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Abstract

In text-video retrieval, recent works have benefited from
the powerful learning capabilities of pre-trained text-image
foundation models (e.g., CLIP) by adapting them to the
video domain. A critical problem for them is how to ef-
fectively capture the rich semantics inside the video us-
ing the image encoder of CLIP. To tackle this, state-of-
the-art methods adopt complex cross-modal modeling tech-
niques to fuse the text information into video frame rep-
resentations, which, however, incurs severe efficiency is-
sues in large-scale retrieval systems as the video repre-
sentations must be recomputed online for every text query.
In this paper, we discard this problematic cross-modal fu-
sion process and aim to learn semantically-enhanced rep-
resentations purely from the video, so that the video rep-
resentations can be computed offline and reused for differ-
ent texts. Concretely, we first introduce a spatial-temporal
“Prompt Cube” into the CLIP image encoder and itera-
tively switch it within the encoder layers to efficiently in-
corporate the global video semantics into frame represen-
tations. We then propose to apply an auxiliary video cap-
tioning objective to train the frame representations, which
facilitates the learning of detailed video semantics by pro-
viding fine-grained guidance in the semantic space. With a
naive temporal fusion strategy (i.e., mean-pooling) on the
enhanced frame representations, we obtain state-of-the-art
performances on three benchmark datasets, i.e., MSR-VTT,
MSVD, and LSMDC.

1. Introduction
Text-video retrieval [1, 6, 30, 42] is a fundamental task

in the area of video-language understanding that seeks to

find the most relevant video from a large set of candidates

to match a text query. With the rapid growth of video

data, text-video retrieval has become increasingly impor-

tant for various applications, including video recommen-

dation [36, 43], video search [20, 45], and video summa-
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Figure 1: The performance (i.e., R@1), retrieval time, and

memory usage during retrieval for baseline models and ours

on the MSRVTT dataset. The center of the bubble indicates

the value of R@1. The diameter of the bubble or star is

proportional to the memory usage (GB) while the horizontal

axis indicates the inference time (s).

rization [7, 29, 31, 33, 37, 47]. Due to the high cost of

constructing text-video datasets, one promising approach

for this task is to leverage pre-trained text-image founda-

tion models and transfer their powerful representation ca-

pabilities to the video domain. Specifically, the CLIP [34]

model, which is trained using a text-image alignment ob-

jective, is particularly suitable for text-video retrieval and

has been frequently studied recently [27, 46, 16]. It has two

transformer encoders [38, 9] to process images and texts, re-

spectively. A vector representation is extracted from the in-

put of each modality with the corresponding encoder and is

optimized to be close to its paired representation and away

from the unpaired ones.

Adapting CLIP to the video domain is non-trivial and re-

quires careful consideration of both efficiency and effective-

ness. In CLIP4Clip [27], the authors directly mean-pool the

frame representations extracted by the CLIP image encoder

to get the video representation and use it to calculate the co-

sine similarity with the text representations during retrieval.

However, the mean-pooling of frame representations may

lose some essential semantic details of the video and ham-

per the retrieval performance. Thus, more advanced meth-
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ods, such as [14, 16, 18, 24, 28], generate the video repre-

sentation by applying various cross-modal temporal fusion

approaches on the frame representations, using text queries

as the condition. While achieving state-of-the-art results,

these methods encounter severe efficiency issues in prac-

tice, as the text-conditioned fusion of each video has to be

performed on-the-fly for every incoming text query. Even

with a lightweight fusion module (compared to the CLIP

backbone), its computation cost grows geometrically as the

number of videos and texts increases.

Formally, given a query set of Nt texts with an average

length of Nw words and a candidate set of Nv videos where

each video contains Nf frames. Then, the space and time

complexities are O(NvNtNf ) for the text-conditioned fu-

sion in X-Pool [16] and TS2-Net [24], and O(NvNtNfNw)
for that of X-CLIP [28]. While for CLIP4Clip, the complex-

ity is O(NvNt) as it only requires a simple dot-product be-

tween the text and mean-pooled frame representations, al-

though its performance is inferior to X-Pool and X-CLIP. To

better reveal this gap, we show an example in Figure 1 about

the real-world efficiency of several methods while omitting

the backbone computation. Here, we set Nv = 16384,

Nt = 512, Nf = 12, and Nw = 10. From the figure, with

large Nt and Nv , the latency and memory consumption for

text-conditioned temporal fusion methods [16, 24, 28] are

orders of magnitude higher than text-agnostic temporal fu-

sion (i.e., mean-pooling) [27, 57], and can rapidly become

enormous in large-scale scenarios.

On the other hand, the backbone computation of CLIP is

much less of a burden in real-world retrieval systems, as the

frame representations of the video can be pre-computed of-

fline and reused for different text queries. Therefore, a more

practical CLIP-based text-video retrieval method should fo-

cus on improving the backbone representation ability while

keeping the cross-modal interaction as simple as possible.

Motivated by this, we propose a simple and efficient adapta-

tion method for CLIP to facilitate its ability to capture both

the global and detailed semantics of videos.

Concretely, we first feed a tiny (∼0.1M) “Prompt
Cube” into the image encoder of CLIP, which is a 3D ten-

sor spanning over the spatial, temporal, and channel axis, as

shown in the right of Figure 2.1 It is designed to have the

same temporal and spatial sizes and is concatenated with

the patch tokens alongside the spatial axis. To propagate

temporal semantics among different frames, we switch the

spatial and temporal dimensions of the prompt cube before

each self-attention layer, so that the prompt cube builds up

a peer-to-peer connection between every two-frame pair.

In this way, our modified CLIP model enjoys an improved

global semantic modeling ability thanks to the comprehen-

sive spatial-temporal modeling between the prompt cube

and the patch tokens of all frames, while only bringing neg-

1The channel axis is omitted for simplicity.

ligible extra parameters and computations. This also allows

the prompt cube to serve as a compact summarization of

the whole video, and further enables us to design a CLIP-

guided Prompt Aggregation approach and obtain the frame

representations from the prompt cube. Then, we use naive

mean-pooling instead of cross-modal fusion on these frame

representations to get the final video representation.

Moreover, since we will not use any fine-grained cross-

modal interaction modules in our model, we adopt an Auxil-

iary Video Captioning objective as an alternative to provide

fine-grained guidance in the semantic space when learn-

ing video representations. Specifically, we introduce a light

captioning head on top of our modified CLIP image encoder

during training, which takes the frame representations ag-

gregated from the prompt cube as input and generates the

paired text of the input video. This auxiliary objective plays

a critical role because CLIP’s original contrastive learning

objective is relatively easy to fit due to the lack of in-batch

negatives during training (which is generally the case in

text-video retrieval). During inference, the light caption-

ing branch is removed, thus it incurs no extra computation

and memory consumption.

We verify the effectiveness of the proposed method on

three text-video retrieval benchmarks, i.e. MSR-VTT [50],

MSVD [4], and LSMDC [35], where our method con-

sistently achieves state-of-the-art performance while being

significantly more efficient than the previous state of the

arts. We also provide extensive performance analyses to

show the superiority of our proposed method.

2. Related Work
Text-video retrieval is one of the fundamental tasks in

video-language modeling and has lots of applications in the

industry. Here, we broadly classify the previous works into

three categories and briefly review them below.

Off-the-Shelf Single-Modal Representations An early

trend in text-video retrieval is to use the off-the-shelf video

(e.g., I3D [3]) and text representations (e.g., GloVe [32])

and design sophisticated feature encoding methods or

multi-modal fusion mechanisms on them to improve the

retrieval performance [6, 8, 19, 54, 55]. For example,

in [6], a hierarchical graph reasoning approach is proposed

to decompose video-text matching into global-to-local lev-

els and disentangle texts into a hierarchical semantic graph

with three levels of events, actions, and entities. Yu et
al. [54] propose a joint sequence fusion model for the se-

quential interaction of videos and texts. Dong et al. [8]

leverages multi-level single-modal features that represent

the rich content of both video and text in a coarse-to-fine

fashion. However, their performances are limited due to the

mismatched training objectives between the pre-computed

representations and the text-video retrieval task.
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Figure 2: Overall architecture. For a video clip with Nf frames, we accompany it with Nf ×Nf prompt tokens, resulting in

a 3D prompt cube. We show the Prompt Switch operation on the right. For simplicity, we omit the feed-forward network and

shot-cut connections in the ViT layer. We provide more details for Prompt Aggregation in Figure 4. ⊗ is cosine similarity.

Video-Language Pre-training To reduce the gap be-

tween pre-training and downstream tasks, large-scale pre-

trained video-language representations have been proposed,

such as [1, 13, 15, 21, 26, 40, 48, 49, 51]. Most of

these models are pre-trained on the large-scale video-

text datasets, e.g., HowTo100M [30] and WebVid-2M [1],

which boosts promising cross-modal video understand-

ing [22, 23, 26]. One line of works [1, 13, 49] uses two inde-

pendent encoders for video and text and then projects them

into a common latent space. These methods often adopt

a contrastive loss to distinguish the paired video-text data.

For example, Bain et al. [1] design an end-to-end trainable

model, aiming to take advantage of both large-scale image

and video captioning datasets. Gabeur et al. [13] propose a

multi-modal transformer that can extract features at differ-

ent moments and from different modalities (e.g., audio or

speech) in a video. The other line of works [21, 26, 48] em-

ploys a single cross-modal encoder, which concatenates the

video and text sequences as inputs and models them jointly

in the transformer, followed by a binary classifier predicting

whether these videos and texts are aligned. Despite they

can build fine-grained associations between video-text to-

kens, they need to input each video-text candidate pair into

the model for matching score calculation during inference

and thus hampers efficiency. Besides, although the idea of

video-language pre-training is promising, due to the high

cost of collecting wild videos, its scale is generally much

smaller than image-language pre-training, leading to an un-

satisfactory generalization ability. Thus, like [16, 27], we

seek to boost from the image-language pre-training model

(e.g., CLIP [34]) for text-video retrieval.

CLIP-based Adaptation Recently, due to the great ad-

vantage of CLIP [34] for vision-and-language represen-

tation learning, many works [11, 14, 17, 18, 28, 41,

52, 56] seek to transfer the knowledge of CLIP to text-

video retrieval tasks. Roughly, the existing works transfer

CLIP from views of feature aggregation [12, 16, 27, 28,

57], representation alignment [12, 28, 41], and post pre-

training [46, 52]. Specifically, X-Pool [16] designs a cross-

modal attention model, seeking to enable the model to only

focus on the relevant video frames conditioned on a given

text. TS2-Net [24] adapts CLIP by introducing a token

shift module and a token selection module, which capture

the temporal information and remove unimportant tokens,

respectively. X-CLIP [28] calculates both the coarse- and

fine-grained similarity for higher retrieval accuracy. While

these methods can be effective, their retrieval efficiency is

low due to the coupling of video and text in the cross-modal

fusion process. A more ideal way should focus on improv-

ing the representation ability of the backbone while main-

taining the cross-modal interaction as efficiently as possi-

ble. We follow this principle in our method.

3. Method
The overview of our method is shown in Figure 2. It

is based on a pre-trained CLIP with a ViT [10]-based im-

age encoder. Given an input video, we first split each video

frame into fix-sized non-overlapping patches and linearly

project them into 1D patch embeddings. Following CLIP,

a [CLS] embedding is concatenated to the embedding se-

quence of each frame, which is pre-trained to capture the

local semantics within the sequence. Then, in the ViT en-
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coder, our proposed “Prompt Cube” bridges the global se-

mantic information from the patch embeddings of all frames

through a Prompt Switch operation. After that, we feed

the output [CLS] embeddings of the video frames and

the final prompt cube into a Prompt Aggregation module,

where the prompt cube is aggregated into 1D vectors ac-

cording to the [CLS] embeddings, and is further enhanced

with fine-grained semantics through an Auxiliary Caption-

ing Objective. To ensure an efficient measurement of the

text-video similarity, we avoid using cross-modal fusion

modules and directly average these aggregated vectors into

the final video representation. A simple dot product oper-

ation is used to compute the similarity. More details are in

the following.

3.1. Prompt Cube for Bridging Global Semantics

At the core of our method is the proposed Prompt Cube.

It is designed to capture the rich temporal semantics of the

whole video while bringing negligible modifications and

computations to the CLIP image encoder. Formally, given

an input video clip with Nf frames, we first obtain its patch

embeddings V ∈ R
Nf×L×D, where L indicates the size of

the spatial dimension, i.e., the number of patches divided

from a video frame plus one [CLS] embedding. D is the

embedding size. Then, our prompt cube is constructed as a

3D tensor P ∈ R
Nf×Nf×D. At the start of the ViT layer,

we concatenate V and P alongside the spatial dimension,

denoted by [V ;P ] ∈ R
Nf×(L+Nf )×D, and then process

them jointly. The first two dimensions of P (corresponding

to the temporal and spatial axis, respectively) have the same

size, thus they can be transposed flexibly without altering

the shape of P . This allows us to further propose an effi-

cient Prompt Switch operation to exchange the local spatial

semantics of each frame and the global temporal semantics

from the whole video through the prompt cube.

Prompt Switch The proposed Prompt Switch operation

can be defined in a one-line formula:

T := [V ;P ] → [V ;P�]. (1)

See the right of Figure 2, we apply this operation be-

fore every self-attention layer of the ViT encoder. Then,

self-attention is performed over the spatial dimension of

[V ;P ], where the i-th row of the prompt cube (denoted

by pi ∈ R
1×Nf×D) and the patch embeddings of the i-

th frame (denoted by vi ∈ R
1×L×D) acquire information

from each other. In this way, for two consecutive ViT lay-

ers in the encoder, each element in the prompt cube (de-

noted by pi,j ∈ R
D) is first attached to the i-th frame and

communicates with vi, and then switch to the j-th frame

and communicates with vj . By repeatedly performing this

operation, the whole prompt cube builds up a peer-to-peer

Figure 3: Video Proxy adopts a shared “prompt” to ex-

change information among all frames (b). Differently, our

Prompt Switch method builds up a peer-to-peer connection

between every two-frame pair (a) to obtain more compre-

hensive spatial-temporal modeling. This improves the rep-

resentation ability of CLIP on video data. Besides, our

method may also ease the learning problem as each element

in the prompt cube only needs to handle the information of

two frames instead of the whole video, thus improving the

optimization ability of CLIP on video data.

connection between every two-frame pair in the video clip,

enabling comprehensive temporal modeling.

Some previous text-video retrieval methods have also at-

tempted to introduce temporal adaptation to the backbone

of the CLIP ViT encoder, such as Token Shift [24] and

Video Proxy [52]. Specifically, the Token Shift method

shifts token embeddings from adjacent frames to the cur-

rent frame, which fails to model the temporal semantics

from a global perspective. Moreover, it damages the spa-

tial modeling ability of the original CLIP as the information

contained in the shifted tokens is no longer accessible in

the current frame. In Video Proxy, the information from all

video frames is exchanged using several proxy embeddings,

which lack peer-to-peer connections within the frames and

thus can be inferior in the temporal modeling capacity. We

illustrate the importance of building peer-to-peer connec-

tions in Figure 3. Besides, a naive full-attention approach

has also been investigated where no adaptation is applied

to the CLIP model except allowing its self-attention layers

to attend to the patch tokens from the whole video. How-

ever, this approach is neither effective due to the domain

gap between the input data (video) and the pre-training data

(image), nor efficient since the computation complexity of

the self-attention layers grows quadratically w.r.t. the num-

ber of attended patch tokens. We show the superiority of

our proposed prompt cube to these previous methods in Sec-

tion 4.1.

Prompt Aggregation As the prompt cube acquires the

global semantics through a comprehensive interaction with

all patch embeddings, it can serve as a compact summariza-
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tion of the video. Therefore, we propose to obtain the final

video representation from the prompt cube, instead of the

[CLS] embedding as the original CLIP. To achieve this, we

design a CLIP-guided Prompt Aggregation module, which

aggregates the output prompt cube into 1D vectors accord-

ing to the final [CLS] embeddings of the video frames. It

is a lightweight multi-head attention (MHA) layer placed

before the last layer normalization (LN) layer of the ViT

encoder. The [CLS] embedding of the i-th frame (denoted

by ci ∈ R
1×D) is used as the “query” while the “key” and

“value” are both the prompt cube flattened over the tempo-

ral and spatial dimensions, denoted by P̂ ∈ R
N2

f×D. Let

p̄i ∈ R
1×D be the aggregated prompt vector for the i-th

frame, we have

p̄i := LN(ci + MHA(ci, P̂ , P̂ )), ∀i ∈ [1, Nf ], (2)

where LN denotes the last layer normalization layer of

the CLIP ViT encoder. Notably, the last linear projection

weight in the MHA layer is initialized as a 0 tensor to ensure

that p̄i is optimized from the original output of the CLIP

image encoder. The final video representation is the naive

mean-pooling of the normalized prompt vectors, i.e.,

x :=
1

Nf

Nf∑

i=1

p̄i

‖p̄i‖
. (3)

We provide a detailed illustration for the Prompt Aggrega-

tion module on the left of Figure 4. To enhance the learn-

ing of temporal information for the prompt cube, inspired

by [58], we adopt a frame sampling strategy where we ran-

domly sample k < Nf prompt vectors for the final mean-

pooling operation in Eq. (3) during training.

3.2. Learning Detailed Semantics via Captioning

As we have discussed in Section 1, the key criterion in

the design of our model architecture is to ensure the model

contains no extra cross-modal interaction procedure during

inference except computing the cosine similarity between

text and video representations. While this ensures the effi-

ciency of the similarity measurement in large-scale produc-

tion systems, it also prevents the video representation from

utilizing the fine-grained semantic information from the text

query. To aid this, inspired by [5, 53], we propose to learn

our video representation with an Auxiliary Captioning ob-

jective, which alternatively provides fine-grained guidance

in the semantic space during training.

Auxiliary Captioning Head As shown on the right of

Figure 4, the Auxiliary Captioning Head, denoted by H, is a

stack of M transformer decoders. We first shift the text to-

ken by one step to the right, and feed it into a Masked MHA

layer, where each text token only attends to its preceding

Multi-Head Attention

Add & LayerNorm

Linear

Mean-Pooling

MLP

Masked Multi-Head 
Attention

Add & LayerNorm

Multi-Head Attention

Add & LayerNorm

Add & LayerNorm

Prompt 
Aggregation

M
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Contrastive Loss

Captioning Loss

Visual Prompt 
Token

Text Token 
(Shifted Right)
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Figure 4: Detailed architecture of Prompt Aggregation (left)

and Auxiliary Captioning Head (right).

tokens. Then, another MHA layer is used, where the text to-

kens attend to the aggregated prompt vectors {p̄i}Nf

i=1. The

model is trained via the autoregressive Teacher Forcing [44]

scheme, i.e., the prediction in each step should maximize

the likelihood of the token in the next step:

Lcap =

Nw∑

l=1

− log p(wl|w<l, {p̄i}Nf

i=1), (4)

where wl indicates the l-th token in the text, and w<l de-

notes the tokens before wl. Nw is the total number of to-

kens. Notably, we discard some commonly occurred words

(e.g., “a”, “an” and “the”) by performing a Term Frequency

Inverse Document Frequency (TF-IDF) weighting for each

word like [39], which ensures that the captioning model fo-

cuses only on the informative words. During inference, H
is dropped, thus no extra computation is incurred.

Overall Training Objective Our overall training objec-

tive consists of a contrastive loss and a captioning loss. Typ-

ically, the contrastive loss is defined as

Lv2t = − 1

B

B∑

i=1

log
exp(x�

i yi/τ)∑B
j=1 exp(x

�
i yj/τ)

,

Lt2v = − 1

B

B∑

i=1

log
exp(y�

i xi/τ)∑B
j=1 exp(y

�
i xj/τ)

,

Lcon =
1

2
(Lv2t + Lt2v),

(5)

where B is the size of the mini-batch, τ is a learnable tem-

perature parameter. xi and yi are the video representa-
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Method R@1↑ R@5↑ R@10↑ MnR↓
baseline CLIP 43.1 70.9 80.4 16.0

+ Prompt Switch 44.8 (+1.7) 71.9 80.9 15.2

+ Temporal Transformer 44.2 71.4 81.1 15.6

+ Prompt Aggregation 45.4 (+0.6) 71.9 81.1 14.9

+ Captioning Loss 46.1 (+0.7) 72.8 81.8 14.4

Table 1: Performance analysis of our model components

for text-video retrieval on MSRVTT 1K-A test set. Both

Prompt Aggregation and Temporal Transformer are applied

on top of our Prompt Switch. The Captioning Loss is ap-

plied only on top of the Prompt Aggregation.

Method R@1 ↑ R@5 ↑ R@10 ↑ MnR ↓
Temporal Transformer 44.2 71.4 81.1 15.6

Token Shift [24] 43.2 70.7 79.8 15.9

Video Proxy [52] 45.2 71.0 81.5 15.3

Full Attention 43.8 71.4 80.9 16.4

Prompt Switch & Aggregation 45.4 71.9 81.1 14.9

Table 2: Comparisons with other temporal modeling meth-

ods for text-video retrieval on MSRVTT 1K-A test set.

tion (obtained by Eq. (3) and text representation of the i-th
video-text pair in the mini-batch. The final loss function is

L = Lcon + λLcap, (6)

where λ is the weighting hyper-parameter.

4. Experiment
Dataset and Metrics We evaluate the effectiveness of our

method on three widely used text-video retrieval datasets,

including MSR-VTT [50], MSVD [4] and LSMDC [35].

MSR-VTT [50] consists of 10,000 videos with 200K de-

scriptions. We follow the setting in previous works [13, 54],

training our models with 9,000 videos and evaluating them

on the 1K-A test set. MSVD [4] contains 1, 970 videos

with about 120K captions, where the train, validation, and

test splits contain 1, 200, 100 and 670 videos, respectively.

LSMDC [35] has 118, 081 video-caption pairs, where

109, 673 videos are used for training, 7, 408 videos for vali-

dation, and 1, 000 videos for testing. Following [16, 24, 27],

we report the results of Recall@K (R@K, K = 1, 5, 10),

and Mean Rank (MnR) for quantitative evaluation. Besides,

we sum the value of R@1, R@5, and R@10 for both text-

video and video-text retrieval tasks as an overall evaluation

metric, named Meta Sum.

Implementation Details Following previous work [16,

27], both the text and video encoders are initialized with the

pre-trained CLIP (ViT-B/32) [34]. The prompt cube is ran-

domly initialized from a Gaussian distribution with a zero

mean and 0.02 std. During training, we uniformly sample

Method R@1 ↑ R@5 ↑ R@10 ↑ Mem. / Time

Text ⇒ Video

TS2-Net* [24] 46.5 73.6 83.3 0.3G / 0.2s

X-Pool [16] 46.9 72.8 82.2 3.9G / 3.9s

ours (mean pool) 46.1 72.8 81.8 2.0M / 8.1ms

ours (attention pool) 46.4 72.9 82.4 0.2G / 0.2s

ours (top-3 pool) 46.7 73.4 82.0 0.3G / 0.3s

ours (X-Pool [16]) 47.8 73.9 82.2 3.9G / 3.9s

Video ⇒ Text

TS2-Net* [24] 44.5 73.8 83.2 0.3G / 0.2s

X-Pool [16] 44.4 73.3 84.0 3.9G / 3.9s

ours (mean pool) 44.8 73.7 82.4 2.0M / 8.1ms

ours (attention pool) 45.4 73.9 83.2 0.2G / 0.2s

ours (top-3 pool) 45.2 73.6 83.7 0.3G / 0.3s

ours (X-Pool [16]) 46.0 74.3 84.8 3.9G / 3.9s

Table 3: Performance and complexity comparisons with dif-

ferent temporal fusion methods on MSRVTT 1K-A test set.

* denotes the results reproduced by official code & setting.

6 frames from each video and resize all video frames into

224 × 224. Therefore, the size of the spatial and temporal

dimensions of the prompt cube is set to 6 by default. While

for the testing, 12 frames are used as in previous works,

so we split them into two 6-frame chunks through interval

sampling to make the temporal dimension compatible with

the prompt cube. The Prompt Aggregation is applied on the

prompt cubes of all chunks. The number of decoder layers

in the captioning head is 3. The hyper-parameter k used

for frame sampling in Eq. (3) is set to 3. We set the hyper-

parameter λ = 0.5 in Eq. (6). The training epochs are 10

for all the datasets with a batch size of 128. We use AdamW

optimizer [25] with a learning rate of 3e-5 and adopt a co-

sine decay strategy for the learning rate.

4.1. Performance Analysis

We first thoroughly analyze the model designs and crit-

ical components of our proposed method and then verify

their effectiveness. The experiments are conducted on the

MSRVTT dataset and evaluated on the 1K-A test set.

Model Components As shown in Table 1, we conduct

an ablation study on the Prompt Switch, Prompt Aggre-

gation, and Auxiliary Captioning Objective by introducing

them gradually into the model for text-video retrieval. The

baseline CLIP model directly uses the mean-pooled [CLS]
embeddings of the video frames as the final video represen-

tation, and is trained using only contrastive loss. Specif-

ically, when incorporating the Prompt Switch mechanism,

the result of R@1 increases significantly (i.e., from 43.1 to

44.8) compared with the baseline CLIP, which demonstrates

the effectiveness of the proposed Prompt Switch. With the

help of Prompt Aggregation, it further improves 0.6 and
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Methods
Text ⇒ Video Video ⇒ Text

Meta Sum ↑R@1 ↑ R@5 ↑ R@10 ↑ MnR ↓ R@1 R@5↑ R@10↑ MnR ↓
cross-modal temporal fusion
CLIP2TV [14] 46.1 72.5 82.9 15.2 43.9 73.0 82.8 11.1 401.2

CLIP2Video [12] 45.6 72.6 81.7 14.6 43.3 72.3 82.1 10.2 397.6

TS2-Net* [24] 46.5 73.6 83.3 13.9 44.5 73.8 83.2 9.2 404.9

EMCL [18] 46.8 73.1 83.1 - 46.5 73.5 83.5 - 406.5

X-CLIP [28] 46.1 73.0 83.1 13.2 46.8 73.3 84.0 9.1 406.3

DRL [41] 47.4 74.6 83.8 - 45.3 73.9 83.3 - 408.3

X-Pool [16] 46.9 72.8 82.2 14.3 44.4 73.3 84.0 9.0 403.6

ours (X-Pool) 47.8 73.9 82.2 14.1 46.0 74.3 84.8 8.5 409.0

text-agnostic temporal pooling
CLIP4Clip† (seqTransf) [27] 44.5 71.4 81.6 15.3 42.7 70.9 80.6 11.6 391.7

CenterCLIP† (spectral) [57] 44.2 71.6 82.1 15.1 42.8 71.7 82.2 11.1 394.6

X-CLIP (mean pool) [28] 43.0 70.7 81.6 16.3 43.0 70.2 81.2 11.5 389.7

TS2-Net* (mean pool) [24] 44.4 72.1 82.2 14.6 43.7 70.8 80.4 11.6 393.6

ours (mean pool) 46.1 72.8 81.8 14.4 44.8 73.7 82.4 9.9 401.6

Table 4: Comparisons with state-of-the-arts on MSRVTT. † both CLIP4Clip and CenterCLIP have multiple versions in their

papers, here we choose the versions with the highest Meta Sum. * denotes the results reproduced by official code & setting.

Methods
Text ⇒ Video Video ⇒ Text

Meta Sum ↑R@1 ↑ R@5 ↑ R@10 ↑ MnR ↓ R@1 R@5↑ R@10↑ MnR ↓
cross-modal temporal fusion
CLIP2TV [14] 47.0 76.5 85.1 10.1 - - - - -

CLIP2Video [12] 47.0 76.8 85.9 9.6 58.7 85.6 91.6 4.3 445.6

X-CLIP [28] 47.1 77.8 - 9.5 60.9 87.8 - 4.7 -

X-Pool [16] 47.2 77.4 86.0 9.3 66.4 90.0 94.2 3.3 461.2

text-agnostic temporal pooling
CLIP4Clip† (seqTransf) [27] 45.2 75.5 84.3 10.3 62.0 87.3 92.6 4.3 446.9

CenterCLIP† (spectral) [57] 47.4 76.5 85.2 9.7 62.7 88.1 92.8 4.1 452.7

ours (mean pool) 47.1 76.9 86.1 9.5 68.5 91.8 95.6 2.8 466.0

Table 5: Comparisons with state-of-the-arts on MSVD. † both CLIP4Clip and CenterCLIP have multiple versions in their

papers, here we choose the versions with the highest Meta Sum values.

achieves 45.4 in R@1. Our final model containing the Aux-

iliary Captioning Loss further improves the performance in

R@1, R@5, R@10, and MnR by a large margin. These

results demonstrate that all the proposed components con-

tribute clearly to the final performance. Besides, we also

compare the performance of an alternative temporal ag-

gregation method to Prompt Aggregation termed Temporal

Transformer, which adopts an additional transformer layer

on the [CLS] embeddings of all video frames and averages

the output. From Table 1, Prompt Aggregation is better than

Temporal Transformer on all metrics.

Comparison on Temporal Modeling Methods To inves-

tigate the effectiveness of our temporal modeling method,

i.e., Prompt Switch + Prompt Aggregation, we compare it

with other four temporal modeling methods, including the

Temporal Transformer, Full Attention (attention over patch

tokens from all video frames), Token Shift [24], and Video

Proxy [52]. All methods are implemented on the baseline

CLIP model without extra components like the Token Se-

lection Transformer in [24], and are trained using our de-

fault setting. From Table 2, our Prompt Switch & Aggrega-

tion approach outperforms all the baselines on R@1, R@5,

and MnR while achieving the second-best result on R@10,

which demonstrates its superiority in learning global video

semantics across frames.

Cross-Modal Temporal Fusion vs. Naive Mean Pooling
While our method is able to achieve significantly better per-

formance than the baseline CLIP using the mean-pooling

setting, we further investigate whether it is compatible

with the advanced cross-modal temporal fusion methods,

namely, attention pooling, top-3 pooling, and X-Pool [16].

We simply replace the final mean-pooling in Eq. (3) with

these cross-modal approaches and show the performance in

Table 3. From the table, when adopting these cross-modal

fusion methods, our models obtain clearly boosted perfor-

mance, especially for X-Pool, which obtains the best per-
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Methods
Text ⇒ Video Video ⇒ Text

Meta Sum ↑R@1↑ R@5↑ R@10↑ MnR↓ R@1↑ R@5↑ R@10↑ MnR↓
cross-modal temporal fusion
X-Pool [16] 25.2 43.7 53.5 53.2 22.7 42.6 51.2 47.4 238.9

TS2-Net [24] 23.4 42.3 50.9 56.9 - - - - -

EMCL [18] 23.9 42.4 50.9 - 22.2 40.6 49.2 - 229.2

X-CLIP [28] 23.3 43.0 - 56.0 22.5 42.2 - 50.7 -

text-agnostic temporal pooling
CLIP4Clip† (seqLSTM) [27] 21.6 41.8 49.8 58.0 20.9 40.7 49.1 53.9 223.9

CenterCLIP† (k-medoids++) [57] 21.9 41.1 50.7 55.6 21.1 41.2 50.2 48.7 226.2

ours (mean pool) 23.1 41.7 50.5 56.8 22.0 40.8 50.3 51.0 228.4

Table 6: Comparisons with state-of-the-arts on LSMDC. † both CLIP4Clip and CenterCLIP have multiple versions in their

papers and here we choose the versions with the highest Meta Sum values.

formance for both text-video and video-text retrieval and

outperforms the original X-Pool by a large margin. More-

over, even compared with the state-of-the-art cross-modal

fusion methods, our model with naive mean-pooling is still

competitive for both text-video and video-text retrieval.

We further measure the memory usage and latency of the

compared methods during inference on the test set. To make

the experiment setting close to real-world scenarios and for

fair comparisons, we use the same pre-computed frame and

text representations while only monitoring space and time

consumption for the ranking procedure. As shown in the

last column of Table 3, our model with mean-pooling is or-

ders of magnitude more efficient than those baseline models

with cross-modal temporal fusion. This conclusion is gen-

eralizable to other datasets, i.e., the same model will always

have the same ranking efficiency if using the same inference

and evaluation settings. This reveals the importance of us-

ing text-agnostic temporal fusion (e.g., mean-pooling) for

real-world text-video retrieval.

4.2. Comparison with the State-of-the-arts

In this section, we compare our proposed method with

state-of-the-art methods on MSRVTT, MSVD, and LSMDC

dataset. To better reveal the performance gap among the

compared methods, we do not consider post-processing

techniques like QB-NORM [2]. The results of both text-

video and video-text retrieval tasks are presented in Ta-

bles 4, 5 and 6. From the tables, when compared under

the text-agnostic temporal fusion setting, our model out-

performs the baseline models on most of the evaluation

metrics, especially for Meta Sum, where it achieves the

best performance on all three datasets. Specifically, on

MSRVTT, the Meta Sum of our model is 7 points better than

the second-best model; on MSVD, our method outperforms

CenterCLIP [57] by 13.3; On LSMDC, our model consis-

tently achieves the highest Meta Sum. Moreover, when

compared with methods using cross-modal temporal fusion,

our model with mean-pooling is still competitive in terms
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(c) R@1 performance with different value of hyper-parameter λ

Figure 5: We show the effects of (a) the number of caption-

ing decoder layers; (b) the number of subsampling frames

k in training; (c) the values of hyper-parameter λ in Eq. (6).

of Meta Sum, while being much more efficient in prac-

tice (refer to Figure 1 and Table 3 for detailed discussions).

Specifically, on MSRVTT, it outperforms CLIP2TV [14]

and CLIP2Video [12]; on MSVD, it surpasses all com-

pared baselines and improves over the second-best model

(X-Pool [16]) by 4.8; on LSMDC, it is still comparable with

EMCL [18]. These results show that our proposed method

has a better trade-off between performance and efficiency,

and is more suitable for large-scale production systems.

4.3. Further Discussions

Number of Decoder Layers Generally, more layers in

the captioning decoder would improve its capacity for learn-

ing fine-grained knowledge, which, however, also makes it

easier to over-fit. To find a better trade-off, we study the
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effect of the number of layers. As shown in Figure 5(a), the

performance of our model improves and reaches the peak

with 3 layers of decoder for both text-video and video-text

retrieval tasks. Thus, we set the number of decoder layers

to 3 for all the experiments.

Number of Subsampling Frames In practice, we set the

number of training frames as 6 and validation frames as 12.

Then, we randomly sample k frames before mean-pooling

for training while using all 12 frames for evaluation. No-

tably, if k = 6, that means we average all the training frames

in the mean-pooling operation. In Figure 5(b), we observe

that the performance improves when reducing the value of k
and achieves the peak when k = 3, which demonstrates its

effectiveness. While further decreasing the value of k, the

mean-pooling operation may lose a great deal of semantics

derived from frames, which causes performance degrada-

tion. Therefore, we set k = 3 for all the experiments.

Hyper-parameter λ in Eq. (6) From Figure 5(c), in the

case of a small λ (e.g., λ = 0.3), the model can only achieve

suboptimal performance due to insufficient exploitation of

the detailed semantics. When increasing the value of λ, the

performance of our model peaks at the λ = 0.5 and de-

grades thereafter. Considering the trade-off between typical

contrastive loss and captioning loss, we choose the weight-

ing parameter λ as 0.5 for all the datasets.

5. Conclusion

In this paper, we tackle the task of text-video retrieval,

where we aim to learn semantically-enhanced representa-

tions purely from the video, allowing for offline computa-

tion and reuse for different text queries. Our method in-

troduces a new Prompt Cube into the CLIP image encoder,

which is iteratively transposed within the encoder layers to

incorporate global video semantics into frame representa-

tions. We also adopt an auxiliary video captioning objective

to optimize the frame representations, providing detailed

guidance in the semantic space. With mean pooling fusion

on the enhanced frame representations, the proposed model

achieves SoTA performance on three benchmark datasets.

Comprehensive experiments verify the effectiveness of all

critical components of our proposed method.

References
[1] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisser-

man. Frozen in time: A joint video and image encoder for

end-to-end retrieval. In ICCV, pages 1728–1738, 2021.

[2] Simion-Vlad Bogolin, Ioana Croitoru, Hailin Jin, Yang Liu,

and Samuel Albanie. Cross modal retrieval with querybank

normalisation. In CVPR, pages 5194–5205, 2022.

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

pages 6299–6308, 2017.

[4] David Chen and William B Dolan. Collecting highly paral-

lel data for paraphrase evaluation. In ACL, pages 190–200,

2011.

[5] Qi Chen, Chaorui Deng, and Qi Wu. Learning distinct

and representative modes for image captioning. NeurIPS,

35:9472–9485, 2022.

[6] Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. Fine-grained

video-text retrieval with hierarchical graph reasoning. In

CVPR, pages 10638–10647, 2020.

[7] Chaorui Deng, Shizhe Chen, Da Chen, Yuan He, and Qi Wu.

Sketch, ground, and refine: Top-down dense video caption-

ing. In CVPR, pages 234–243, 2021.

[8] Jianfeng Dong, Xirong Li, Chaoxi Xu, Xun Yang, Gang

Yang, Xun Wang, and Meng Wang. Dual encoding for video

retrieval by text. IEEE TPAMI, pages 4065–4080, 2021.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. In ICLR.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. ICLR, 2021.

[11] Bo Fang, Chang Liu, Yu Zhou, Min Yang, Yuxin Song,

Fu Li, Weiping Wang, Xiangyang Ji, Wanli Ouyang, et al.

Uatvr: Uncertainty-adaptive text-video retrieval. arXiv
preprint arXiv:2301.06309, 2023.

[12] Han Fang, Pengfei Xiong, Luhui Xu, and Yu Chen.

Clip2video: Mastering video-text retrieval via image clip.

arXiv preprint arXiv:2106.11097, 2021.

[13] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia

Schmid. Multi-modal transformer for video retrieval. In

ECCV, pages 214–229, 2020.

[14] Zijian Gao, Jingyu Liu, Weiqi Sun, Sheng Chen, Dedan

Chang, and Lili Zhao. Clip2tv: Align, match and distill for

video-text retrieval. arXiv preprint arXiv:2111.05610, 2021.

[15] Yuying Ge, Yixiao Ge, Xihui Liu, Dian Li, Ying Shan, Xi-

aohu Qie, and Ping Luo. Bridging video-text retrieval with

multiple choice questions. In CVPR, pages 16167–16176,

2022.

[16] Satya Krishna Gorti, Noël Vouitsis, Junwei Ma, Keyvan
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