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Abstract

Tracking 3D objects accurately and consistently is cru-
cial for autonomous vehicles, enabling more reliable down-
stream tasks such as trajectory prediction and motion plan-
ning. Based on the substantial progress in object detec-
tion in recent years, the tracking-by-detection paradigm
has become a popular choice due to its simplicity and ef-
ficiency. State-of-the-art 3D multi-object tracking (MOT)
approaches typically rely on non-learned model-based al-
gorithms such as Kalman Filter but require many manu-
ally tuned parameters. On the other hand, learning-based
approaches face the problem of adapting the training to
the online setting, leading to inevitable distribution mis-
match between training and inference as well as suboptimal
performance. In this work, we propose 3DMOTFormer, a
learned geometry-based 3D MOT framework building upon
the transformer architecture. We use an Edge-Augmented
Graph Transformer to reason on the track-detection bi-
partite graph frame-by-frame and conduct data associa-
tion via edge classification. To reduce the distribution mis-
match between training and inference, we propose a novel
online training strategy with an autoregressive and recur-
rent forward pass as well as sequential batch optimiza-
tion. Using CenterPoint detections, our approach achieves
71.2% and 68.2% AMOTA on the nuScenes validation and
test split, respectively. In addition, a trained 3DMOT-
Former model generalizes well across different object de-
tectors. Code is available at: https://github.com/
dsx0511/3DMOTFormer.

1. Introduction

3D multi-object tracking (MOT) is a fundamental task in
many applications such as autonomous driving and mobile
robots, aiming at localization, classification and persistent
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Figure 1. We propose 3DMOTFormer that reasons on the track-
detection bipartite graph and estimates the data association using
a Graph Transformer. Tracks for the next frame are generated by
the matching and track update module autoregressively.

identification of surrounding objects over time. Especially
accurate and consistent online tracking is of great impor-
tance for downstream tasks such as trajectory prediction,
motion planning and robot navigation.

Due to recent advances in object detection performance,
the tracking-by-detection paradigm has become a popular
choice to accomplish MOT [5, 41, 45, 38, 42, 17]. Most
tracking-by-detection approaches utilize detections from
every frame generated with an off-the-shelf object detector
and focus on associating the detection results across frames.

State-of-the-art tracking-by-detection methods typically
use non-learned algorithms, e.g. Kalman Filters [38, 17,
3, 15], with a pre-defined motion assumption, e.g. con-
stant turn rate and velocity (CTRV) model, followed by
a geometric association metric, e.g. center distance or 3D
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IoU, which requires a lot of handcrafting and heuristics.
Learning-based approaches on the other hand aim at reduc-
ing heuristics but face the challenge of lifting the training to
the online inference setting. Some approaches [8, 39, 14]
adopt a teacher-forcing [40] training using ground truth
trajectories with annotated instance IDs and/or annotated
bounding boxes. However, during online inference, the net-
work has to associate noisy detections to the tracked trajec-
tories containing false associations caused by the network
itself. This results in a strong distribution mismatch or over-
fitting despite applying plenty of data augmentations. An-
other line of works [19, 43, 14] regards detections as nodes
in a spatiotemporal graph and applies Neural Message Pass-
ing (NMP) [11]. However, for online MOT, these methods
require a graph with a fixed time window to evolve frame-
by-frame, while the training is done on the static graph
with the same time window but without dynamic evolving.
OGR3MOT [43] worked on adapting this graph representa-
tion to the online setting but still uses a semi-online training
and uses an additional heuristic track update for inference.

In this work, we present a novel transformer-based 3D
MOT framework, which we call 3DMOTFormer, that is
learnable and relies only on geometric cues, as shown
in Figure 1. Our model iteratively reasons on the relation-
ship between existing tracks as well as detections in a new
frame and conducts association using edge classification. A
greedy matching and a simple track update module generate
tracks as input for the next frame, yielding an autoregres-
sive loop. This results in a bipartite graph representation
between tracks and detections. In contrast to existing ap-
proaches that process a spatiotemporal graph with a fixed
time window [43, 14], we directly feed the processed track
features into the new frame as initial track features to ac-
cess temporal information, similar to the hidden states in
RNNs. To tackle the different operation modes between
training and test time, we propose a novel fully online train-
ing strategy which consists of an autoregressive forward
pass and a sequential batch backward pass. Concretely,
identical to the inference phase, our model evolves frame-
by-frame autoregressively on sampled sequence clips dur-
ing training, instead of modelling the sequence in a graph
as a whole. We accumulate the loss at each frame and op-
timize the network after the whole training sequence was
processed. The forward pass fully simulates the operation
mode and the data distribution during the online inference
phase, while the optimization method learns to recover from
errors and considers the whole sequence. Considering the
remarkable achievements of autoregressive models based
on transformers in natural language processing [35, 28, 6],
we use Edge-Augmented Graph Transformers [12], a vari-
ant of transformers that generalizes to sparse graphs and
takes edge features into account for attention calculation.
Also, structural information in the bipartite graphs between

tracks and detections can be effectively captured using
cross-attention, which justifies transformer-based models as
a suitable choice for our MOT framework.

We evaluate our method on the nuScenes [7] tracking
benchmark using CenterPoint detections [42] as input. Our
method achieves 71.2% and 68.2% AMOTA on the vali-
dation and test split, respectively, yielding state-of-the-art
performance among all geometry-based approaches. We
show the generalization of 3DMOTFormer where a frozen
3DMOTFormer model still achieves competitive perfor-
mance when inferring on detections from another detector.

Our main contributions can be summarized as follows:

• We propose 3DMOTFormer, a novel online 3D MOT
framework based on Edge Augmented Graph Trans-
formers [12] for learning data association, which re-
duces the need for handcrafted components compared
to previous state-of-the-art.

• 3DMOTFormer is tailored towards an online training
strategy for MOT, which fully mimics the setup and
hence the data distribution during online inference.

• Our method achieves state-of-the-art performance,
in particular 71.2% and 68.2% AMOTA on the
nuScenes [7] validation and test split, respectively, us-
ing CenterPoint detections [42] as input.

• 3DMOTFormer achieves competitive performance
when inferring on detections from another detector.
This allows flexible deployment of the same 3DMOT-
Former model independent of the object detector.

2. Related Work

In this section, we discuss previous works based on the
tracking-by-detection paradigm with a focus on 3D MOT.
These works can be divided into model-based and learning-
based approaches. Some approaches adopt neural networks
as a complementary module in their pipeline but still heav-
ily rely on the pre-defined motion model. Thus, we still
categorized them into model-based approaches.

2.1. Model-based multi-object tracking

Using Kalman Filters (KF) with a 2D motion model
achieved great success in 2D MOT, e.g. SORT [5] with its
succeeding variants [41, 10, 1] and ByteTrack [45]. In-
spired by this success, AB3DMOT [38] uses a 3D motion
model for KF and an association using 3D IoU. Some works
improve AB3DMOT using other association metrics, e.g.
Mahalanobis distance in Chiu et al. [17] and 3D General-
ized IoU (GIoU) [30] in SimpleTrack [27]. Others investi-
gate the track life management module, e.g. the confidence-
based track spawn and termination in CBMOT [3] and the
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permanent preservation without termination in Immortal-
Tracker [37]. CenterTrack [46] and CenterPoint [42] re-
place the filter algorithm with a simpler constant velocity
model where they use a temporal object detection model
with accurate velocity regression. Many recent 3D object
detection works [2, 13, 20, 24] achieve competitive tracking
performance using the CenterPoint-based tracker. GNN-
PMB [23] proposes a Poisson multi-Bernoulli filter using
global nearest neighbor for data association and achieves
state-of-the-art performance. Although model-based ap-
proaches for MOT so far performed better than learned
ones, our learning-based method is able to outperform
model-based methods while reducing the need for manual
parameter tuning and designing heuristics. Another line of
works incorporates additional data or multi-modal sensor
fusion, including both geometric and appearance cues. Ea-
gerMOT [15] fuses 3D and 2D detections on a greedy basis
in a two-stage association. Other works use a CNN-based
image feature extractor and conduct appearance-based as-
sociation complementary to geometric metrics, e.g. Chiu et
al. [16] and CAMO-MOT [36].

2.2. Learning-based multi-object tracking

Learning-based methods usually use a Graph Neural
Network (GNN) to address the association task. The first
group of works [39, 8] treats object association as a bipar-
tite graph between tracked trajectories and detections. They
typically use a temporal encoding of the tracks, e.g. LSTM
in GNN3DMOT [39] or spatiotemporal Transformer in
TransMOT [8]. As a result, an offline teacher-forcing [40]
training with ground truth object associations is needed,
which leads to overfitting despite data augmentations. An-
other group of works [19, 29, 14, 43] uses a spatiotemporal
graph with a temporal window size where the association
is done for every consecutive frame. In 2D MOT, MPN-
Track [19] uses a Message Passing Network (MPN) [11]
to address the offline tracking as a min-cost network flow
problem [44]. TrackMPNN [29] moves MPNTrack [19] to-
wards the online setting by updating the graph dynamically
as a rolling window and accumulating losses over the se-
quence during training. In 3D MOT, OGR3MOT [43] lifts
MPNTrack [19] to the online setting by extending predictive
track nodes based on KF and a semi-online training method.
This training method consists of two stages: the first stage
uses ground truth to generate track node data, whereas in the
second stage, the track node data is inferred using a trained
first-stage model. However, these works need a complex
heuristic algorithm to decode multi-frame network outputs
into associated trajectories [29, 43] which needs to resolve
conflicts between different track hypotheses. In contrast,
our method uses a dynamic bipartite graph, which requires
a much simpler track update operation to decode the net-
work output into hard association. This enables a fully au-

toregressive forward pass during training to further approx-
imate the online inference. We use the accumulated loss
over multiple frames to train the network, similar to [29], in
order to extend the temporal receptive field of the bipartite
graph and to optimize the online inference process.

3. Our Approach

An overview of our proposed 3DMOTFormer is shown
in Figure 2. Given existing tracks and new detections at
time stamp t, we first build track GT , detection GD and
association graphs GA. The initial track h

(0)
T , detection

h
(0)
D , and edge features h

(0)
A as well as the graph struc-

ture are processed by a transformer-based model consisting
of graph self-attention and edge-augmented graph cross-
attention [12]. Based on updated edge features h

(Ld)
A , we

compute the affinity between tracks and detections which is
further processed by the track update module to autoregres-
sively generate inputs for the next frame. We also estimate
velocities to predict track locations. Our training stage fully
mimics this online inference schema: we run our model in
an autoregressive manner, calculate the affinity and velocity
loss for each frame, and finally propagate gradients after the
entire training sequence has been processed.

3.1. Graph Representation

We model the multi-object tracking using a graph rep-
resentation, where a detection or a tracklet is regarded as a
node. We employ a sparse graph representation to remove
redundant connections and provide more structured data for
a better interaction modelling and feature extraction. We
build three graphs: (1) a detection graph GD which en-
ables a message passing between detections to update de-
tection features with a scene embedding, (2) a track graph
GT which models the interactions between existing unasso-
ciated tracks from previous frames, and (3) an association
graph GA which reasons on the relationship between tracks
and detections that will be potentially associated.

Detection graph The detection graph GD = (VD, ED)
with detection nodes VD and detection edges ED is built
to model the interaction between newly detected objects,
where each object represents a node vD,i ∈ VD. Simi-
lar to OGR3MOT [43], the initial feature embedding of a
detection node xD,i is a concatenation of box center posi-
tion, size, yaw, velocity, one-hot encoded class and detec-
tion score. All these values are readily available in typical
3D detectors, e.g. CenterPoint [42]. Next, xD,i is embed-
ded using a Multi-Layer Perceptron (MLP) into h

(0)
D,i as the

input of the model. The detection graph is truncated using
a fixed class-agnostic distance threshold.
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Figure 2. Overview of our 3DMOTFormer framework. Our model processes graph-structured data consisting of tracks and detections. We
use an encoder with graph self-attention to encode existing tracks, and a decoder with both graph self-attention and edge-augmented graph
cross-attention [12] that processes detection and edge features. The decoder outputs are used to estimate affinity and velocity, which are
further used to update tracks. The network runs autoregressively during training and we optimize the network using the losses of all frames.

Track graph The track graph GT = (VT , ET ) with track
nodes VT and track edges ET is similar to the detection
graph GD. As our model runs recurrently, for each track
in the memory, we use the processed track feature from the
previous frame as the initial feature h

(0)
T,i in a new frame.

This initial feature is similar to the hidden state in an RNN,
which enables the model to access the information from the
history. The track edges ET are established with the same
truncation mechanism as in the detection graph.

Association graph The association graph GA =
(VD, VT , EA) is a bipartite graph that connects detections
VD and tracks VT using association edges EA. We first
predict the position of all tracks in the new frame assum-
ing constant velocity, where the velocity is estimated by our
network. In contrast to the other two graphs, an associa-
tion edge is only established between two nodes with the
same category and it is truncated using class-specific dis-
tance thresholds. The thresholds are calculated based on
the dataset statistic of the maximal velocity of a certain
class, following [42]. In addition, every association edge
eA,ij ∈ EA contains a corresponding initial edge feature
h
(0)
A,ij . We follow OGR3MOT [43] to use original posi-

tion difference, size difference, yaw difference, frame dif-
ference and the center distance after prediction. Using edge
features, we enable a more comprehensive interaction mod-
elling between tracks as well as detections.

3.2. Graph Transformer for MOT

Transformers [35] are widely used as an autoregressive
model in natural language processing. Also, they have

shown promising performance on soft association, e.g. for
feature matching [33, 34] and for multi-modal sensor fu-
sion [2]. Our work also runs autoregressively and the
soft association with attention-weighted feature aggrega-
tion can help to implicitly acquire multiple hypotheses from
past frames, which makes transformers a suitable choice
for MOT. The following sections present the adaptation of
transformers to our graph representation.

Graph Transformer encoder As shown in the top left
side of Figure 2, the Graph Transformer encoder generates
updated feature encodings of existing tracks by modelling
interaction between them using self-attention. For each
layer l, the multi-head attention uses three different linear
layers to project the track node features h(l)

T,i into value v(l)ic ,

key k
(l)
ic and query q

(l)
ic , where c is an index for attention

heads with c ∈ [1, C]. For each head, the attention from
j-th to i-th node is calculated using inner product between
key and query ⟨q, k⟩ = qT k√

d
, divided by

√
d where d de-

notes the model feature dimension. A normalized attention
α
(l)
ijc is calculated by

α
(l)
ijc =

exp
(
⟨q(l)ic , k

(l)
jc ⟩

)∑
m∈N (i) exp

(
⟨q(l)ic , k

(l)
mc⟩

) , (1)

where N (i) denotes the neighbors of node i and it is de-
fined by the graph connectivity (see Section 3.1). Equa-
tion (1) corresponds to a sparse version of softmax that nor-
malizes over neighbors of the node i rather than all nodes.
The track feature is then updated by an attention-weighted
aggregation over the value vectors of all neighboring nodes,
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followed by a concatenation of all attention heads:

ĥ
(l+1)
T,i = W

(l)
O

( ∥∥∥C
c=1

(
∑

j∈N (i)

α
(l)
ijcv

(l)
jc )

)
, (2)

where ∥ is the concatenation operation and W
(l)
O denotes

learnable weights of a linear layer. This self-attention uses a
graph structure from edge indices E to derive the neighbor-
hood N (i) for each node i, making it different to a standard
transformer that considers all other nodes. ĥ

(l+1)
T,i is pro-

cessed by a Feed Forward Network (FFN) to generate the
output of an encoder layer: h(l+1)

T,i =FFN(ĥ
(l+1)
T,i ). The final

track features h(Le)
T,i are calculated by stacking Le layers.

Edge-Augmented Graph Transformer decoder Our de-
coder layer consists of a graph self-attention and a graph
edge-augmented cross-attention [12]. The self-attention is
implemented in the same way as in the Graph Transformer
encoder for new detections, which takes detection features
h
(l)
D,i and detection edges ED as input and produces inter-

mediate detection features h̃
(l)
D,i. At every decoder layer l,

we project detection feature h̃
(l)
D,i for each node i into the

query, while key and value are converted from the encoder
output h(Le)

T,i for all decoder layers. Following [12], besides

the inner product of key and query, edge features h(l)
A,ij also

contribute to the attention calculation, i.e.

α
(l)
ijc =

exp
(
⟨q(l)ic , k

(l)
jc ⟩+W

(l)
A,ijch

(l)
A,ij

)∑
m∈N (i) exp

(
⟨q(l)ic , k

(l)
mc⟩+W

(l)
A,imch

(l)
A,im

) , (3)

where W
(l)
A,ijc ∈ Rd×1 projects the edge feature into a

scalar which represents a part of the attention. Same for
the encoder, the output detection feature h

(l+1)
D,i of every

node i is calculated using Equation (2) and an FFN. As for
the edge features, we concatenate the cross-attentions be-
fore the softmax normalization of all heads and then project
it back to the latent dimension d using learnable weights
W

(l)
O ∈ Rc×d, i.e.

ĥ
(l+1)
A,ij = W

(l)
O

( ∥∥∥
c

(
⟨q(l)ic , k

(l)
jc ⟩+W

(l)
A,ijch

(l)
A,ij

))
. (4)

The final output edge feature h
(l+1)
A,ij of layer l is generated

using another FFN: h(l+1)
A,ij = FFN(ĥ

(l+1)
A,ij ). We also stack

multiple decoder layers, resulting in the final detection fea-
tures h(Ld)

D,i and final association edge features h(Ld)
A,ij .

3.3. Learning Targets

Affinity estimation Based on the final edge feature h(Ld)
A,ij ,

we use an MLP to estimate an affinity score aij =

MLP(h(Ld)
A,ij ), which represents the probability that detec-

tion i and track j represent the same object. As the detec-
tions are estimated from a 3D detector, we run a Hungarian
Matching [18] between annotated and detection boxes us-
ing 3D Intersection-over-Union (IoU) as matching cost in
order to assign a ground truth ID for detection boxes. Un-
matched detection boxes are marked as false positive. The
classification target of the edge of eA,ij is positive, only if
its connected detection i and track j share the same ID.

Velocity estimation Although many state-of-the-art 3D
detectors are able to estimate velocities, the estimation can
be more accurate when the objects are tracked for a longer
time. In our framework, detections extract features from the
hidden states of all tracks using cross-attention, thus cap-
turing abundant historical information. For each detection
i, we use an MLP to regress its velocity of the box center
vi = MLP(h(L)

D,i). The ground truth velocity is generated
for true positive detections using their ground truth annota-
tions. False positive detections are ignored during training.
After the track update module, we predict the positions of
tracked objects in the next frames using their corresponding
velocity vi. The predicted position is used in the association
graph building as described in Section 3.1.

Loss function We use the Focal Loss [22] with α = 0.5
and γ = 1.0 as association loss La and smooth-ℓ1 loss as
the velocity loss Lv. The overall loss is L = La + λvLv
where we set λv = 1.0 as default in our experiments. We
evaluate the impact of λv is in the supplementary material.

3.4. Fully Online Training

Unlike existing learned trackers [39, 43, 14] that use
ground truth trajectories including annotated IDs as input,
we use those IDs only for calculating the loss. However, an
accurate association heavily relies on an observation of the
motion in the past few frames. We tackle this problem by
generating trajectories autoregressively during training and
optimize the network using sequential outputs as a whole.

The affinity score reflects a soft association but not a
hard decision as required for the track update. Hence, we
use greedy bipartite matching, where we greedily match the
detections starting with the highest detection score to the
track with the highest affinity score, while a track cannot be
matched twice. For a matched detection-track pair, the track
feature will be replaced by the matched detection feature.
We refer to the supplementary material for a detailed illus-
tration of the track feature update. Based on the matching
results, a simple heuristic track life management determines
track spawning and termination. To achieve high recall, we
initialize all unmatched detections as new tracks. We use
a count-based track management where all tracks that are
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unmatched for Td frames are permanently deleted. The un-
matched tracks with an age smaller than Td are temporally
inactive but still used in the next frame.

With the track update module in the loop, we accom-
plish a frame-by-frame autoregressive forward pass during
training, identical to online inference. While we gener-
ate trajectories using the network itself, it can introduce
errors which could significantly affect the training of sub-
sequent frames. To solve this problem, our training strat-
egy aims at optimizing the network using the whole se-
quence instead of each frame. Concretely, we store the
losses for each time stamp L(t) while processing the train-
ing sequence frame-by-frame. When the whole training
sequence of length T has been processed by the network,
we accumulate the losses of each time stamp to get the se-
quence loss: Lseq =

∑T
t=2 L(t). We then execute the back-

propagation through time (BPTT) [31] to optimize the net-
work using losses from all time stamps. Using this sequen-
tial batch optimization method, the network is trained to
capture and correct the errors in the previous frames, which
subsequently brings a better online performance.

4. Experiments

4.1. Experimental Setup

Dataset NuScenes [7] is a large-scale dataset focusing on
perception and prediction for autonomous vehicles that we
use for training and testing. It contains 1000 scenes of 20
second length, which are spilt into 700, 150 and 150 scenes
as training, validation and test set, respectively. The driving
data is collected using multiple sensors, including multi-
view cameras, a 32-beam LiDAR, RADARs etc. Despite
a higher capture frequency of these sensors, the dataset is
annotated at 2Hz.

Metrics For evaluation, we follow the nuScenes tracking
benchmark protocol. The primary metrics are the AMOTA
and AMOTP that are proposed in [38], where AMOTA
is used for ranking. The AMOTA (Average Multi Object
Tracking Accuracy) improves the MOTA metric [4] by av-
eraging over the recall-normalized MOTA (MOTAR) over
different recall thresholds. AMOTP (Average Multi Object
Tracking Precision) reflects the average of position errors
over different recall thresholds. In addition, nuScenes uses
a variety of secondary metrics, e.g. MOTA, MOTP, IDS
and FRAG from CLEAR MOT [4] and MT/ML from MOT
Challenges [26, 9]. These metrics are computed after ap-
plying an independent threshold for each class where the
highest MOTA is reached.

Detector As most state-of-the-art methods for MOT re-
port their results on nuScenes using the CenterPoint [42] de-
tector, we use the same detections for a fair comparison. In

addition, we use the detectors from MEGVII [47] and BEV-
Fusion [24] to validate the generalization of our method.

Baselines As 3DMOTFormer only uses 3D detections
to accomplish data association, we compare our method
with state-of-the-art tracking-by-detection approaches that
rely on 3D geometric cues from CenterPoint detections.
Hence, we use the learning-based OGR3MOT [43] and
PolarMOT [14] as primary baselines and additionally five
model-based methods: CenterPoint [42], CBMOT [3], Sim-
pleTrack [27], ImmortalTracker [37], and GNN-PMB [23].

Implementation details Following SimpleTrack [27], we
first use Non-Maximum Suppression (NMS) with a 3D IoU
threshold of 0.1 to filter duplicates. During training, we
sample mini-sequences of length T=6 frames from training
scenes as our training samples, which corresponds to 2.5 s
at a frequency of 2Hz. A track is deleted if it is unmatched
for Td=3 frames. All models are trained using AdamW [25]
for 12 epochs with a batch size of 8. We use a learning rate
of 0.001 and a weight decay of 0.01.

4.2. Benchmark Results

Test set Table 1 shows results on the nuScenes test set
using CenterPoint detections. We first compare 3DMOT-
Former with the baselines that are listed in the upper part
of Table 1. Our approach outperforms other learning-
based approaches significantly, yielding 2.6%P and 1.8%P
AMOTA improvements over OGR3MOT and PolarMOT,
respectively. Furthermore, 3DMOTFormer surpasses the
highest ranking model-based approach GNN-PMB [23] by
0.4%P in AMOTA. In addition, we achieve a notably bet-
ter AMOTP than the baselines using the same detection
boxes, which verifies that our approach can associate more
precisely. Compared to the averaged metrics AMOTA and
AMOTP, our best-achieved MOTA at single recall threshold
as well as corresponding secondary metrics are relatively
lower. This on the other hand shows a more balanced per-
formance over different recall thresholds of our approach.
Second, we compare to approaches that use additional infor-
mation besides geometric cues from 3D object detections,
c.f . the lower half of Table 1. Our approach still outper-
forms Chiu et al. [16] and EagerMOT [15] with 2D data
and achieves on par performance to NEBP [21]. Only the
concurrent work ShaSTA [32] that heavily relies on LiDAR
backbone features performs better than our approach.

Validation set We further compare to the baselines on
the validation set in Table 2, where 3DMOTFormer again
achieves best AMOTA and AMOTP among all approaches.
We observe that the AMOTA of the learning-based base-
lines (OGR3MOT and PolarMOT) differs more between
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Method Additional Cues AMOTA↑ AMOTP↓ MOTA↑ MT↑ ML↓ TP↑ FP↓ FN↓ IDS↓ FRAG↓

OGR3MOT [43] – 0.656 0.620 0.554 5278 2094 95264 17877 24013 288 371
PolarMOT-offline† [14] – 0.664 0.566 0.561 5701 1686 97909 17856 21414 242 332
CenterPoint [42] – 0.638 0.555 0.537 5584 1681 95877 18612 22928 760 529
CBMOT [3] – 0.649 0.592 0.545 5319 1966 94916 16469 24092 557 450
SimpleTrack‡ [27] – 0.668 0.550 0.566 5476 1780 95539 17514 23451 575 591
ImmortalTracker [37] – 0.677 0.599 0.572 5565 1669 97584 18012 21661 320 477
GNN-PMB [23] – 0.678 0.560 0.563 5698 1622 97274 17071 21521 770 431

Chiu et al. [16] 2D appearance 0.655 0.617 0.555 5494 1557 95199 18061 23323 1043 717
EagerMOT [15] 2D geometry 0.677 0.550 0.568 5303 1842 93484 17705 24925 1156 601
NEBP [21] 3D appearance 0.683 0.624 0.584 5428 1993 97367 16773 21971 227 299
ShaSTA [32] 3D appearance 0.696 0.540 0.578 5596 1813 97799 16746 21293 473 356

3DMOTFormer (ours) – 0.682 0.496 0.556 5466 1896 95790 18322 23337 438 529

Table 1. Results on nuScenes test set using CenterPoint detections. AMOTA and AMOTP are the primary metrics on the benchmark.
†denotes offline methods, ‡denotes using 10Hz data. We mark best performance in the comparison with baselines in bold text and underline
where an even better performance is achieved by methods with additional information besides geometric cues from 3D detections.

Method AMOTA↑ AMOTP↓ MOTA↑ IDS↓ FRAG↓

OGR3MOT [43] 0.693 (+0.037) 0.627 0.602 262 332
PolarMOT-offline† [14] 0.711 (+0.047) – – 213 332
PolarMOT-online [14] 0.673 – – 439 285
CenterPoint [42] 0.665 (+0.027) 0.567 0.562 562 424
CBMOT [3] 0.675 (+0.026) – – 494 –
SimpleTrack‡ [27] 0.696 (+0.028) 0.547 0.602 – 403
ImmortalTracker [37] 0.702 (+0.025) – 0.601 – 385
GNN-PMB [23] 0.707 (+0.029) 0.560 – 650 345

3DMOTFormer (ours) 0.712 (+0.030) 0.515 0.607 341 436

Table 2. Results on nuScenes validation set using CenterPoint de-
tections. † denotes offline methods, ‡ denotes using 10Hz data.
Changes of AMOTA to the test set are shown in the brackets.

Source Target AMOTA↑ AMOTP↓ MOTA↑ IDS↓ FRAG↓

CenterPoint CenterPoint 0.712 0.515 0.607 341 436
BEVFusion BEVFusion 0.749 0.550 0.652 447 443
MEGVII MEGVII 0.641 0.639 0.535 328 497

BEVFusion CenterPoint 0.699 0.524 0.595 421 434
MEGVII CenterPoint 0.697 0.544 0.591 418 445
CenterPoint BEVFusion 0.747 0.553 0.652 526 475
MEGVII BEVFusion 0.744 0.526 0.640 445 479
CenterPoint MEGVII 0.632 0.643 0.529 409 518
BEVFusion MEGVII 0.626 0.663 0.521 415 494

Table 3. Detector domain generalization experiment. Performance
is reported using models that are trained on detections from source
detector and tested on detections from target detector.

validation and test split compared to model-based ap-
proaches. This shows some overfitting of learned mod-
els, e.g. due to hyperparameter tuning using validation per-
formance. In comparison, the performance difference for
3DMOTFormer is smaller and close to the one from model-
based approaches. We attribute this observation to our on-

line training strategy that effectively reduces the distribution
mismatch between training and inference and hence leads to
better generalization, which will be discussed next.

Generalization across detectors In contrast to typical
learning-based approaches, model-based approaches [42,
17, 3, 23] generalize well across different 3D detectors, as
the pre-defined motion models are derived from real world
physics and thus independent of the detector. However, we
show that a trained and frozen model of 3DMOTFormer
also generalizes well to different detectors at test time than
trained with. The upper part of Table 3 shows results, where
we use the three different detectors CenterPoint [42], BEV-
Fusion [24], and MEGVII [47] for both training and testing,
where 3DMOTFormer consistently produces high perfor-
mance for all detectors. The bottom part shows the results
where we train on one source detector and run inference
using this trained model on detections from another detec-
tor. For example, when using CenterPoint as target detector,
the AMOTA of models trained on BEVFusion and MEGVII
detections are only 1.3%P and 1.5%P worse than the stan-
dard setting. The same phenomenon can be observed when
other detector combinations are used. Considering that our
model can accurately estimate velocities in order to predict
the track positions, we account this generalization capabil-
ity to a learned underlying detector-agnostic motion model
using sequential batch optimization.

Runtime Our approach runs at 54.7 Hz on an Nividia
GeForce 2080Ti GPU. It is therefore well suited for real-
time applications such as autonomous vehicles.

4.3. Ablation Studies

We conduct extensive ablation studies of 3DMOTFormer
to highlight how the proposed components work. All exper-
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T AMOTA↑ AMOTP↓ MOTA↑ IDS↓ FRAG↓

2 0.6741 0.5738 0.5733 898 520
3 0.7105 0.5294 0.6095 384 428
4 0.7096 0.5135 0.6065 380 418
5 0.7111 0.5317 0.6115 373 430
6 0.7121 0.5149 0.6071 341 436
7 0.7120 0.5135 0.6105 343 432
8 0.7124 0.5203 0.6086 363 434

Table 4. Ablation study on the length of training sample T .

Variant AMOTA↑ AMOTP↓ MOTA↑ IDS↓ FRAG↓

Hungarian Matching 0.7006 0.5245 0.5924 786 492
GT identity guided 0.7073 0.5200 0.6065 360 405
w/o hidden state 0.7013 0.5326 0.6015 371 432

3DMOTFormer 0.7121 0.5149 0.6071 341 436

Table 5. Ablation study of other training variants.

iments are evaluated on the NuScenes validation set.

Training sample length We first evaluate the training
sample length T which is an important factor for lifting our
training to an online setting. By setting T = 2, the train-
ing degenerates, the autoregressive loop is dropped, and the
network becomes an affinity estimator between detections
of two frames. As shown in Table 4, the performance of
T = 2 is surpassed by larger values with a large margin,
e.g. 3.8%P AMOTA for the default setup with T = 6. Start-
ing at T = 3, the training follows the online procedure de-
scribed in Section 3.4 and we observe smaller deltas with
increasing T . The results verify the necessity of our pro-
posed training strategy as learning from the whole sequence
is critical for the online inference. The overall performance
peaks and converges at T ∈ [6, 8] so we use T = 6 for all
other experiments for training efficiency.

Other training-related factors We evaluate three differ-
ent variants that are highly related to our training method:
(1) Hungarian Matching: we replace the greedy matching
by Hungarian Matching; (2) GT identity guided: we directly
use the annotated association instead of greedy matching
to accomplish the track update; (3) w/o hidden state: we
reuse the box embedding as initial track feature instead of
using the hidden state from the previous frame h

(L)
T,i,t−1.

As shown in Table 5, using Hungarian Matching decreases
AMOTA by 1.15%P and introduces a considerable amount
of ID switches. This observation shows that high quality
detections should have higher priority in data association,
as realized by our greedy strategy that starts with the high-
est scoring detections. Guided by GT identity, AMOTA
slightly decreases to 0.7073 due to a higher data distribution
mismatch between training and inference. In contrast, our

Variant AMOTA↑ AMOTP↓ MOTA↑ IDS↓ FRAG↓

zero feature 0.6469 0.6245 0.5497 3715 871
w/o pred. 0.7055 0.5315 0.5994 411 445
w/o time diff. 0.7113 0.5249 0.6108 350 446

diff. affinity 0.6509 0.6185 0.5587 3547 838
concat affinity 0.6494 0.6170 0.5541 3308 1558
cosine affinity 0.6346 0.6345 0.5417 4489 922

3DMOTFormer 0.7121 0.5149 0.6071 341 436

Table 6. Ablation study on different options of edge features.

Max dist. AMOTA↑ AMOTP↓ MOTA↑ Recall↑ IDS↓ FRAG↓

with
prediction

0.5× 0.6952 0.5224 0.5948 0.6952 666 313
1.0× 0.7121 0.5149 0.6071 0.7387 341 436
1.5× 0.7058 0.5372 0.6026 0.7427 416 517
2.0× 0.7061 0.5384 0.6019 0.7509 427 539

w/o
prediction

0.5× 0.5822 0.6367 0.4990 0.6423 2368 942
1.0× 0.6862 0.5505 0.5850 0.7229 1138 635
1.5× 0.7034 0.5386 0.5975 0.7315 640 500
2.0× 0.7068 0.5362 0.5999 0.7351 447 509

Fully connected 0.7015 0.5316 0.5937 0.7474 476 493

Table 7. Ablation study on dynamic association graph building.

autoregressive forward pass avoids GT information leaking
into training data, thus reducing the distribution mismatch.
Without passing track features as hidden state, AMOTA de-
creases by about 1%P and the AMOTP is also significantly
worse. This indicates the importance of the hidden state in
capturing motion dynamics and the association history.

Edge features Next, we show the effectivity of incorpo-
rating edge features into our architecture using the Edge-
Augmented Graph Transformer [12]. In the upper part
of Table 6, we analyze the impact of different edge feature
embeddings h(0)

A : (1) zero: edge features are set to zero; (2)
w/o prediction: with zeroed value for the center distance af-
ter prediction; (3) w/o frame difference: with zeroed value
for the frame difference. Variant zero causes a very signif-
icant performance drop, which confirms the importance of
the edge features. Variant w/o prediction leads to a decrease
of AMOTA by 0.66%P, while w/o frame difference has no
significant impact on AMOTA. This observation shows the
ability of our model to accurately estimate velocities and
to capture the underlying motion model for learning-based
data association. The bottom part shows another variant,
where we replace the Edge-Augmented Graph Transformer
with a normal Graph Transformer decoder and conduct edge
classification using the features of two nodes connected by
an edge. We used the difference, concatenation and the co-
sine affinity of two node features to estimate the association
score. All three models show a strong performance degra-
dation which again verifies our design choices.
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Dynamic association graph building Besides computa-
tional efficiency, the sparsity of the association graph also
provides useful structure information for feature interaction
and reduces the amount of negative association edges as
well as the class imbalance, as can be seen in Table 7 by
comparing our default choice in the second row and a vari-
ant with a fully-connected graph in the last row. In the first
part of Table 7, we vary the class-specific distance threshold
for every node in the graph by applying a multiplicative fac-
tor. With 0.5× distance threshold, many potential connec-
tions are missing and this further leads to 1.69%P AMOTA
decrease. Higher thresholds (1.5× and 2.0×) increase the
recall but on the other hand introduce class imbalance, re-
sulting in about 0.6%P AMOTA decrease. In the second
part, we use original boxes of tracks without predicting
them while constructing the graph. In this case, AMOTA
performance increases with the distance threshold. Without
prediction, tracks have a higher distance to reach the correct
association and hence higher thresholds preserve the recall.
However, this setting with prediction performs better and
results in a more sparse graph structure. This again verifies
the ability of our approach in estimating velocity accurately
to achieve an effective graph building.

5. Conclusion

In this paper, we presented a novel 3D online multi-
object tracking (MOT) framework using Graph Transformer
which only relies on geometric cues, termed 3DMOT-
Former. We formulate the association using a bipar-
tite graph representation and exploit the Edge-Augmented
Graph Transformer to reason on the graph structure and
conduct data association. Our network runs recurrently and
autoregressively during training and we use a sequential
batch optimization to train the network, yielding a fully on-
line training which is closely coupled with the online in-
ference process of MOT. Our approach achieves state-of-
the-art performance on the nuScenes dataset, outperforms
all other geometric-based data association approaches, and
shows good generalization across different detectors.
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