph over image patches. The corre-
sponding affinity matrix is detailed below:

Au,v =

{
FuF

⊤
v /(∥Fu∥∥Fv∥), v ∈ k-NN(u,F, cosine)

0 otherwise
(2)

where k-NN(u,F, cosine) denotes the set of the k nearest
neighbors of Fu over F under cosine similarity. The above
graph deploys edges between patches that are semantically
close. The corresponding graph partitioning can result in
meaningful segmentation at a coarse resolution. Although
other traditional graphs can also be used, the nearest neigh-
bor graph enjoys sparsity, which reduces storage and com-
putation costs and has been studied extensively in manifold
learning and spectral clustering.

To supplement the high-level features with low-level de-
tails, we bilinearly down-sample the original image xi to
x̃i ∈ RH/P×W/P×3 to keep resolution consistency, and
fuse the spatial information (j, k) and color information
x̃i,j,k as a single vector. We stack the collection over the
dataset as X̃ ∈ RNHW/P 2×5. A nearest neighbor graph
over down-sampled pixels is then defined based on L2 dis-
tance following DSM [30]. The affinity matrix is:

Ãu,v =

{
1, v ∈ k̃-NN(u, X̃, L2)

0 otherwise
(3)

where k̃-NN(u, X̃, L2) denotes the set of k̃ nearest neigh-
bors of X̃u over X̃ under L2 distance (dissimilarity). We
place a further constraint that the nearest neighbors should
belong to the same image as the query to avoid establishing
meaningless connections. It is expected that such a graph
helps to detect sharp object boundaries.

We symmetrize A and Ã so that they can serve as graph
adjacency matrices. Considering that the normalized graph
cuts are more practically useful [38], we would better build
a kernel with the normalized graph Laplacian matrices of
A and Ã, and learn the eigenfunctions associated with
the smallest K eigenvalues. However, the NeuralEF ap-
proach instead deploys neural approximations to the princi-
pal eigenfunctions, which correspond to the largest eigen-
values, of a kernel [12]. To this end, we move our fo-
cus from the normalized Laplacian matrix to the normal-
ized adjacency matrix whose K principal eigenfunctions
exactly correspond to the eigenfunctions associated with
the K smallest eigenvalues of the former. Specifically, let

D := diag(A1), D̃ := diag(Ã1) denote the degree matri-
ces. We then define the kernel function κ using the weighted
sum of the normalized adjacency matrices, detailed below:

κ : κ(F,F) = D−1/2AD−1/2 + αD̃−1/2ÃD̃−1/2, (4)

where α is a trade-off parameter. Here we define the ker-
nel in the space of features extracted from pre-trained mod-
els while other choices are also viable: it only affects the
input of neural eigenfunctions. In the current setting, the
features from pre-trained models are directly fed into neu-
ral eigenfunctions, which is sensible thanks to the great po-
tential of pre-trained models and can prevent unnecessary
training costs.

3.4. Learning Neural Eigenfunctions

Let f ∈ RC denote a row vector of F and p(f) a uni-
form distribution over {Fi}NHW/P 2

i=1 . The NeuralEF tech-
nique [12] approximates the K principal eigenfunctions of
the kernel κ w.r.t. p(f) with a K-output neural function
ψ : RC → RK by solving the following problem:

max
ψ

K∑
j=1

Rj,j − β

K∑
j=1

j−1∑
i=1

R̂2
i,j , s.t. Ep(f)[ψ(f) ◦ ψ(f)] = 1,

(5)
where β is a positive coefficient and ◦ is Hadamard product,
and

R := Ep(f)Ep(f ′)[κ(f , f ′)ψ(f)ψ(f ′)⊤]

R̂ := Ep(f)Ep(f ′)[κ(f , f ′)ψ̂(f)ψ(f ′)⊤].
(6)

Here ψ̂ is the non-optimizable variant of ψ.
Adapting such results to our case and applying Monte

Carlo estimation to the expectation yields

R ≈ 1

B2
Ψ ·κ(FB ,FB) ·Ψ⊤ and R̂ ≈ 1

B2
Ψ̂ ·κ(FB ,FB) ·Ψ⊤,

(7)
where FB := [f1, . . . , fB ]

⊤ ∈ RB×C is a mini-batch
of features, Ψ := [ψ(f1), . . . , ψ(fB)] ∈ RK×B is the
collection of the corresponding NN outputs, and Ψ̂ :=
stop gradient(Ψ). The stop gradient operation can be
easily found in auto-diff libraries and plays a vital role in
establishing the asymmetry between the K principal eigen-
functions. We put an L2-batch normalization layer [12] at
the end of model ψ to enforce the constraint in Equation (5).
ψ can be implemented as a neural network composed

of convolutions or transformer blocks, which takes dense
image features f = f(x) ∈ RH/P×W/P×C as input and
outputs ψ(f) ∈ RH/P×W/P×K . After training, it can be
used to predict new test data without relying on expensive
test-time spectral decomposition.

3.5. Quantizing Neural Eigenfunctions

After obtaining the spectral embedding ψ(f(x)) for im-
age patches, we should, by convention, invoke a Euclidean
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clustering algorithm such as K-means [29] to get cluster-
ing assignments. In practice, datasets can often be large, so
it would be better to leverage online clustering mechanisms
to avoid unaffordable storage costs. However, this approach
may still be time-consuming when aiming for good conver-
gence. Additionally, this pipeline is not as flexible as NN-
based segmenters.

To bridge the gap, we impose a constraint on the output
of ψ to be K-dim one-hot vectors which directly indicate
clustering assignments. We resort to the Gumbel-Softmax
estimator [20] for gradient-based optimization. This fol-
lows the notion that the outputs of eigenfunctions are soft
clustering assignments, and we further perform quantiza-
tion of them. This is also in a similar spirit to the spectral
hashing approach [43] where the output of ψ is assumed
to be vectors over {−1, 1}K . We clarify that the Gumbel-
Softmax estimator precedes the aforementioned L2 batch
normalization layer. In the test phase, we remove this esti-
mator and the L2 batch normalization layer, using the NN
outputs directly as softmax logits for clustering. This results
in a pure NN-based workflow for spectral clustering.

3.6. From Clusters to Image Segments

During inference, we up-sample the softmax logits bilin-
early to match the original resolution of input images. We
then apply the argmax operation to obtain discrete cluster-
ing assignments. A natural question that arises is how to
match these clustering assignments to pre-defined seman-
tics to obtain the final image segments. Two well-studied
solutions are Hungarian matching [27] and majority voting.
As per DSM [30], when evaluated on standard image se-
mantic segmentation benchmarks, we first collect the clus-
tering assignments for all validation images and then match
them to ground-truth labels via these approaches to conduct
a quantitative evaluation of segmentation performance.

4. Experiments
To evaluate the efficacy of the proposed method for un-

supervised semantic segmentation, we conduct comprehen-
sive experiments on various standard benchmarks.

4.1. Experimental Setups

Datasets. We primarily experiment on Pascal Context and
Cityscapes, which consist of 60 and 27 classes, respectively.
We employ the same data pre-processing and augmentation
strategies as the work [40] on the training dataset.
Pre-trained models. We use pre-trained ViTs [14] pro-
vided by the timm library [44] and consider the “Small”,
“Base”, and “Large” variants. The weights have been
pre-trained on ImageNet-21k [36] and fine-tuned on Ima-
geNet [10] in a supervised manner. In particular, we con-
sider pre-trained models at a high resolution, like 384×384,
to obtain fine-grained segments. We fix the patch size to

16× 16 (i.e., P = 16) to better trade-off efficiency and ac-
curacy. We use the output of the last attention block of ViTs
as fi without elaborate selection. We also feed the interme-
diate features of the pre-trained ViTs, which can be freely
accessed, to the neural eigenfunctions to enrich the input
information.
Modeling and training. We set k = 256 for the nearest
neighbor graph defined on pre-trained models’ features. To
reduce the cost of searching for the nearest neighbors, we
confine the search to the current mini-batch, which is shown
to be empirically effective. We specify the other graph fol-
lowing DSM [30]. The trade-off coefficient α equals 0.3
based on an ablation study reported in Section 4.4. The
training objective is detailed in Equation (5) and unfolded in
Equation (7). As K implies the number of semantic classes
uncovered automatically, we make it larger than the number
of ground-truth semantic classes and, in practice, set it to
256. We set the trade-off coefficient β to 0.08 and linearly
scale it for other values of K (see the study in Section 4.4).
We use 2 transformer blocks with linear self-attention [22]
and a linear head to specify the neural eigenfunctions ψ
for efficiency. We restrict the weight matrix of the linear
head to have orthogonal columns and find it beneficial to
the final performance empirically. We anneal the tempera-
ture for Gumbel-Softmax from 1 to 0.3 following a cosine
schedule during training. The training relies on an Adam
optimizer [25] and a learning rate of 10−3 (with cosine de-
cay). No weight decay is employed. The training lasts for
40 epochs with batch size 16 (or 8 if an out-of-memory error
occurs), which takes half a day on one RTX 3090 GPU.
Evaluation. We test on the validation set of the datasets and
report both pixel accuracy (Acc.) and mean intersection-
over-union (mIoU). We follow the standard practice in un-
supervised semantic segmentation where the validation im-
ages are resized and cropped to have 320× 320 pixels (see
[16, 39]). In particular, the background class in the Pascal
Context is excluded from evaluation. We apply a softmax
operation to the outputs of ψ to obtain clustering assign-
ments. We then use majority voting to match the resulting
clusters to semantic segments. We apply CRF [26] for post-
processing (although it is empirically shown that its contri-
bution to performance gain is marginal).

4.2. Comparison with Leading Methods

We first compare the proposed method to leading un-
supervised semantic segmentation methods. We con-
sider two representative competitors from the literature:
MaskCLIP [48] and ReCo [39], which empirical outper-
form a variaty of baselines such as IIC [21], PiCIE [7],
and STEGO [16]. In particular, MaskCLIP uses the ViT-B
backbone trained by CLIP [35], whereas ReCo uses the ViT-
L/14@336px, also trained by CLIP. We also try to include
the self-training variants of MaskCLIP and ReCo in com-
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Method Acc. (%) mIoU (%)

MaskCLIP [48] - 25.5
MaskCLIP+ [48] - 31.1
ReCo [39] 51.6 27.2
K-means

ViT-S 61.9 28.9
ViT-B 58.7 30.9
ViT-L 45.3 19.3

Ours
ViT-S 70.4 38.8
ViT-B 69.7 37.5
ViT-L 63.2 33.2

Ours*
ViT-S 74.6 39.6
ViT-B 73.2 37.6
ViT-L 71.9 35.0

Table 1. Comparisons on unsupervised semantic segmentation per-
formance on Pascal Context [31]. The results of MaskCLIP and
ReCo are from the original papers.

parison. Besides, we introduce two other baselines: (i) fit a
K-means with the features of pre-trained models for train-
ing data (using the same number of clustering centers as
our method) and use it to predict clustering assignments for
validation data; (ii) likewise, fit a K-means with the features
preceding the linear head in ψ. The two ways are referred
to as “K-means” and “Ours*” in our studies. We have not
compared with DSM [30] because the involved divide-and-
conquer procedure for synchronizing the clustering results
across different images is non-trivial to implement. In the-
ory, DSM can lead to a similar segmentation performance
to our method (yet with more resource consumption).

We report the results in Table 1 and Table 2. As shown,
our methods outperform MaskCLIP, ReCo, and K-means
with significant margins, which reflects the efficacy of the
learned neural eigenfunctions for unsupervised semantic
segmentation. “Ours*” even outperforms “Ours”, which is
probably attributed to the fact that the features preceding the
linear head inψ have a much higher dimension than the final
outputs and thus are more informative. While MaskCLIP+
and ReCo+ employ an extra time-consuming self-training
step, they are still inferior to our methods. It is reasonable
to speculate that combining our methods with self-training
can further improve performance. Note also that K-means
can serve as a strong baseline for unsupervised semantic
segmentation. This finding appears to contradict the re-
sults reported in DSM [30] (Table 4). We deduce the rea-
son that DSM sets the number of clusters to the number of
true classes rather than a larger quantity and performs K-
means directly on the validation set instead of the training
set. Besides, as the size of the pre-trained model increases,
both K-means and our methods yield worse unsupervised

Method Acc. (%) mIoU (%)

MaskCLIP [48] 35.9 10.0
ReCo [39] 74.6 19.3
ReCo+ [39] 83.7 24.2
K-means

ViT-S 77.0 22.4
ViT-B 74.8 23.2
ViT-L 66.3 20.9

Ours
ViT-S 83.4 28.2
ViT-B 81.4 26.8
ViT-L 80.3 26.3

Ours*
ViT-S 84.6 30.0
ViT-B 84.2 30.7
ViT-L 84.2 30.0

Table 2. Comparisons on unsupervised semantic segmentation per-
formance on Cityscapes [9]. The results of MaskCLIP and ReCo
are from the original papers.

segmentation performance. We attribute this to larger pre-
trained models producing more abstract outputs that contain
more overall semantics than specialized details. In contrast,
smaller pre-trained models may fall short in expressiveness.
Therefore, we suggest using a pre-trained model with ap-
propriate capacity when applying the proposed method to
new applications.
Qualitative results. Figure 2 shows some qualitative re-
sults of the proposed methods on Pascal Context. We also
include the K-means baseline in comparison. Most notably,
unlike MaskContrast [41], our method can detect multi-
ple semantic categories in the same image, and the gener-
ated object boundaries are sharp. Furthermore, our spectral
clustering-based approach can greatly reduce the chaotic
fragments produced by K-means. We defer the visualization
for the learned neural eigenfunctions and the segmentation
results on Cityscapes to Appendix.

4.3. Evaluation in More Scenarios

In this subsection, we evaluate the proposed method in
more scenarios to study its behavior systematically.

First, we consider the evaluation protocol popularly
used in the supervised setting. Specifically, following the
setup [40], we leverage a sliding window with the same res-
olution as training images to cope with the varying sizes
of evaluation images. The background class in the Pas-
cal Context is included for evaluation, and the results on
Cityscapes cover only 19 categories. Due to implementa-
tion challenges, we have not included existing methods in
comparison, but we introduce a supervised semantic seg-
mentation baseline, DeepLabv3+ [5], which can serve as an
upper bound on performance.
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Image Ours Ground TruthOurs*K-means

Figure 2. Visualization of the unsupervised semantic segmentation
results on Pascal Context [31].

Method Acc. (%) mIoU (%)

Pascal Context
Supervised - 48.5
K-means 56.3 31.9
Ours 67.4 41.4
Ours* 68.9 41.3

Cityscapes
Supervised - 77.3
K-means 75.5 34.2
Ours 86.1 46.7
Ours* 88.3 52.8

Table 3. Comparisons on semantic segmentation performance us-
ing the widely adopted evaluation protocol [40]. In particular, the
background class in the Pascal Context is included for evaluation,
and the results on Cityscapes cover 19 categories. The pre-trained
models with ViT-S architecture are used. Supervised results for
the two datasets rely on DeepLabv3+ [5] using ResNet-101 [17]
and Xception-65 [8] backbones, respectively.

As shown in Table 3, in this new evaluation setting, our
methods can clearly outperform K-means, and “Ours*” is
slightly better than “Ours” in general. These results are
consistent with those reported in Section 4.2 and help to
verify the extensibility of the proposed method. We also
notice that the performance gap between the proposed unsu-
pervised segmentation method and the supervised baseline
is not significant, especially on the Pascal Context dataset,
which motivates further investigation on the direction of im-
proving spectral clustering.

After that, we assess our method on ADE20K, one of
the most challenging semantic segmentation datasets that
contain 150 fine-grained semantic categories. To tackle a

Method Acc. (%) mIoU (%)

K-means 50.7 19.2
Ours 63.3 21.6
Ours* 62.5 23.6

Table 4. Comparisons on unsupervised semantic segmentation per-
formance on ADE20K using the evaluation protocol of [40]. The
pre-trained model with ViT-S architecture is used.

Figure 3. Visualization of the unsupervised semantic segmentation
results of our method on ADE20K. In each pair, the left refers to
the input image, and the right refers to the segmentation result. As
shown, our method can yield reasonable pixel groups for images
containing complex structures.

large number of ground-truth semantic classes, we set K to
512 with β as 0.04. The training lasts for 20 epochs, given
that the training set is relatively large. We use the evaluation
protocol of [40]. We include the K-means baseline based on
our own implementation for a fair comparison.

The results are displayed in Table 4. As shown, our
methods are still superior to the K-means baseline, espe-
cially regarding pixel accuracy. The best mIoU is 23.6%,
much lower than the corresponding results on Pascal Con-
text and Cityscapes. This probably stems from the large
number of semantic categories in ADE20K—the used pre-
trained models are not trained with fine-grained objectives
(e.g., losses defined on patches), so they cannot ensure the
semantic richness of the extracted dense features, which
makes our method tend to generate clusters that conjoin
multiple fine-grained semantic categories (see the lamp and
the streetlight in Figure 3). One potential solution to this
problem is fine-tuning the pre-trained models with patch-
wise self-supervised learning loss and then invoking the
proposed spectral clustering pipeline.

4.4. Ablation Studies

In this subsection, we present a comprehensive study of
several key hyper-parameters in our method. We evaluate
using the same setting as in Section 4.2. We consider the
ViT-S architecture for per-trained models given its superior
performance testified in previous results.
The output dimension K. K determines the number of
eigenfunctions to learn and hence the dimension of the spec-
tral embedding. It also implicitly connects to the number of
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K 64 128 256 512

Acc. (%) 67.1 71.6 70.4 71.1
mIoU (%) 27.8 33.2 38.8 37.9

Table 5. Performance comparison of different K based on a pre-
trained ViT-S model on Pascal Context validation set.

α 0 0.1 0.3 0.5 0.7

Pascal Context 38.6 37.9 38.8 38.9 38.0
Cityscapes 27.2 26.7 28.2 28.1 27.9

Table 6. Mean IoU (%) comparison of different trade-off coeffi-
cients α based on a pre-trained ViT-S model.

semantic classes uncovered automatically during training.
In previous experiments, we keep K larger than the num-
ber of ground-truth semantic classes. Here we perform an
ablation study on K on Pascal Context to reflect the neces-
sity of doing so. The results are summarized in Table 5,
which indicates that a value of K of at least 256 is nec-
essary to achieve superior performance in terms of mIoU
scores. A larger K yields more expressive representations
that capture subtleties yet at the cost of increased compu-
tational overhead. Moreover, it should be noted that the
NeuralEF technique may fail to uncover the eigenfunctions
with small eigenvalues [12]. Therefore, we suggest select-
ing a moderate value of K in practice.
The trade-off parameter α. The proposed spectral clus-
tering workflow is compatible with any kernel function that
captures plausible relationships between image patches.
Currently, the used kernel is a weighted sum of the normal-
ized adjacency defined on features from pre-trained mod-
els and that defined on down-sampled pixels. To verify the
robustness of our method to the trade-off parameter α, we
perform an ablation study on it and report the results in
Table 6. We include results for both Pascal Context and
Cityscapes for a thorough investigation. As shown, the
mIoU on the validation data does not vary significantly w.r.t.
α, and limiting α to [0.3, 0.5] can lead to superior results.
Note that when α = 0, i.e., we only use the features from
pre-trained models to construct the graph kernel, the mIoU
drops slightly, indicating that the features from pre-trained
models can retain most information on the neighborhood re-
lationship of raw pixels. This also presents an opportunity
for enhancing performance by improving the graph defined
on down-sampled image pixels.
The trade-off parameter β. The trade-off parameter β in
Equation (5) for learning neural eigenfunctions affects the
empirical convergence. To investigate whether our method
is sensitive to the choice of β, in Table 7 we ablate the in-
fluence of β in both “Ours” and “Ours*” approaches on the
Pascal Context data. We observe that the validation mIoU
remains stable across β ranging from 0.04 to 0.16, which

β 0.04 0.08 0.16

Ours 38.8 38.8 39.0
Ours* 39.0 39.6 39.3

Table 7. Mean IoU (%) comparison of different β based on a pre-
trained ViT-S model on Pascal Context validation set.

Acc. (%) mIoU (%)

Pascal Context 55.8 15.2
Cityscapes 81.2 18.5

Table 8. Zero-shot transfer results of our method. The training is
performed on ImageNet based on the pre-trained ViT-S model.

confirms the robustness of our method against β. With this,
we set β to 0.08 in all experiments.
Zero-shot transfer. Due to its unsupervised clustering na-
ture, our method does not necessarily rely on target images
for training. In this spirit, we perform an initial study where
the training is conducted on ImageNet, but the evaluation
is conducted on both Pascal Context and Cityscapes. This
forms a zero-shot transfer paradigm for unsupervised se-
mantic segmentation. The training lasts for 5 epochs un-
der the same setting in previous studies. We report the re-
sults in Table 8. As a reference, the corresponding mIoU of
MaskCLIP and ReCo on Cityscapes are 10.0 and 19.3 re-
spectively [39], thus our method provides competitive per-
formance. Nonetheless, the mIoUs for all the methods are
much worse than those in previous studies. This is probably
because images from ImageNet mostly contain clear fore-
grounds and single objects, which is in sharp contrast to the
complex scene images in Pascal Context and Cityscapes,
thus the learned neural eigenfunctions struggle to general-
ize. A potential remedy for this problem is training on more
realistic datasets to reduce the transfer gap.
Majority voting vs. Hungarian matching. By having the
same number of clusters as the ground truth classes and uti-
lizing Hungarian matching, we can maintain a relatively low
cluster count and probably enable the assignment of clusters
to semantic classes by an expert in practice. We conduct a
study on Pascal Context, where the number of clusters is set
to match the semantic categories. The resulting mIoU of
Hungarian matching is 0.235, slightly lower than the mIoU
obtained with majority voting in the same setting (0.277).
One possible explanation is that the semantic categories in
the benchmarks are often structured, such as a car consisting
of the body and the wheels. As a result, the automatically
discovered clusters may not correspond one-to-one with the
semantic categories. This observation also highlights the
need for a larger number of clusters to address this issue
effectively.
The pre-training method. When using ViT backbones pre-
trained on ImageNet classification, we observe that stronger
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ViT-B ViT-L ViT-L/14@336px

37.2 38.7 44.0

Table 9. Mean IoU (%) of our method on Pascal Context when
using various backbones pre-trained by CLIP.

pre-trained models yield worse segmentation performance.
We have realized backbones pre-trained by CLIP may ex-
hibit a different tendency because the model outputs are
coerced to conform with text supervision rather than be-
ing discriminative in recognizing foreground objects. We
empirically study this in Table 9. As shown, the backbone
pre-trained by CLIP exhibits an increasing trend on mIoU
as the model expressiveness increases.

5. Conclusion
This work establishes an end-to-end NN-based pipeline

for spectral clustering for unsupervised semantic segmenta-
tion. To achieve that, we build a connectivity graph over im-
age patches using information from both pre-trained models
and raw pixels and employ neural eigenfunctions to pro-
duce spectral embeddings corresponding to suitable graph
kernels. We further quantize the output of the neural eigen-
functions to obtain clustering assignments without resorting
to an explicit grouping step. After training, our method can
generalize to novel test data easily and reliably. The reliance
on pre-trained models gives our method good training effi-
ciency and sufficient expressiveness. Extensive results con-
firm its superior performance over competing baselines.

One limitation is that, like most clustering-based meth-
ods, our method needs to be exposed to ground-truth se-
mantic masks to match clustering assignments to semantic
segments. Introducing text prompts to guide clustering is a
potential solution and deserves future investigation.
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