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Abstract

Simultaneously odometry and mapping using LiDAR
data is an important task for mobile systems to achieve
full autonomy in large-scale environments. However, most
existing LiDAR-based methods prioritize tracking quality
over reconstruction quality. Although the recently devel-
oped neural radiance fields (NeRF) have shown promis-
ing advances in implicit reconstruction for indoor environ-
ments, the problem of simultaneous odometry and mapping
for large-scale scenarios using incremental LiDAR data re-
mains unexplored. To bridge this gap, in this paper, we pro-
pose a novel NeRF-based LiDAR odometry and mapping
approach, NeRF-LOAM, consisting of three modules neural
odometry, neural mapping, and mesh reconstruction. All
these modules utilize our proposed neural signed distance
function, which separates LiDAR points into ground and
non-ground points to reduce Z-axis drift, optimizes odome-
try and voxel embeddings concurrently, and in the end gen-
erates dense smooth mesh maps of the environment. More-
over, this joint optimization allows our NeRF-LOAM to be
pre-trained free and exhibit strong generalization abilities
when applied to different environments. Extensive eval-
uations on three publicly available datasets demonstrate
that our approach achieves state-of-the-art odometry and
mapping performance, as well as a strong generalization
in large-scale environments utilizing LiDAR data. Fur-
thermore, we perform multiple ablation studies to validate
the effectiveness of our network design. The implementa-
tion of our approach will be made available at https:
//github.com/JunyuanDeng/NeRF-LOAM .

1. Introduction

Simultaneous odometry and mapping is an important

component for autonomous mobile systems to achieve full

autonomy in large-scale environments. It estimates the 6-

degree-of-freedom poses of the vehicle and simultaneously
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Figure 1. Simultaneously odometry and dense mapping results on

KITTI07. We present the reconstruction and the odometry result.

The odometry results are colored by the absolute trajectory errors

(ATE). Our proposed novel NeRF-LOAM accurately estimates the

poses of a mobile system and reconstructs the dense mesh map of

the outdoor large-scale environment.

builds a map of the environment, which are fundamen-

tal prerequisites for downstream tasks like path planning

and collision avoidance. LiDAR sensors have been widely

adopted for odometry and mapping due to their ability to

provide precise range measurements and robustness to illu-

mination changes. However, it can be argued that the cur-

rent LiDAR odometry and mapping algorithms prioritize

tracking quality over dense reconstruction quality, which

may overlook the potential benefits of accurately capturing

environmental geometry and generating high-fidelity recon-

structions. Despite the popularity of LiDAR-based incre-

mental pose estimation [15, 41, 26, 39], research on high-

level dense map reconstruction, especially deep-learning-

based algorithms remains scarce.

Recently, neural radiance fields (NeRF) [32] has shown

promising potentials in representing 3D scenes implicitly

using a neural network and parallelly pose tracking meth-

ods [33, 51, 45]. Although such representation can achieve

seminal reconstruction with accurate poses, they concen-

trate on indoor pose tracking and scene representation with

RGB-D sensors. The sparsity of LiDAR data and the lack

of RGB information present significant challenges for ap-
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plying previous algorithms to LiDAR data in outdoor en-

vironments. Developing practical LiDAR-based algorithms

to address these issues is currently a critical task.

To this end, we propose a novel NeRF-based LiDAR

odometry and mapping method, dubbed NeRF-LOAM. It

employs sparse octree-based voxels combined with neural

implicit embeddings, decoded into a continuous signed dis-

tance function (SDF) by a neural implicit decoder. The

embeddings, decoder, and poses are optimized simultane-

ously by minimizing the SDF errors. NeRF-LOAM targets

the outdoor driving environments and separates the LiDAR

points into ground and non-ground points, and a precise

SDF for ground points can be obtained with the help of nor-

mals. Such an operation depresses Z-axis drift and smooths

our dense 3D map. To tackle the incremental odometry

and mapping under the unknown large-scale outdoor envi-

ronment, a dynamic voxel embedding generation strategy

without any pre-allocation or time-consuming loop is de-

signed. Finally, we use key-scans to not only jointly refine

the pose and the map but also relieve the catastrophic for-

getting or pre-training process. Extensive experiments were

conducted on three publicly available datasets. The exper-

imental results demonstrate that our method attains state-

of-the-art odometry and mapping performance in outdoor

large-scale environments using LiDAR data.

To sum up, the contributions of our work are threefold:

1. To the best of our knowledge, our NeRF-LOAM is the

first neural implicit odometry and mapping method for

large-scale environments using LiDAR data.

2. We propose a novel neural SDF module combined

with dynamic generation and key-scans refine strategy,

which realizes a fast allocation of voxel embeddings in

the octree and a high-fidelity 3D representation.

3. Based on the proposed online joint optimization, our

method is pre-training free and generalizes well in dif-

ferent environments.

2. Related Work
Odometry and mapping in outdoor large-scale environ-

ments using LiDAR data has been investigated for decades.

One of the primary methods is the iterative closest point

(ICP) algorithm [3, 30], which directly aligns consecutive

point clouds together and calculates the relative transfor-

mation between pairs of LiDAR scans. Tackling the spar-

sity of LiDAR data, Zhang and Singh [48] use point-to-

edge and point-to-plane distance to optimize the ICP error

and achieve accurate odometry estimates. However, these

types of algorithms mainly focus on odometry estimation,

while the reconstructed map is coarse. The successive re-

search [3, 31, 2, 8] also explores the scene geometry to

get more accurate odometry results without considering the

quality of the reconstruction map. Meanwhile, learning-

based methods on LiDAR odometry [15, 41, 26, 39, 6] at-

tract much attention. These methods employ a network to

learn features from points or projected 2D images. How-

ever, they often require large data for training and cannot

generalize well to other environments.

To represent the 3D scene, there are many tech-

niques such as surfels [28], occupancy grids [10], trian-

gle meshes [19, 7], and polynomial representations [14].

Traditionally, Poisson surface reconstruction [23, 24] pro-

vides geometrically accurate reconstruction. Newcombe et

al. [12] popularizes the concept of truncated signed distance

function (TSDF) and volumetric integration methods to re-

construct triangle meshes [13, 37]. Behley and Stachniss [2]

use surfels to realize the reconstruction of 3D range sen-

sors. For learning-based reconstruction, they usually focus

on the small objects [20] or reconstruct directly from the

point clouds [43]. The dense reconstruction from 3D incre-

mental LiDAR data still remains to explore.

Compared to the existing 3D representations, the success

of neural implicit representation [1, 18, 32, 40, 50] for novel

view synthesis attach great attention, and many research in-

vestigates the possibility to use this concept realizing simul-

taneous localization and mapping (SLAM) [42, 46, 27, 33,

51, 45]. These neural SLAM use multilayer perceptrons

(MLPs) to represent the entire scene and achieve seminal

results. Extensive related works have been done such as

the training and inference speed [18, 17], sparse training

view [47, 5] and scene composition[49, 44]. However, they

are mainly designed to process the image [25, 32] or RGBD

inputs [9, 4] and are employed indoors. Extending them

to LiDAR-based outdoor environments is hard to achieve

because of the model limitation of simple MLPs and the

sparsity character of LiDAR data. Although [45, 50] adopt

an octree-based sparse grid with voxel embeddings and can

be applied in larger areas, the pre-allocated embeddings or

time-consuming loop to search the voxels is not available in

outdoor for both odometry and mapping.

Unlike the above-mentioned methods, we propose a

novel neural implicit odometry and mapping method for in-

cremental LiDAR inputs under large-scale environments to

obtain both dense 3D representation and accurate poses. We

adopt voxel embeddings with an MLP decoder to represent

the local geometry instead of the entire scene, which gener-

alizes well in most environments. We also design a dynamic

voxel embedding generation strategy to reduce processing

time significantly as well as a key-scans refine strategy to

improve the reconstruction quality.

3. Our Neural SDF
Before delving into the details of our NeRF-LOAM net-

work, we first introduce a novel neural SDF module shown

in Fig. 2, which plays a crucial role in all of our processes,

including optimizing the poses, maps, and networks.

To realize the neural representation of large-scale out-
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Figure 2. The modified neural SDF. After the rays and points sam-

pling, the voxel embeddings are fed to a network to query the neu-

ral SDF after ground separation.

door incremental, the octree [21, 35, 34] structure is often

adopted to recursively divide the scene into leaf nodes with

basic scene units voxels. These axis-aligned voxels attach

an Ne-dimension embedding at each vertex and share with

neighbor voxels. The SDF values can be inferred from the

embeddings through a neural network Fθ. Different from

existing methods [45, 50], we treat the environments dif-

ferently when optimizing the SDF values, e.g., ground and

non-ground, and propose a novel loss function to realize

more suitable neural SDF for LiDAR data in outdoor large-

scale environments.

Rays and points sampling. The first step in all of our

processes is based on effective sampling. Instead of ran-

domly selecting samples across the space or around the

points, we first select rays that intersect with the currently

allocated voxel and then select the points along the intersec-

tion part of the ray and voxels. Note that we set a hit number

threshold of voxels Mn to avoid the influence of the unseen

surface. Since the LiDAR rays are transformed by the scan

pose Ti, each ray contains the pose information of the scan.

This sampling strategy allows us to optimize the pose and

voxel embeddings simultaneously.

Neural SDF value. For most visual-based NeRFs [1,

51], the scalar value like weight or color are obtained by dif-

ferentiable rendering along the ray. Since the SDF is a direct

method to represent the scene, the rendering method is un-

suitable for LiDAR data in outdoor environments [50]. The

neural SDF filed Ψ : R3 → R can be represented by Eq. (1):

each sampled point can be regressed via the trilinear inter-

polation of voxel embeddings:

Ψ(ps) = Fθ(TriInpo(ps, e1, ..., en)), (1)

where ps = Tipf is the transformed sampled points by cur-

rent scan pose Ti from the original point pf in LiDAR coor-

dinate, TriInpo(ps, e1, ..., en) represents the trilinear inter-

polation of the sampled point ps surrounded by n neighbor

voxel embeddings, and Fθ is the neural implicit network

with parameter θ. Since all processes involved are differen-

tiable, we can optimize the scan pose, voxel embeddings,

and network parameters jointly through back projection.

Because the voxel embeddings primarily store geometric

information, our network does not require pre-training and

can adjust online to different environments.

Training SDF pairs. The LiDAR sensors provide highly

Figure 3. The geometric information SDF value at point ps should

stay invariant w.r.t the view (blue line). While the approximated

SDF is significantly different with view change (red line). The

alignment of SDF forces the car to shift along the ray.

accurate range measurements, which allow us to compute

the signed distance from the sampled points to the endpoints

along the ray. This signed distance is often called the SDF

value in many SLAM or mapping approaches [37, 13]. This

approximation is generally acceptable for simple mapping

or indoor SLAM tasks while leading to sub-optimal results

when applied to outdoor SLAM as shown in Fig. 3. It illus-

trates the issue with the SDF approximation when used with

a far LiDAR point. The blue line represents the true SDF

value, while the red line is the SDF approximation. The dif-

ference between the two distances can be significant when

the angle θ is close to 0◦. This can decrease odometry qual-

ity due to the inaccurate SDF value. This problem is even

more significant in the Z-axis, as there are fewer points in

LiDAR scan to constrain Z-drift. While obtaining the nor-

mals of all LiDAR points can be challenging, the “smooth”

ground allows access to the rectified SDF value.

Therefore, we propose to first separate LiDAR points

into ground points G and non-ground points GC . The SDF

field Φ : R3 → R can then be represented as:

Φ(ps) =

{
(ps − p)np if p ∈ G
‖ps − p‖ else

, (2)

where ps is the sampled point and p is the LiDAR point

alone the ray, np is the normal of point p.

Optimization. We train the network using the weighted

sum of three different losses. The first free space loss forces

the neural SDF of points between LiDAR and the positive

truncation region Pf to be truncation distance Tr:

Lf =
1

|Pf |
|Pf |∑
i=0

(Ψ(pi)− Tr)2 (3)

The negative truncation region is beyond our consideration

following the suggestion of [1] to avoid surface intersec-

tion ambiguities [40]. This loss plays an important role in

removing dynamic objects. Secondly, we define an SDF

loss of points within the truncation region Ps to supervise

the SDF estimates:

Ls =
1

|Ps|
|Ps|∑
i=0

(Ψ(pi)− Φ(pi))
2. (4)
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Figure 4. Our NeRFLOAM Overview. The dashed line represents

the back projection. Given a LiDAR stream, our approach out-

puts the poses of each scan and a reconstructed mesh map of the

environment with three modules: 1) neural odometry takes the

pre-processed scan and optimizes the pose via back projecting the

queried neural SDF; 2) neural mapping jointly optimizes the voxel

embeddings map and pose while selecting the key-scans; 3) key-

scans refined map returns SDF value and the final mesh is recon-

structed by marching cube.

Different to [27, 50] using a sigmoid function to increase

the credits around the LiDAR points, we treat the points

equally in this region for the reason that these points are all

important for odometry. Finally, because the SDF values are

differentiable and equal to one within the truncation area,

we add an Eikonal loss:

Le =
1

|Ps|
|Ps|∑
i=0

(
∂Ψ(pi)

∂pi
− 1)2. (5)

4. NeRF-LOAM Framework
4.1. Overview

The architecture of our framework is illustrated in Fig. 4.

Our method takes an incremental LiDAR stream as input

and outputs a 3D reconstructed mesh with poses of each Li-

DAR scan through three modules: neural odometry, neural

mapping, and mesh reconstruction. The first two parts run

parallel as frontend and backend, while the third runs sepa-

rately to obtain a global mesh map and refined scan poses.

Given the incoming LiDAR scan Pt =
{
pi ∈ R

3
}N

i=1
,

the neural odometry estimates a 6-DoF Pose T ∈ SE(3)
for that scan by minimizing the SDF error from a fixed im-

plicit network Fθ (see Sec. 4.2). The tracked scan is then

fed to neural mapping, which utilizes the tracked pose T to

transform the point cloud into the world coordinate system

(see Sec. 4.3). The implicit map representation and pose

are then jointly optimized. During mapping, we add a scan

into the key-scan buffer after a certain distance or when the

vehicle reaches a new area. This key-scan buffer maintains

the long-map consistency but also enhances the mapping

quality. Finally, the key scans are utilized to refine both the

odometry and map results (see Sec. 4.4). The 3D mesh is

reconstructed by the marching cube method [19] based on

the SDF values predicted by our network. More details of

each component are provided in the following sections.

4.2. Neural Odometry

For every incoming LiDAR scan Pt, we randomly select

N rays and transform them into the world coordinate sys-

tem. A set of points are sampled along the ray as described

in Sec. 3. The pose and voxel embeddings are optimized by

decreasing the loss.

For our neural odometry, the parameter which needs to

be optimized is the 6-DoF pose T in SE(3) space. All up-

dates of the pose ξ ∈ se(3) is performed in tangent space of

SE(3). The Lie-algebra representation enables us to update

the pose by a gradient descent method. We randomly select

N rays and transform them into the world coordinate sys-

tem. Note that we use a constant move model to initialize

our pose. This model can relieve our learning burden. We

sample the points, compute the loss and optimize the pose

via back-projection, as mentioned in Sec. 3. Here, the voxel

embeddings and the network are obtained after the neural

mapping process of the last tracked scan.

To tackle the problem of catastrophic forgetting when

performing online incremental odometry, we freeze the net-

work parameters after K scans which does not decline our

result because local geometry is mainly stored in voxels.

The voxel embeddings and poses of the first K scans will

be refined later by key scan refinement, detailed in Sec. 4.4.

4.3. Neural Mapping

Dynamic voxel embeddings generation. For neural

mapping, we employ an octree-based approach to parti-

tion the scene. Following the odometry process, the esti-

mated pose enables us to convert all points of the current

scan into the world coordinate system. Subsequently, any

points not in existing voxels are assigned to newly gen-

erated ones. These voxels are added to the octree along

with their corresponding voxel embeddings. To quickly lo-

cate the desired embeddings, we encode the 3D voxel co-

ordinates into a unique scalar value, namely the Morton

code [35]. Although utilizing the code, the pre-allocate em-

beddings [34, 45] or time-consuming one by one search in

hash table [50] is not suitable for our task, especially when

it needs to retrieve hundreds of thousands of embeddings

from a hash table containing millions of entries.

Inspired by the concept of a look-up table, we devise an

efficient and scalable method for generating voxel embed-

dings dynamically, as outlined in Alg. 1. The lookup table

is extended with the maximum Morton code to store the ac-

cess information of voxels. The unvisited voxels will be as-

signed initialized embeddings and added to the embedding
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Algorithm 1: Dynamic Embeddings Generation.

Input: Look-up list L; Incoming voxels IDs (i.e.,

Morton code) Iv; Embedding list Le;

Output: Embedding list Le with new embeddings;

Updated look-up list L.

1 m←max(I), maximum index.

2 l ← len(L), length of the look-up list.

3 s ← len(Le), length of the embeddings list.

4 if m > l then
5 Extend the length of the look-up list to m,

initialized with value -1.

6 Ie ← L[Iv], look the embeddings IDs.

7 Iv ← {Iv[i] | Ie[i] = −1}, unvisited voxels IDs.

8 lv ← len(Iv), length of unvisited voxels.

9 L′
e ← [ei|i ∈ {1, ..., lv}], new embeddings.

10 Le ← Le + L′
e, final embedding list.

11 L[Iv] ← [s+ 1, ..., s+ l + v], update the look-up

list.

list while updating the look-up table by the current embed-

ding number, eliminating time-consuming loop queries.

Joint optimization of the map and pose. Similar to

neural odometry, we sample the rays and points to calculate

the loss. Here we mainly optimize the voxel embeddings

while fine-tuning the poses.

4.4. Mesh Reconstruction

Key-scans selection and refinement. We maintain a

key-scan buffer to relieve the catastrophic forgetting of the

first K scans as well as improve the mapping quality. A key

scan is added to the buffer if the number of newly added

voxels Nv exceeds a threshold of Nt or the distance be-

tween the current scan and the last key-scan df is suffi-

ciently large. The map and poses are in the end refined with

all the key-scans in the buffer. This simple strategy is effec-

tive, as demonstrated in the mapping results in Sec. 5.5. Ad-

ditionally, to improve the efficiency of the refinement pro-

cess, only rays or LiDAR points within a truncation distance

dt based on the point density are included.

Final mesh and poses. After the key-scans refine, the

map and the poses are well-trained and ready to output final

results. Our modified SDF is continuous, so we can theoret-

ically infer SDF values at an arbitrary position. We query

the SDF values with the same fixed size (i.e., voxel size),

and the final mesh is obtained via marching cube [19].

5. Experiments

5.1. Experimental Setup

Datasets. We evaluate our method and compare it

with state-of-the-art (SOTA) methods using three publicly

available outdoor LiDAR datasets, including MaiCity [36],

Newer College [29], and KITTI odometry [11] datasets.

MaiCity [36] contains 64-beam noise-free synthetic LiDAR

scans in urban environments, and the ground truth map is

provided. Newer College [29] contains a hand-carried Li-

DAR sequence collected at Oxford University with motion

distortion. To make it more challenging and the scans more

distinctive, we take one out of every five. We compare our

odometry and mapping results with provided ground truth

trajectories and mesh maps by these two datasets. KITTI

odometry [11] does not provide ground truth maps, so we

present our odometry accuracy hereby qualitative mapping

results.

Evaluation metric. We evaluate both the odometry

and mapping performance of our method. For odometry

accuracy, we present the root-mean-square error (RMSE)

of absolute trajectory errors (ATEs) by SE(3) align-

ment. And for mapping accuracy, we use the commonly

used reconstruction metrics adopted in most reconstruction

method [22, 36, 50], i.e., accuracy, completion, Chamfer-L1

distance, and F-score, obtained by comparing the resulting

mesh with ground truth.

Implemental details. The whole process shared net-

work is an MLP consisting of 2 FC layers, and each layer

has 256 hidden units. The length of our voxel embeddings

is 16 with a voxel size 0.2 m. For sampling, we set the step

size ratio to 0.2 for odometry and 0.5 for mapping and the

truncation distance Tr = 0.3m. To distinct the ground

from the LiDAR points, we use the seminal work of [16].

More studies on our hyperparameter selection are presented

in Sec. 5.5 and supplementary materials (see Sec. D).

5.2. Simultaneously Odometry & Mapping Results

The first experiment shows the simultaneous odometry

and dense mapping results of our method compared with ex-

isting SOTA methods. For example, Poisson surface recon-

struction SLAM method Puma [36], a TSDF fusion-based

approach Vdbfusion [37], and an implicit neural network-

based map representation SHINE-Mapping [50]. Since both

Vdbfusion and SHINE-Mapping only focus on dense map-

ping, we combine them with the current SOTA odometry

method KissICP [38]. For fair comparison, we also show

the results of our methods using KissICP poses. The re-

sults of all baseline methods are produced using their offi-

cial open-source code with the same voxel size.

Tab. 1 shows our odometry mapping results on the

MaiCity[36] and Newer College[29] datasets. As can be

seen, our mapping process combined with KissICP outper-

forms all baselines on the MaiCity dataset and has compa-

rable quality in the Newer College dataset. The correspond-

ing qualitative results are demonstrated in Fig. 5. In the

case of the MaiCity dataset, KissICP produces false pose

estimates in the initial scans, which will lead to entangled
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Method Pose
MaiCity Newer College

Map. Acc. ↓ Map. Comp. ↓ C-l1. ↓ F-score (10cm) ↑ Map. Acc. ↓ Map. Comp. ↓ C-l1. ↓ F-score (20cm) ↑
SHINE [50]

KissICP [38]

5.75 38.45 22.10 67.00 14.87 20.02 17.45 68.85

Vdbfusion [37] 4.95 46.79 25.87 68.15 14.03 25.46 19.75 69.50
Ours 4.16 37.20 20.67 73.31 14.31 24.39 19.35 68.70

Puma [36]
Odometry

7.89 9.14 8.51 68.04 15.30 71.91 43.60 57.27

Ours 5.69 11.23 8.46 77.26 12.89 22.21 17.55 74.37

Table 1. Simultaneously odometry & mapping results of different methods on MaiCity [36] and Newer College [29] datasets in terms of

map accuracy, completion and Chamfer-L1 distance and F-scores.

(a) Ours with KissICP (b) Vdb with KissICP (c) Shine With KissICP (d) Ours with KissICP (e) Vdb with KissICP (f) Shine With KissICP

Figure 5. The odometrey mapping results for different methods. The first three are on MaiCity [36] while the last three are on Newer

College [29]. The artifacts are highlighted in Red boxes.

mapping if there are no specific processes to remove these

artifacts. Vdbfusion provides space carving to address this

problem. However, it removes both the artifacts and impor-

tant objects such as roads, trees, and cars. Shine-Mapping

offers some improvement by removing certain artifacts. Our

proposed method outperforms both of these techniques by

effectively removing the majority of the artifacts and pro-

ducing a smoother mapping result. Similar benefits can be

observed in the Newer College dataset, where Vdbfusion

removes the trajectory caused by a person holding a device,

resulting in an incomplete map.

Compared to Puma, which involves both odometry and

mapping processes, our approach also realizes both odom-

etry and mapping using an implicit neural network and

achieves superior performance in almost all metrics. In the

MaiCity dataset, the slightly inaccurate trajectory of our

method results in a larger distance compared to the com-

pletion distance, as also presented in Sec. 5.4. However,

with a more precise trajectory in the Newer College dataset,

our approach significantly outperforms Puma. These results

are visually depicted in Fig. 6(d) and Fig. 6(e) for MaiCity,

and Fig. 7(d) and Fig. 7(e) for Newer College. Although

Puma appears more complete, the second row of the figures

indicates that this comes at the expense of mapping accu-

racy. Also, on the Maicity dataset, we can see the ground

folds for Puma as it tries to reconstruct a watertight surface

and thus is influenced by surrounding objects. As shown

on the Newer College dataset, Puma cannot remove the dy-

namic objects and insufficient points on the wall hinder a

complete reconstruction.

5.3. Mapping Quality

To eliminate the influence of pose estimation and thor-

oughly investigate the mapping ability of different methods,

we employ ground truth poses to reconstruct the mesh map

of the environments. We compare our approach with two

pure mapping methods, Shine-Mapping [50] and VdbFu-

sion [37], and provide quantitative results in Tab. 2. As

can be seen, our approach outperforms all baseline meth-

ods across almost all metrics when compared in terms of

pure mapping ability. The superiority of our mapping ap-

proach is also evident in Fig. 6 and Fig. 7, where our recon-

struction is the most complete, particularly in terms of the

ground. The error maps enforce our claims by demonstrat-

ing the greater accuracy of our reconstruction. Note that in

the Newer College dataset, we reconstruct every five scans,

and the results indicate that our mapping process still per-

forms well even with sparse and noisy observations.

5.4. Odometry Evaluation

As discussed, the quality of odometry largely influences

the mapping quality. An accurate trajectory can directly

improve the reconstruction result and avoid undesired arti-

facts. Here we present the results of our odometry compared

with other non-learning-based and learning-based methods.

As mapping methods like Shine-Mapping [50] and Vdbfu-

sion [37] do not provide pose estimations, they are omitted

from the comparison. For non-learning-based methods, we

compare our odometry results with Puma [36], SuMA [2],

and two registration algorithms based on ICP: point-to-

point ICP [3] and generalized-ICP [31]. For learning-based

methods, we adopt two SOTA algorithms with code avail-

able: DeLORA [26] and PWC-LONet [39]. For other code-

unavailable learning-based methods like LO-Net [15] and

DeepPCO [41], we report their quantitative results from

their papers in our supplementary materials (see Sec. C)

along with the above-mentioned methods.

We present the RMSE results in Tab. 3. Our method

achieves comparable results to other methods on the syn-

thetic MaiCity dataset and KITTI09 datasets while achiev-

ing the best performance on the Newer College. Notably,

our method does not require any pre-training and exhibits

strong generalization ability across different datasets, while

pre-trained methods such as DeLORA and PWC-LONet,

8223



(a) Ours with GT pose (b) Vdb with GT pose (c) Shine With GT pose (d) Our odometry mapping (e) Puma odometry mapping

Figure 6. The mapping result with ground truth pose or odometry results on the MaiCity [36] dataset are shown in the first row. The second

row presents the error maps with ground truth mesh as a reference, where the redder points mean larger error up to 25cm.

(a) Ours with GT pose (b) Vdb with GT pose (c) Shine With GT pose (d) Our odomery mapping (e) Puma odometry mapping

Figure 7. The mapping result with ground truth pose or odometry results on the Newer College [29] dataset are shown in the first row. The

second row presents the error maps with ground truth mesh as a reference, where the redder points mean larger error up to 25cm.

which are pre-trained on the KITTI dataset, exhibit worse

performance on other datasets. Although PWC-LONet still

obtains acceptable results on the MaiCity dataset, it almost

fails on the Newer College dataset. More results on KITTI

can be found in the supplementary materials (see Sec. C).

5.5. Ablation Study

Ground separation. We compare the performance of

our method with and without ground separation and show

the odometry and mapping accuracy in Tab. 4. For odome-

try accuracy, we see that RMSE error declines with ground

separation for the MaiCity dataset and for Newer College,

the approach even failed without ground separation. More-

over, when checking pose error in each axis (supplementary

materials Sec. D), the trajectory with ground separation is

consistent in the z-axis, while without ground separation, it

diverges fast. For mapping accuracy, all mapping metrics

indicate that our method achieves significantly better map-

ping results with ground separation. We can also see a clear

improvement visually in Fig. 8. With ground separation, the

“ripples effect” is suppressed and the holes are disappeared.

Key-scan refine strategy. We further analyze the effec-

tiveness of our key-scan refine strategy and show the result

in Tab. 4. The numerical results show improvement with

(a) Map with ground separation (b) Map with ground separation

(c) Map w/o ground separation (d) Map w/o ground separation

Figure 8. Ablation study for ground separation in mapping using

the pose provided by our neural odometry. With ground separa-

tion, the mapping result is neater and completer.

key-scan refinement, and the visual improvement is even

more significant, as shown Fig. 9. The key-scan refinement

produces smoother and more complete results, as evidenced

by the improved maps of roads, walls, and vehicles.

Voxel size. We analyze the mapping quality, memory

consumption, and processing time v.s. the voxel size shown
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Method Pose
MaiCity Newer College

Map. Acc. ↓ Map. Comp. ↓ C-l1. ↓ F-score ↑ Map. Acc. ↓ Map. Comp. ↓ C-l1. ↓ F-score ↑
SHINE [50]

GT pose

4.17 5.30 4.74 89.67 8.32 14.36 11.34 90.65

Vdbfusion [37] 4.12 8.01 6.07 90.16 6.87 18.37 12.61 89.96

Ours 3.15 4.84 4.00 92.96 6.86 15.59 11.24 91.83

Table 2. The mapping results of the reconstruction quality on the MaiCity [36] and Newer College [29] dataset. The voxel size is 20 cm

and F-score in % with a 10 cm error threshold.

Method Mai00 Mai01 NC KT09

ICP [3] 1.90 0.05 15.84 5.86

GICP [31] 1.24 0.13 1.02 34.25

Puma [36] 0.25 0.06 0.39 3.58
SuMA [2] 2.01 0.04 1.22 5.00

DeLORA [26] 57.57 5.12 - 29.09

PWC-LONet [39] 3.28 0.09 15.78 4.60

Ours 1.27 0.13 0.15 4.26

Table 3. RMSE results of odometry. Mai for MaiCity [36], NC for

Newer College [29], KT for KITTI [11], “-” for failed

Dataset Ground KF-ref. RMSE↓ Acc.↓ Comp.↓ C-l1.↓ F↑

MaiCity

� � 0.20 6.15 69.64 37.90 49.39

� � 0.20 6.13 70.48 38.30 48.78

� � 0.17 5.93 11.49 8.71 76.15

� � 0.17 5.69 11.23 8.46 77.26

Newer

College

� � - - - - -

� � - - - - -

� � 0.15 16.41 25.75 21.08 61.10

� � 0.15 12.89 22.21 17.55 74.37

Table 4. Ablation study of our designs on Maicity [36], Newer

College [29]. “-” stands for failed

(a) Mapping with key-scan refine (b) Mapping with key-scan refine

(c) Mapping w/o key-scan refine (d) Mapping w/o key-scan refine

Figure 9. Ablation study for key-scan refine in terms of mapping.

The pose is obtained by the SLAM odometry. The key-scan refine

makes the reconstruction result clearer.

in Fig. 10. We text our NeRF-LOAM on an Intel Xeon CPU

with 2.1 GHz and an Nvidia NVIDIA Titan RTX with 24

GB of memory. The results show that the mapping per-

formance decreases as the voxel size exceeds 20 cm, while

(a) Time vs Acc. on Newer College (b) Me. vs Acc. on Newer College

Figure 10. Study on voxel size v.s. processing time, memory con-

sumption and accuracy distance on Newer College [29].

processing time and memory consumption remain constant.

Thus, we set the voxel size as 20 cm. More studies on pa-

rameters are provided in the appendix (see Sec. D).

6. Conclusion
In this paper, we presented a novel approach for si-

multaneous odometry and mapping using neural implicit

representation with 3D LiDAR data. The devised NeRF-

LOAM network tackles incremental LiDAR inputs in out-

door large-scale environments. It uses voxel embeddings

to record the geometrical structure and avoids any pre-

training, thus generalizing well in different situations. We

further conceive a dynamic embedding generation, which

realizes fast query and allocation to support outdoor large-

scale applications. Experiments conducted on simulated

and real-world datasets showed that our approach recon-

structs higher-quality 3D mesh maps compared to other

learning-based or non-learning-based methods. Our method

estimates at the same time an accurate pose and generalizes

well without any offline pre-training.

Limitation and future work. Our NeRF-LOAM cannot

currently operate in real-time with our unoptimized Python

implementation. The primary bottleneck is the intersection

query between the ray and the map. For future work, we

can facilitate the runtime by using sliding windows or local

searching based on the estimated odometry pose and opti-

mize the code in C++. Additionally, we plan to combine our

work with loop closures to handle drift in long-term track-

ing and mapping, ultimately achieving a full SLAM system.
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