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Abstract

The cloud-based multimedia service becomes increas-
ingly popular in the last decade, however, it poses a serious
threat to the client’s privacy. To address this issue, many
methods utilized image encryption as a defense mechanism.
However, the encrypted images look quite different from
the natural images, making them vulnerable to attackers.
In this paper, we propose a novel method namely PIRNet,
which operates privacy-preserving image restoration in the
steganographic domain. Compared to existing methods, our
method offers significant advantages in terms of invisibil-
ity and security. Specifically, we first propose a wavelet
Lifting-based Invertible Hiding (LIH) network to conceal
the secret image into the stego image. Then, a Lifting-based
Secure Restoration (LSR) network is utilized to perform im-
age restoration in the steganographic domain. Since the
secret image remains hidden throughout the whole image
restoration process, the privacy of clients can be largely en-
sured. In addition, since the stego image looks visually the
same as the cover image, the attackers can hardly discover
it, which significantly improves the security. The experi-
mental results on different datasets show the superiority of
our PIRNet over the existing methods on various privacy-
preserving image restoration tasks, including image denois-
ing, deblurring and super-resolution.

1. Introduction

Recently, the cloud-based multimedia services have de-
veloped rapidly with the fast growing cloud computing
technology. The Software-as-a-Service (SaaS) [5] such as
Amazon Web Service (AWS) [1] and Google Cloud Plat-
form (GCP) [2] provides strong computing resource to the
clients, which allows them to perform efficient image pro-
cessing online. However, image processing in the cloud
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Figure 1. An illustration of the working process of the proposed
method for privacy-preserving image restoration over cloud. The
low-quality (LQ) secret image is first concealed into a stego image.
Then, the secure image restoration is operated on the stego image
to preserve privacy. Finally, the high-quality (HQ) secret image
can be revealed from the processed stego image.

poses a serious threat to the client’s privacy. A hacker or
a malicious service provider can easily access the clients’
private photos, and discover their personal identity, social
connections, and visited places for unauthorized uses.

To tackle the security and privacy issue, many re-
searchers have dived into the area of privacy-preserving im-
age processing [17][34][28]. In these methods, image en-
cryption is regarded as an important line of defense for pri-
vacy protection. They first utilized the homomorphic en-
cryption [23] method to encrypt images. Then, the im-
age processing is operated in the encrypted domain without
decrypting the source image to achieve privacy protection.
However, these encryption based methods have a big disad-
vantage, i.e., the encrypted images look quite different from
the original images, making them more vulnerable to the at-
tackers. Additionally, they rely on complex homomorphic
crypto-system for encryption, which can be computation-
ally heavy for real-time applications.

Different from the existing methods, we propose a novel
method to operate privacy-preserving image restoration in
the steganographic domain, which has a significant advan-
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tage in terms of invisibility and security. As shown in Fig. 1,
the steganographic technique allows the secret image to be
concealed within the cover image, resulting in a stego im-
age that looks quite similar to the cover one. That makes it
quite difficult for attackers to detect the secret image. In ad-
dition, all restoration operations are performed on the stego
images. The secret image will not be disclosed both in im-
age transmission and cloud server, which can significantly
reduce the risk of privacy leakage and breach. In addition to
the above benefits, our approach does not require the com-
plex homomorphic cryptosystem, which saves on computa-
tional cost. The success of our method relies on our impor-
tant finding, i.e., when the image concealing and revealing
processes are invertible, the quality change of the stego im-
age can sensitively and stably affect the quality of the re-
covered secret image. The main contributions of this paper
are summarized as follows:

• We propose a wavelet lifting based privacy-preserving
image restoration network, namely PIRNet, to achieve
confidential image restoration in steganographic do-
main without revealing the source image.

• We reveal an important finding about the correlation
between the quality change of stego image and the re-
stored secret image, which lays a great foundation for
our network design for confidential image restoration.

2. Related Work
2.1. Privacy-Preserving Image Processing

In the recent decade, with the increasingly serious pri-
vacy disclosure in the cloud environment, many approaches
have been proposed for privacy-preserving image process-
ing. To protect privacy, most of these methods focus on the
operation in encrypted domain [17, 34, 28]. Specifically,
Lathey et al. [17] first attempted to perform image qual-
ity enhancement operations in the encrypted domain with
Shamir’s secret sharing technology (SSS) [25] as the en-
cryption mechanism. Later, Ziad et al. [34] introduced a
library which can perform several operations, such as edge
sharpening and spatial filtering, on the encrypted image us-
ing the homomophic encryption. Based on the ramp se-
cret sharing scheme[26], Tanwar et al. [28] proposed a
method for image inpainting in the encrypted domain over
the cloud. However, these methods rely upon sophisticated
public-key homomophic cryptosystems, which are compu-
tationally heavy. In addition, since the encrypted images
are visually different from the original ones, they can eas-
ily attract the attention from the attackers. Different from
the above methods in the encrypted domain, our proposed
PIRNet is performed in the steganographic domain which
has a remarkable invisibility advantage. Since the stego im-
age with secret information inside looks quite similar to the

original cover image, it is difficult for the attacker to de-
tect the secret image. Moreover, it can significantly save
the computing costs since the complex homomophic cryp-
tosystem is not needed. To the best of our knowledge, we
are the first to explore privacy-preserving image restoration
in steganographic domain.

2.2. Wavelet Lifting In Computer Vision Tasks

The lifting scheme was originally introduced in [27] as
a technique to construct biorthogonal wavelets. Recently,
the wavelet lifting scheme has been combined with deep
networks, with well applications in various computer vision
tasks [18, 12, 21]. Li et al. [18] first proposed to integrate
CNN-based operators with the lifting scheme to construct
the reversible blocks with good reversibility. Due to the
perfect reconstruction property of wavelets, the reversible
blocks are guaranteed to have strong stability and robust-
ness. Based on these good characteristics, Huang et al. [12]
proposed a wavelet-inspired invertible network to facilitate
blind noise removal in images. Since the lifting scheme is
information lossless, Ma et al. [21] combined wavelet lift-
ing with deep compression network to perform lossless im-
age compression. Inspired by wavelet lifting, the invertible
neural networks (INNs) were proposed for memory sav-
ing and lossless transformation. With good reversibility,
the INNs have made significant progress in many low-level
computer vision tasks [20, 19, 10]. In this paper, our pro-
posed method also benefits from the favorable characteris-
tics of wavelet lifting, such as the multi-scale representa-
tions and reversibility, to achieve privacy-preserving image
restoration in steganographic domain.

3. Method
3.1. Motivation

To achieve privacy-preserving image restoration, it is of
significant importance to firstly find the suitable stegano-
graphic manipulated domain. Typically, the steganographic
domain should meet the following requirements: the ma-
nipulation in the steganographic domain should be able to
sensitively affect the results in the target restoration domain,
and the influence should be stable and consistent. Regard-
ing this issue, we have an important finding that the stego
images generated by invertible image hiding network can
meet the above requirements and act as a good stegano-
graphic domain. The quality change of the stego image can
sensitively affect the quality of the recovered secret image
with good consistency. Thus, by manipulating on the stego
image, we can achieve the restoration of the secret image
with good privacy protection. This interesting finding lays
as a great foundation for our network design.

Analysis: In order to explore how changes in the stego
image influence the recovered secret image, we design the
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following two experiments. The experiments are carried out
on DIV2K [3] testing dataset with 100 images at resolution
1024 × 1024, and we randomly split it into 50 secret and
50 cover images. The Gaussian noise with standard devi-
ation as 25 was added to the secret images. Then, the in-
vertible image hiding network HiNet [14] was adopted to
generate the stego images by hiding the noisy secret images
into cover images. As expected, the stego images are also
with noise.

In the first experiment, we apply three different image
denoising networks including DnCNN[31], CBDNet[11]
and RIDNet[4] to remove the noise in the stego images. The
Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index (SSIM) [29] are used to measure the quality of the
stego image and recovered secret image. As shown in Fig.
2 (a) and (b), the higher quality of stego images leads to
higher quality of the recovered secret image. Specifically,
when the quality of stego image is improved from 28.18 dB
to 28.56 dB by DnCNN, the corresponding recovered se-
cret image is improved from 21.54 dB to 25.18 dB. This
indicates that the manipulation of stego image can sensi-
tively affect the quality of the recovered secret image. For
more comprehensive demonstration, we carried out the sec-
ond experiment, in which we degrade the quality of stego
images by adding different levels of Gaussian noise, i.e.,
σ = 5, 10 and 15. The results are shown in Fig. 2 (c)
and (d). As can be seen, when the quality of stego images
decreases with higher noise level, the quality of recovered
secret images gets worse correspondingly. These results
demonstrate that the manipulation of stego image has con-
sistent influences on the secret image.

From the above two experiments, we can conclude that
the stego image is a good steganographic domain to per-
form privacy-preserving image restoration. Here, the in-
vertible network plays an important role in closely relating
steganographic domain and restoration domain. Thanks to
the stable invertibility of invertible network, the stegano-
graphic domain can have a stable and consistent influence
on the restoration domain, which brings significant benefits
to privacy-preserving image restoration.

3.2. Framework

In this section, we propose a novel Privacy-preserving
Image Restoration network, namely PIRNet, to achieve
confidential image restoration in steganographic domain.
Fig. 3 shows the overall framework of our PIRNet, which is
composed of a Lifting-based Invertible Hiding (LIH) net-
work and a Lifting-based Secure Restoration (LSR) net-
work. For privacy protection, the LIH network is em-
ployed to conceal the secret image xsecret into a cover im-
age xcover, to generate a stego image xstego. The xstego

is required to be indistinguishable from xcover to improve
the invisibility and security. Then, the stego image is sent

Figure 2. Correlation between the quality change of the stego im-
age and the recovered secret image in terms of PSNR and SSIM.
(a) and (b) represent the results with different denoising methods,
in which method 0 represents the original results, and methods 1
to 3 represent the results with DnCNN, CBDNet and RIDNet, re-
spectively. (c) and (d) represent the results by degrading the stego
image with different Gaussian noise σ= 5, 10 and 15.

to the LSR network for secure restoration. The LSR net-
work is composed of K scales of wavelet lifting based se-
cure restoration sub-nets, which can manipulate over the
stego image without revealing the secret image. Finally, the
stego image x′

stego after the LSR network is sent back to the
LIH network to reveal the reconstructed high-quality (HQ)
secret image x′

secret.

3.3. Lifting-based Invertible Hiding (LIH) Network

As demonstrated by our finding in Section 3.1, the in-
vertible network is able to closely relate the steganographic
domain and restoration domain, which is important for the
privacy-preserving image restoration. Thus, we design a
Lifting-based Invertible Hiding (LIH) network which can
simultaneously hide three different types of degraded im-
ages, with noise, blur and low-resolution artifacts. The de-
tails of the LIH network are introduced as follows.

As can be seen in Fig. 3, the inputs to the LIH network
are the degraded secret image xsecret and the cover im-
age xcover. They are firstly decomposed into wavelet sub-
bands Xsecret and Xcover by Discrete Wavelet Transform
(DWT). After that, the wavelet sub-bands are fed into sev-
eral wavelet lifting (WL) blocks to generate the stego sub-
bands Xstego, together with the side information R. The
R contains the lost information in the forward concealing
process, which is important to keep the invertibility of the
LIH network. In the backward revealing process, since R
is not available, we adopt an auxiliary variable Z which is
assumed to have the same Gaussian distribution as R. This
is a common assumption as can be seen in other INN based
networks [20, 10]. Then, the processed wavelet sub-bands
X ′

stego and a randomly sampled Z are sent back to the LIH
network to reveal the reconstructed secret image.
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Figure 3. The architecture of the proposed Privacy-preserving Image Restoration network (PIRNet). The PIRNet consists of two parts: a
Lifting-based Invertible Hiding (LIH) network and a Lifting-based Secure Restoration (LSR) network. The LSR network is composed of
K scales of wavelet lifting based secure restoration sub-nets.

Wavelet Lifting (WL) Block. The wavelet lifting block
is the basic unit of LIH network, which leverages a two-
stream network structure to achieve the forward concealing
and backward revealing processes. It should be noted that
the forward and backward WL blocks share the same net-
work parameters to guarantee the reversibility. There are in
total M (M=24) WL blocks in the LIH network. For the i-th
WL block in the forward concealing process, the inputs are
Xi

cover and Xi
secret, and the outputs Xi+1

secret and Xi+1
cover

are formulated as follows,

Xi+1
secret = Xi

secret − P
(
Xi

cover

)
,

Xi+1
cover = Xi

cover +U
(
Xi+1

secret

)
,

(1)

where P and U denotes the prediction and updating oper-
ations, respectively. Here, P and U can be any functions
and their properties will not affect the reversibility. In this
paper, we adopt the residual network for P and U due to its
good trade-off between complexity and performance. For
the i-th WL block in the backward revealing process, the
inputs are Xi+1

stego and Zi+1, and the outputs Xi
stego and

Zi can be formulated as follows,

Xi
stego = Xi+1

stego −U
(
Zi+1

)
,

Zi = Zi+1 + P
(
Xi

stego

)
.

(2)

Finally, after the first WL block, we can obtain the secret
sub-bands Xsr = Z1. They are then transformed back to
the image through inverse wavelet transform.

Why Wavelet Lifting is Adopted for Hiding? As
we know, there exist many deep image hiding networks
[10, 6, 33]. In this paper, we propose a new wavelet lifting
based invertible network for image hiding. There are three
reasons behind our choice. 1) As demonstrated in [14], the

wavelet domain is more appropriate for image hiding than
pixel domain, especially the high-frequency sub-bands. The
wavelet lifting scheme is originally designed for wavelet
construction, which can naturally provide the wavelet ma-
nipulation domain. 2) The wavelet lifting scheme has the
perfect reconstruction property [22], which can ensure the
reversibility of hiding process. This is very important for
the stability in confidential image restoration, as demon-
strated in Section 3.1. 3) Our work focuses on the restora-
tion of degraded images, and the key of it is to restore the
high-frequent details. The wavelet lifting can naturally split
the low and high-frequency details, which brings significant
benefits to the image restoration task.

3.4. Lifting-based Secure Restoration (LSR)

The Lifting-based Secure Restoration (LSR) network is
employed to perform different types of confidential im-
age restorations including denoising, deblurring and super-
resolution in the steganographic domain. Note that in LSR
network, all restoration operations are performed on the
stego images. The secret image will not be disclosed in LSR
network, which can avoid the privacy disclosure. Next, we
introduce the architecture of our LSR network in detail.

The LSR network is designed following the multi-scale
property of wavelet lifting, which is composed of K scales
of wavelet lifting based secure restoration sub-nets. Each
sub-net consists of several WL blocks to update the low and
high-frequency wavelet sub-bands, and a Secure Restora-
tion Module (SRM) to perform restoration operations on
the high-frequency sub-bands. As shown in Fig. 3, the in-
put to the LSR network is Xstego generated by LIH. We
first transform Xstego back to the image through inverse
wavelet transform, and then use DWT to decompose the im-
age into the new low-frequency and high-frequency wavelet
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sub-bands. For simplicity, we omit this transform process in
Fig. 3. The low and high-frequency sub-bands are sent into
the first-scale sub-net. After several WL blocks, we can
obtain the updated low-frequency sub-band L1 and high-
frequency sub-bands H1. The SRM module is then applied
on H1 to generate the restored high-frequency sub-bands
H ′

1 as follows,

H ′
1 = fSRM (H1). (3)

For the low-frequency sub-band L1, we further split it by
DWT and send the new sub-bands to the next scale sub-net,
as shown in Fig. 3. Finally, after K scales, we can obtain
LK and HK . The HK is processed by SRM to generate
H ′

K , while the LK is kept unchanged.
To keep consistency with the LIH network, the LSR net-

work also has two inverse processes. The WL blocks in the
forward and backward processes share the same network
parameters. The backward process starts from the K-th
scale, with H ′

K and LK as inputs. At the end of the back-
ward process, we can obtain the restored wavelet sub-bands
X ′

stego of the stego image, which are then sent to the LIH
network to restore the HQ secret image.

Secure Restoration Module (SRM). To deal with dif-
ferent types of degradation, we propose to design SRM as
a multi-task learning [7] framework, as shown in Fig. 4.
Specifically, the SRM is composed of an encoder and sev-
eral decoders for different restoration tasks. All restoration
tasks share the same encoder, which leads to better gener-
alization ability and can save computing resources. As for
decoding, considering that different restoration tasks have
different levels of restoration difficulty, we unitize a hier-
archical decoding architecture which is associated with the
task difficulty. As can be seen from Fig. 4, we have three
different tasks including image denoising, deblurring and
super-resolution (SR). The SR task is the most difficult task,
followed by deblurring and denoising. Thus, we extend ex-
tra middle blocks on top of the shared encoder for SR and
deblurring tasks, and then connect them to the task-specific
decoders. Here, the design of decoders are the same for
all tasks. The encoder and decoder both follow the U-Net
structure [24] with short cut, which is an efficient network
design for image restoration. The NAFBlock [8] is adopted
as the basic brick to build the encoder, decoder and middle
blocks for its simplicity and good performance.

Why SRM is Applied Only on High-frequency Sub-
bands? We apply SRM only on the high-frequency sub-
bands of stego images for the following two reasons. First,
in the LIH network, most information of the secret image
is hidden in the high-frequency sub-bands of the stego im-
age. Since our aim is to restore the secret image, it is bet-
ter to perform on the high-frequency sub-bands. Second,
the image degradation process loses the high-frequency de-
tails, and applying SRM on the high-frequency sub-bands

Figure 4. The architecture of Secure Restoration Module (SRM).

can help better recover the lost image details.

3.5. Training Strategy

In this paper, we use a multi-stage training procedure to
train the PIRNet. In the first stage, we train the LIH network
with the hiding loss. Then, we freeze the LIH to train the
LSR network via the secure restoration loss. Finally, the
whole network is fine-tuned in an end-to-end manner.

Hiding loss. The hiding loss is used to ensure the con-
cealing and revealing performance of the LIH network,
which is composed of three parts as follows,

Lhid(ΘH) = λCLcon + λRLrev + λFLfreq, (4)

where λC , λR and λF are the hyper-parameters for balanc-
ing different loss terms. The concealing loss Lcon is used to
make the stego image xstego as similar as the cover image
xcover, which is defined as follows,

Lcon =

N∑
n=1

ℓ2

(
x
(n)
stego,x

(n)
cover

)
, (5)

where N is the number of training samples. The revealing
loss ensures that the revealed secret image xrs is close to
the original xsecret. Thus, we define it as follows,

Lrev =

N∑
n=1

Ez∼p(z)ℓ2

[
(x(n)

rs ,x
(n)
secret)

]
, (6)

where z is an auxiliary variable randomly sampled from the
distribution p(z), as an important input to the backward re-
vealing process of the LIH network. To improve the invis-
ibility of stego images, we wish to hide the secret infor-
mation into high-frequency sub-bands. That means the low
frequency sub-band of stego image should be as similar as
that of cover image. Thus, the low-frequency wavelet loss
Lfreq is defined as follows,

Lfreq =

N∑
n=1

ℓ2

(
H(x

(n)
stego)L,H(x(n)

cover)L

)
. (7)
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Here, H(·)L indicates the low-frequency wavelet sub-band.
Secure restoration loss. The secure restoration loss Lsr

is used to train the LSR network. The goal is to make the
restored HQ secret image x′

secret close to the ground-truth
image xgt, while ensuring that the stego image after pro-
cessing x′

stego and the cover image xcover are as similar as
possible. Thus, Lsr is composed of the following two parts,

Lsr(ΘR) = λresLres + λstegoLstego. (8)

Since the LSR network has a multi-task structure, the
restoration loss Lres is hence described by,

Lres = λN ℓN + λBℓB + λSℓS , (9)

where ℓN ,ℓB and ℓS denote the loss of denoising, deblur-
ring and super-resolution tasks, respectively. They can be
uniformly defined as follows,

L♯ =

N∑
n=1

ℓ2

(
x′
secret

(n),x
(n)
gt

)
. (10)

Here, L♯ can be ℓN , ℓB or ℓS . The stego loss Lstego is used
to ensure the similarity between x′

stego and xcover, which
is defined as follows,

Lstego =

N∑
n=1

ℓ2

(
x′
stego

(n),x(n)
cover

)
. (11)

4. Experiment
4.1. Experiment Settings

Datasets and Settings. For network training and test-
ing, we adopt the DIV2K dataset with 800 images for train-
ing and 100 images for testing. The image restoration tasks
involve the typical image denoising, image deblurring and
image super-resolution. During the training process, we use
Gaussian noise with standard deviation from 0 and 55 to
generate noisy secret images, and Gaussian blurring kernel
with size ranging from 3 to 25 to generate blurred secret im-
ages. To produce low-resolution images, we apply bicubic
downsampling to high-resolution images with 2× and 4×
scaling factors. The number of scales in the LSR network
is set as K = 3. In Eq. (4), the λC , λR and λF are set to
2.0, 1.0 and 0.25, respectively. The λres and λstego in Eq.
(9) are set to 3.0 and 1.0. The λN , λB and λS in Eq. (10)
are all set to 1.0. The network was trained with a NVIDIA
3090 GPU and optimized using the Adam method [15] with
initial learning rate as 1 × 10−4. The training batch size is
16, and the training epochs for the first and second stage are
around 10K and 8K, respectively.

Comparison Methods. To the best of our knowledge,
our work is the first privacy-preserving image restoration
method in steganographic domain. Thus, for fair compar-
ison, we create some new benchmarks by combining the

state-of-the-art (SOTA) image hiding methods with SOTA
image restoration methods to form a pipeline similar to our
PIRNet. Specifically, for image hiding, we adopt HiDDeN
[33], Balujia [6] and DeepMIH [10] methods. Here, the
HiDDeN and Balujia are traditional CNN based hiding net-
works, while DeepMIH is based on invertible neural net-
work. For image restoration, we adopt the SOTA NAFNet
[8] and MIRNetv2 [30] for denoising, NAFNet [8] and XY-
Deblur [13] for deblurring, and RLFN [16] and FMEN [9]
for image super-resolution. We train these pipelines using
the same dataset as ours, and the training process is consis-
tent with our multi-stage training strategy.

Evaluation metrics. To evaluate the concealing and
restoration performance of our method, we adopt three met-
rics to measure the quality of stego images and the restored
secret images. The metrics include PSNR, SSIM[29] and
LPIPS [32]. The larger value of PSNR and SSIM and
smaller value of LPIPS indicate higher image quality.

4.2. Comparison against SOTA Methods

Quantitative results. Table 1 presents the denoising,
deblurring and super-resolution results of our PIRNet and
other comparison methods. As can be seen, our PIRNet
achieves significantly better results than the comparison
methods in terms of all three metrics for both x′

stego/ xcover

and x′
secret/xgt image pairs. Here, x′

stego is the processed
stego image after LSR network, and x′

secret is the restored
high-quality secret image. Compared with the second best
result, we improve the PSNR of x′

secret/xgt image pair by
2.11dB, 1.56dB and 0.79dB for denoising, deblurring and
super-resolution tasks, respectively. For x′

stego/ xcover im-
age pair, our PSNR is 0.37dB, 0.65dB and 2.96dB higher
than the second best results for these three tasks, respec-
tively. Such quality superiority is also indicated in the other
metrics, which shows the effectiveness of our PIRNet.

Qualitative analysis. Fig. 5 visualizes the stego image
processed by LSR network and restored HQ secret image
of different methods. As can be seen, our restored secret
images are very clean, with rich details and clear edges. In
addition, the stego image of our method is nearly indistin-
guishable from the cover image, indicating the good confi-
dentiality of our method. In contrast, the stego images of the
comparison methods have obvious texture-copying artifacts
and color distortion. Besides, their restored secret images
still contain blurred edges and artifacts.

4.3. Ablation Study

Effectiveness of the multi-scale scheme in LSR net-
work. As we mentioned before, the LSR network is de-
signed following the multi-scale property of wavelet lifting,
which is composed of K scales of restoration sub-nets. To
explore the effectiveness of the multi-scale scheme, we set
the scale number K to be 1, 2 and 3 to see how the restora-
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Table 1. Comparison results in terms of PSNR and SSIM for denoising (σ = 25), deblurring (kernel size is 15), and super-resolution (4×
upscaling factor). The best results are in bold and second bests are underlined.

x′
stego/ xcover image pair x′

secret/xgt image pair
Task Method

PSNR (dB)↑ SSIM↑ LPIPS↓ PSNR (dB)↑ SSIM↑ LPIPS↓
HiDDeN[33]+MIRNetV2[30] 24.26 0.9226 0.311 25.95 0.8920 0.356

HiDDeN[33]+NAFNet[8] 22.18 0.9206 0.321 25.22 0.8785 0.378
Baluja[6]+MIRNetV2[30] 28.66 0.9708 0.212 23.17 0.8584 0.516

Denoise Baluja[6]+NAFNet[8] 24.91 0.9424 0.318 25.51 0.8774 0.361
DeepMIH[10]+MIRNetV2[30] 29.02 0.9542 0.260 27.10 0.9185 0.327

DeepMIH[10]+NAFNet[8] 28.77 0.9631 0.225 26.40 0.9033 0.346
Ours 29.39 0.9775 0.185 29.21 0.9556 0.110

HiDDeN[33]+XYDeblur[13] 24.27 0.9423 0.275 25.72 0.9186 0.383
HiDDeN[33]+NAFNet[8] 25.29 0.9356 0.233 21.67 0.8669 0.510
Baluja[6]+XYDeblur[13] 28.06 0.9710 0.225 27.17 0.9467 0.258

Deblur Baluja[6]+NAFNet[8] 28.81 0.9727 0.220 22.45 0.8278 0.549
DeepMIH[10]+XYDeblur[13] 29.02 0.9845 0.178 25.76 0.9362 0.385

DeepMIH[10]+NAFNet[8] 29.47 0.9844 0.159 25.63 0.9324 0.392
Ours 30.12 0.9851 0.150 28.73 0.9701 0.139

HiDDeN[33]+RLFN[16] 21.02 0.9254 0.338 22.28 0.8427 0.457
HiDDeN[33]+FMEN[9] 20.39 0.9330 0.305 21.43 0.8351 0.507

Baluja[6]+RLFN[16] 23.30 0.9634 0.285 22.64 0.8417 0.531
Super-resolution Baluja[6]+FMEN[9] 23.91 0.9628 0.276 22.81 0.8417 0.457

DeepMIH[10]+RLFN[16] 27.37 0.9747 0.220 23.72 0.8892 0.460
DeepMIH[10]+FMEN[9] 26.78 0.9689 0.230 23.67 0.8872 0.452

Ours 30.33 0.9863 0.139 24.51 0.9017 0.261

Table 2. Ablation study on the scale number of LSR network.

x′
secret/xgt image pairTask Scales PSNR (dB)↑ SSIM↑ LPIPS↓

K=1 29.00 0.9534 0.117
Denoise K=2 29.12 0.9547 0.112

K=3 29.21 0.9556 0.110
K=1 28.28 0.9665 0.158

Deblur K=2 28.69 0.9670 0.141
K=3 28.73 0.9701 0.139
K=1 24.34 0.8985 0.270

Super-resolution K=2 24.44 0.9007 0.265
K=3 24.51 0.9017 0.261

tion performance changes with the scale number. The re-
sults are shown in Table 2. As can be seen, the PSNR value
gradually increases with the number of scales, for all the
three restoration tasks. Specifically, when K is increased
from 1 to 3, the PSNR value increases by 0.21dB, 0.45dB
and 0.17dB for denoising, deblurring and SR tasks, respec-
tively. The possible reason is that multi-scale property of
wavelets can capture and process more detailed informa-
tion, which brings benefits to the restoration.

Effectiveness of the reversibility of LIH network. In

Table 3. Ablation study on the reversibility of LIH network.

x′
secret/xgt image pairTask Reversibiliy PSNR (dB)↑ SSIM↑ LPIPS↓

% 27.96 0.9483 0.156
Denoise

" 29.21 0.9556 0.110

% 27.35 0.9667 0.215
Deblur

" 28.73 0.9701 0.139

% 22.73 0.8927 0.303
Super-resolution

" 24.51 0.9017 0.261

the LIH network, we model the revealing as the inverse pro-
cess of concealing. To verify the effectiveness of this re-
versibility, we trained another network in which the con-
cealing and revealing processes are irreversible. The re-
sults are shown in Table 3. As can be seen, without the re-
versibility, the restoration performance significantly drops
for all the three tasks. The reason is that the reversibility
plays important roles to keep the stability between stegano-
graphic domain and restoration domain. Once the re-
versibility is broken, the relationship between the stegano-
graphic and restoration domains becomes volatile and in-
consistent, which harms the restoration performance.

22374



Figure 5. The visualizations of the recovered HQ secret image (first row of each task) and the stego image proccessed by LSR network
(second row of each task) by different methods. The numbers in the brackets indicate the PSNR/SSIM/LPIPS values.

5. Conclusion

In this paper, we introduce a new approach for privacy-
preserving image restoration in the steganographic domain,
which provides significant benefits in terms of invisibility
and security. The success of our method relies on our im-
portant finding, i.e., the quality change of the stego image
can sensitively and consistently affect the quality of the re-
covered secret image. Thus, by manipulating in the stegano-

graphic domain, we can achieve privacy-preserving restora-
tion of the secret image. Extensive experimental results
show that our method can achieve good image restoration
performance both quantitatively and qualitatively, while en-
suring the security of the secret image.
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