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Abstract

For a generalized (or non-central) camera model, the
minimal problem for two views of six points has efficient
solvers. However, minimal problems of three views with
four points and three views of six lines have not yet been
explored and solved, despite the efforts from the computer
vision community. This paper develops the formulations of
these two minimal problems and shows how state-of-the-
art GPU implementations of Homotopy Continuation solver
can be used effectively. The proposed methods are evalu-
ated on both synthetic and real datasets, demonstrating that
they are fast, accurate and that they improve on structure
from motion estimations, when employed in an hypothesis
and test setting.

1. Introduction

In both the central and the non-central camera models, an
image point is in correspondence to a ray of a 3D point that
projects to that image point. In the central camera model,
each such ray goes through a common point, i.e., the camera
centre, whereas in the non-central camera model, two such
rays do not always intersect. One example of a non-central
camera is the catadioptric camera, where one or more lenses
and/or mirrors are combined in an optical system, [17]. An-
other example is a rig of multiple cameras, [20]. A typical
use-case is a car or drone equipped with several cameras.
Here it is possible to use all of the cameras as one general-
ized sensor. Generalized cameras offer several advantages
over the standard pinhole camera for relative pose estima-
tion. As shown in previous works [20, 25, 10, 15], struc-
ture from motion estimation with a generalized camera also
gives the scale of the translation as well as the scale of the
3D model. In addition, since the system consists of multi-
ple cameras, it is possible to configure the location of each
camera so that a maximal field-of-view can be achieved to
avoid blind spots. This, in turn, enables more robust image
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Figure 1. An example of a multi-camera system with four standard
pinhole cameras mounted on a car.

feature detection and matching, which is a crucial proce-
dure in relative pose estimation. Fig. 1 shows an example
of a multi-camera system consisting of four pinhole cam-
eras mounted on a car for relative pose estimation.

Unlike the standard pinhole camera, the light rays from
a generalized camera do not intersect at a single center of
projection. This property makes it non-trivial to estimate
the relative pose using a generalized camera. Pless [20]
first formulated the light rays in a generalized camera as
Plücker vectors and defined the generalized essential ma-
trix. Based on the work of Pless, several solutions to the
two-view generalized relative pose estimation have been
proposed [26, 10, 25]. Among these solutions, the mini-
mal solver with up to 64 solutions was proposed in [25].
This solver only needs 6 point correspondences which can
significantly reduce the number of RANSAC [7] iterations
than other solvers. Although the solvers to the two-view
generalized relative pose problem are already mature, there
are no solutions to the three-view case as the generalized
three-view relative pose problem is extremely difficult to
be formulated and solved. In general, three-view relative
pose estimation needs fewer point correspondence and suf-
fers from fewer degenerate cases than the two-view case.
Moreover, three-view relative pose can be estimated only
using the line correspondences. Hence, it has a great po-
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Point
•

Line Quiver No. of
Solutions

4-point 4 0 0 583
6-line 0 6 0 600
3-quiver 0 0 3 1008
2P3L 2 3 0 920
2P1L1Q 2 1 1 1472
4L1Q 0 4 1 1976
2L2Q 0 2 2 2240

Table 1. Possible cases and number of solutions for the generalized
three-view relative pose problem. Each row shows the number of
necessary features and the number of solutions. We mainly focus
on the first two cases in this paper since they are more practical
and relevant.

tential and can provide new ways to solve the relative pose
problem.

The generalized three-view relative pose problem has 12
degrees of freedom (6 for the two rotations and 6 for the
two translations). It is well known that the most commonly
used features for relative pose estimation are points, lines
and quivers, where a quiver consists of one point with tan-
gent direction (or one point with one line passing through
this point). According to the analyses in [5, 6], point, line
and quiver in three views can provide 3,2 and 4 constraints,
respectively. In Table 1, we show that there are 7 possible
minimal cases for generalized three-view relative pose es-
timation using the combination of the three features. We
only assume that there is one line passing through the point,
there will be much more cases if there are several lines pass-
ing through one point.

In this paper, to estimate the generalized three-view rel-
ative pose, we focus on the first two cases in Table 1. We
show detailed discussions on the formulations and the num-
ber of solutions for each case. The main contributions of
this paper include:

• We solve the generalized three-view relative pose
problem using 4 points or 6 lines. Specifically, de-
tailed problem formulation for the two cases are given,
which are then converted into solving a squared system
of polynomials.

• This allows us to develop a solver using HC (homo-
topy continuation) based on the state-of-the-art GPU-
HC solver [2, 3]. This significantly improves the effi-
ciency over the existing modern HC software.

• In extensive synthetic and real experiments we show
an improvement of accuracy over the state-of-the-art
two-view 6-point solver. The proposed 4-point solver
is able to deal with semi-pure translation, which is de-
generated for the two-view case.

2. Related Work

Three-view Relative Pose. Estimating the calibrated
three-view relative pose from standard pinhole cameras has
been well studied in the literature. In general, this problem
has 11 degrees of freedom (DOF), and can be solved using
4 points [19, 21] or 6 lines [9]. Note that, both 4 points and
6 lines are over-determined for standard pinhole cameras,
which makes it difficult to derive stable solvers. The only
available solver for the 4-point problem was shown in [11],
where the authors added an extra parameter to solve a re-
laxed version of the problem. To the best of our knowledge,
there are no publicly available solvers for the 6-line prob-
lem. It was shown in [9] that there might be up to 600 solu-
tions to three-view relative pose with 6 lines using pinhole
cameras. While the problem of estimating the three-view
relative pose from standard pinhole cameras has received a
lot of attention, this does not hold for the generalized three-
view relative pose problem. There is only a discussion on
the possible number of solutions using 4 points in three gen-
eralized views [25].
Solving Polynomials. Most of the minimal problems in
computer vision can be transformed into solving a system
of polynomial equations. A straightforward way of solving
a polynomial system is to use the Gröbner basis method [4]
and generate a specific solver using an automatic genera-
tor, e.g., [12, 13, 14]. The Gröbner basis method and re-
lated automatic generators have been successfully used in
many computer vision problems [14], showing promising
results in terms of stability and efficiency. However, it’s
difficult to find a stable solution for large scale problems
using the Gröbner basis technique, since we need to apply
Gauss-Jordan elimination and eigenvalue decomposition to
large size of matrices. Alternatively, homotopy continua-
tion (HC) [24, 8], one of the promising numerical solver
for polynomial equations, is able to handle systems that are
out of the reach of the Gröbner basis methods. However,
HC algorithms are known to be slow, impractical for many
multiview geometry problems when a RANSAC loop is in-
volved, e.g. trifocal relative pose estimation requires over
600 (ms) per correspondence in [6]. This issue has been
tackled by GPU-HC [2, 3] where the design of the GPU im-
plementation accelerate the speed in orders of magnitude,
giving efficient and accurate estimations for many minimal
problems. As there is no paper using GPU-HC to solve min-
imal problems in practice, this paper stands out as the first
approach to leverage it as our solvers.

3. Problem Statement
As SO(3) is three-dimensional, and we set the first gener-

alized camera to [I | 0], the parameter space of camera con-
figurations for n-view case has dimension 6n−6. Since one
point correspondence in three views gives three constraints,
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Figure 2. The minimal problem of 4 points seen in three general-
ized cameras. In this example the generalized cameras are visual-
ized as multi-camera systems.

and one line correspondence in three views gives two con-
straints, we can find that 4 points and 6 lines in three views
are two minimal cases.

3.1. The 4-point Case

Assuming that four points X1,X2,X3,X4 in the 3D
space are observed by three generalized cameras (Fig-
ure 2). Note that, the four points {X1,X2,X3,X4} can’t
be viewed from a single pinhole camera, i.e., the points
need to be sampled from at least two cameras. Other-
wise, the problem will be degenerated into the trifocal rel-
ative pose from a standard pinhole camera. The image
points of the four 3D points in each view can be written as
x1i,x2i,x3i,x4i, i ∈ {1, 2, 3}. On the other hand, the ro-
tation matrices and translation vectors that align the image
points with the world coordinate are defined as {Aki, τ ki}.
We formulate the depths of the image points in each gener-
alized view as λ1i, λ2i, λ3i, λ4i, i ∈ {1, 2, 3}. Due to the
rigid motion, the distance between any two points in each
view should be the same. Hence, we have

∥λ11A11x11+τ 11 − λ21A21x21 − τ 21∥2

= ∥λ12A12x12 + τ 12 − λ22A22x22 − τ 22∥2
,

· · ·
(1)

∥λ31A31x31+τ 31 − λ41A41x41 − τ 41∥2

= ∥λ43A43x43 + τ 43 − λ44A44x44 − τ 44∥2
.

In this case, we obtain 12 polynomials in 12 unknowns
{λ1i, λ2i, λ3i, λ4i}. Based on [1], we find that there are up
to 583 solutions. Once the depth parameters are computed,
we let

Xki = λkiAkixki + τ k, (2)

where k ∈ {1, 2, 3, 4} and i ∈ {1, 2, 3}. We have the fol-
lowing constraints

Xk2 = R2Xk1 + t2. (3)

By eliminating the translation parameters, we have

Xk2 −X12 = R2(Xk1 −X11), k ∈ {2, 3, 4}. (4)

Hence, the rotation matrix R2 can be found by

R2 = B2B
−1
1 ,

B2 = [X22 −X12,X32 −X12,X42 −X12],

B1 = [X21 −X11,X31 −X11,X41 −X11].

(5)

Then the translation can be computed using (3). Similarly,
we can obtain R3, t3.

3.2. The 6-line Case

Assuming that six lines L1,L2, · · · ,L6 in the 3D space
are observed by three generalized cameras. The projections
of the lines in each view can be written as l1i, l2i, · · · , l6i,
i ∈ {1, 2, 3}. The line and the camera center define a plane
which passes through the origin of the local camera coordi-
nate. In this case, the plane in each camera coordinate can
be formulated as

πki = [lki; 0]. (6)

In addition, we let the 4 × 4 transformation matrices that
align the planes with the world coordinate as

Cki =

[
Aki τ ki

0 1

]
. (7)

The planes in three views which are defined by one 3D line
should intersect at this line, in this case, we can obtain the
following constraints

rank[P⊤
1 C

⊤
k πk1 | P⊤

2 C
⊤
k πk2 | P⊤

3 C
⊤
k πk3] ≤ 2,

k ∈ {1, 2, 3, 4, 5, 6},
(8)

where matrix Pi is defined as

Pi =

[
Ri ti
0 1

]
, i ∈ {1, 2, 3}. (9)

Based on (9), we can obtain 6 ∗ C4
3 = 24 polynomials in

the rotation and translation parameters. If we consider the
constraints that only contain the rotation components, we
have 6 constraints in the rotation parameters

det[A⊤
k1lk1 |R⊤

2 A
⊤
k2lk2 |R⊤

3 A
⊤
k3lk3] = 0,

k ∈ {1, 2, 3, 4, 5, 6}.
(10)

In order to find the motion parameters, we introduce two
formulations for the rotation matrix.
Cayley parameterization. The major advantage lies in
this formulation is that there remain only three variables for
each rotation matrix:

R2 = 1
κ2

1+q21−q22−q23 2(q1q2−q3) 2(q1q3+q2)
2(q1q2+q3) 1−q21+q22−q23 2(q2q3−q1)
2(q1q3−q2) 2(q2q3+q1) 1−q21−q22+q23
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R3=
1
κ3

1+q24−q25−q26 2(q4q5−q6) 2(q4q6+q5)
2(q4q5+q6) 1−q24+q25−q26 2(q5q6−q4)
2(q4q6−q5) 2(q5q6+q4) 1−q24−q25+q26

,

where κ2 = 1+ q21 + q22 + q23 , κ3 = 1+ q24 + q25 + q26 , note
that this formulation is unstable in case of Cayley degen-
erate rotations (κ2, κ3 = 0). However, the probability for
the degenerate case is quite low in practice, and this formu-
lation has been successfully used in many computer vision
problems [13]. Since the constraints (10) are homogenous
in the rotation matrices, the scale factors κ2, κ3 can be omit-
ted. In this case, we can obtain 6 quartic polynomials in 6
unknowns {q1, q2, ..., q6}. The monodromy solver in [1]
shows that there are up to 600 solutions. Once the rota-
tion parameters are computed, we need to substitute them
into (8) and obtain six linear equations in the translation pa-
rameters. The translation t2, t3 can be uniquely obtained.
Homogeneous rotation matrix. On the other hand, since
constraints (8) are invariant to the scale of the rotation ma-
trices, we can use 8 parameters to formulate the rotation up
to a scale factor (assuming the first element to be 1)

R2 =

 1 r2 r3
r4 r5 r6
r7 r8 r9

 , R3 =

 1 r11 r12
r13 r14 r15
r16 r17 r18

 .

The elements {r2, r2, ..., r9} should satisfy the following
constraints

r2r8 + r3r9 + r7 = 0, r2r5 + r3r6 + r4 = 0,

r4r6 + r7r9 + r3 = 0, r4r5 + r7r8 + r2 = 0,

r25 + r26 − r27 − 1 = 0.

In this case, we can obtain 16 quadratic polynomials in 16
unknowns {r2, r3, ..., r18}. Similar to the Cayley parame-
terization, this formulation is unstable in case of degenerate
rotations (r1, r10 = 0). Although such degenerate cases can
be avoided by using unit quaternion formulation, it will re-
sult in more parameters than the Cayley parameterization
and the system of polynomials has 2-fold symmetry. In or-
der to derive more efficient solvers, we only discuss Cayley
parameterization and homogeneous rotation matrix formu-
lation in this paper.
Geometric Interpretation of (10). The line projection
with the camera center define a plane, and this plane gives
a line at infinity. Since the three lines in three views should
correspond to the same 3D line, the three lines at infinity
should intersect at the same point. In this case, we can ob-
tain constraint (10).

3.3. Degenerate Case

A detailed analysis of the degeneracies for general-
ized two-view relative pose estimation has been shown
in [10, 15]. The degenerated case is slightly different in

generalized three-view relative pose problem. In our case,
we found that if the multi-camera system undergoes pure
translation (R2 = R3 = I) with only intra-camera cor-
respondences, our solvers can not recover the scale of the
translation. However, if we only have R2 = I or R3 = I,
our solvers can still recover the translation with scale factor.

4. Polynomial System Solver

Figure 3. A track (curve) of a Homotopy Continuation algorithm
showing H(X, t) in black, along with one prediction (red) and one
correction (blue).

Homotopy Continuation: The idea of Homotopy Contin-
uation (HC) [18, 24] is to evolve the solutions of one poly-
nomial system G, the “start system”, to discover the solu-
tions of another system F , the “target system”. Let X =
(x1, x2, ..., xM ) represent M unknowns. Let F (X) be a
system of N polynomial equations F = (f1, f2, ..., fN ).
Let G(x), G = (g1, g2, ..., gN ) be the “start system”
whose solutions are all known. The idea of HC is to con-
struct a series of intermediate polynomial systems H(X, t),
H = (H1, H2, ...,HN ); where H(X, 0) = G(X) and
H(X, 1) = F (X), e.g., via linear interpolation:

H(x, t) = (1− t)G(x) + tF (x), t ∈ [0, 1]. (11)

The basic idea is to find the solution of H(X, t + ∆t)
from the solution of H(X, t). Figure 3 illustrates the idea
for one solution and one unknown. The black curve is the
locus of the solution X(t) of H(X, t), the homotopy curve,
where X0 is the known solution of G(X) and X1 is the
desired solution of F (X). We track solution X1 from X0

in a number of small steps, each consisting of a prediction
and a correction step. Prediction uses a first-order Taylor
expansion to estitmate X at t+∆t in the form of

X∗(t+∆t) = X(t) + dX
dt ∆t, (12)

where X∗ is the first order estimation of X(t + ∆t). We
obtain dX

dt by differentiating H(X(t), t), i.e.,

∂H

∂X

dX

dt
+

∂H

∂t
= 0 −→ dX

dt
= −(

∂H

∂X
)−1 ∂H

∂t
, (13)

where J = ∂H
∂x is the M ×N Jacobian of H wrt X , giving

X∗(t+∆t) = X(t)− (∂H∂X )−1 ∂H
∂t ∆t. (14)
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The first-order estimation of X∗ from X(t) is known as the
prediction step (Figure 3) which can be further improved
using a higher-order method such as a fourth order Runge-
Kutta. Followed by a correction step which helps improve
the prediction, Newton’s update X∗(t+∆t) to X̂(t+∆t)
is used, i.e.,

H(X∗, t+∆t) + ∂H
∂X (X∗, t+∆t)(X̂ −X∗) = 0, (15)

giving the estimate X̂ in the form of

X̂ = X∗ − (∂H∂X )−1(X∗, t+∆t)H(X∗, t+∆t). (16)

The pairs of prediction and correction numerically evolve
X0 as the solution of G(X) to X1 as the solution of F (X).
HC algorithms find all the solutions (up to some approxima-
tion) with probability one given a good start system which
can be provided easily by a monodromy solver [1]. In many
computer vision applications, a good start system usually
needs to be created once as multiple target systems corre-
spond to different target parameters can be solved from the
same start system under a RANSAC loop.
GPU-HC: The iterative nature of HC prevents it from be-
ing practically used. The GPU implementation in [2, 3] par-
allelizes (i) HC paths and (ii) the evaluations of ∂H

∂X , ∂H
∂t ,

and H , Equations (13) and (16) to enable HC efficiently
solves problems whose complexity has far evaded a practi-
cal solution. We thus use GPU-HC as our minimal problem
solver, giving promising results in our experiments.
GPU-HC Solution Refinement: Since GPU computation
is memory-bound, extending numerical precision in GPU
computation would significantly drag down efficiency. To
obtain high numerical accuracy while avoiding slowdown,
Levenberg–Marquardt algorithm using double precision is
used, followed by GPU-HC using single precision for solu-
tion refinement. This refinement step can be done in CPU
side efficiently as only partial GPU-HC solutions are neces-
sary to be refined, i.e., real solutions in the 6-line problem
or real and positive solutions in the 4-point problem.

5. Experiments
To demonstrate that the proposed solvers work well in

practice, we conduct extensive experiments on both syn-
thetic and real-world data with multi-camera system con-
figuration. Experiments are run on a 16-Core 3.6GHz Intel
i7-11700K CPU and a NVIDIA Titan V GPU.

For both synthetic and real experiments, the solver’s per-
formance is evaluated by the following criteria:

ξR[deg] = 2arcsin

(
∥Rgt −Re∥

2
√
2

)
,

ξt[deg] = 2arcsin

(
1

2

∥∥∥∥ te
∥te∥

− tg
∥tg∥

∥∥∥∥) ,

ξScale = abs(∥te∥/∥tgt∥ − 1),

where ξR, ξt, and ξScale are the angle difference in rota-
tion, direction difference in translation and relative scale
error, respectively. Rgt, tgt are the ground truth rota-
tion and translation, and Re, te are the estimated ro-
tation and translation, respectively. All the norms are
Frobenius norm. Note that, computing the rotation an-
gle error and the translation direction error based on
the arccos

(
(trace(R⊤

gtRe)− 1)/2
)

is simpler. How-
ever, it’s not the best choice. For example, if the
relative angle between the rotation matrices is small,(
(trace(R⊤

gtRe)− 1)/2
)

is close to unity in that case and
the arccos is very sensitive to errors. Hence, it’s better to
compute angular errors using the arcsin formulation. De-
tailed comparisons between arcsin and arccos are shown in
the supplementary material.

5.1. Numerical Accuracy of the Solvers

Although it has been reported in [2, 3] that GPU-HC pro-
vides promising and acceptable numerical accuracy in solv-
ing various minimal problems in computer vision, for the
proposed problems to be usable the evaluation on polyno-
mial residual is still necessary. Figure 4 top row shows the
accuracy of (a) all GPU-HC converged solutions and (b) the
converged solutions correspond to the ground truths, solv-
ing 6-line problem and 4-point problem using our synthetic
dataset generating 10,000 real parameters for each problem.
Both single precision (SP) and double precision (DP) are
demonstrated, showing that the solver is able to provide less
than 10−5 accurate results for the majority of the GPU-HC
solutions. Nevertheless, if a refinement step is involved,
significant shifts in the distributions of residuals can be ob-
served, Figure 4 bottom row, where single precision solu-

(a) (b)
Figure 4. Numerical accuracy of GPU-HC from (a) all converged
paths and (b) converged paths correspond to the true solution of
the 4-points and 6-lines problems. Top Row: Original. Bottom
Row: Refinement.
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tions are nearly as accurate as the double precision.

5.2. Synthetic Evaluation

Figure 5. Relative errors with noise-free data under random points
and movement. Top Row: The 4-point solver. Bottom Row: The
6-line solver.

In this section, we evaluate the numerical stability and
the noise resilience of the proposed solvers. We simu-
lated a multi-camera system with six cameras, and the focal
length of each pinhole camera is set to 1000px. To gener-
ate the scene we uniformly sample 3D points from the box
[−2, 2] × [−2, 2] × [3, 6] in each camera’s local coordinate
system. Then based on two points we can generate lines in
each camera. Finally these points and lines are transformed
with a random but feasible rotation and translation.
Stability. We randomly generated 1000 noise-free in-
stances with different transformations. Figure 5 top row
shows the distribution of the log10 relative errors of the 4-
point solver, and Figure 5 bottom row shows the distribution
of the log10 relative errors of the 6-line solver, respectively.
We can see that both solvers are quite stable.
Noise resilience. In this experiment, we focused on four
practical motions: general motion, forward motion (along
the z-axis), sideways motion (along the x-axis), and semi-
pure translation (R2 = I). Fig. 6 shows the performance of
the proposed 4-point solver and 6-line solver under increas-
ing image noise with different standard deviation. We can
see that the 4-point solver has almost similar error distribu-
tions for the four motions. The only difference is that the
translation direction error is slightly larger under sideways
motion and forward motion. Overall, the performance of
the 4-point solver is stable under different motions with in-
creasing image noise. By contrast, the 6-line solver is more
sensitive to image noise, especially the translation direction
error. This is possibly due to the noise that we added to the
end points. If the points are close to each other, very small
noise in the end points may result in extremely large errors
in the line direction. Since the 6-line solver is sensitivity

to noise, we will focus on the performance of the 4-point
solver in the real experiments.
Complexity analysis and running times. The success rate
of finding the HC solutions correspond to the ground truths
and the overall timings of our GPU-HC solver is shown in
Table 3. Typically, using double precision would give a
slowdown in speed compared to single precision, but there
are times where double precision is faster than single pre-
cision, e.g., the minimum GPU-HC time of 6-line prob-
lem. This is because the required number of HC steps is
lesser when double precision is used which converges HC
tracks faster. The speedup compared to Julia 8-core CPU
HC solver in the table also demonstrate the benefit of using
GPU-HC, which gives more than 150× speedup and 58×
speedup for single precision of 6-line and 4-point problems,
respectively, enabling real-time computation.
Success rate and accuracy under a RANSAC
scheme. Table 2 shows the RANSAC experiment of
the 4-point problem using the synthetic dataset with image
size 1000×1000 pixels. Among the projections of the 1000
synthetic generated scene points, the inliers are corrupted
by uniformly distributed noise within a 7×7 window, while
the outliers are corrupted by shifting the point by at least
half the image size. 80 iterations is used for every case
running 1000 times, and a successful RANSAC estimation
is decided if ξR[deg] < 2 degrees. The table shows only R2,
t2, and s2 since they share similar accuracy with R3, t3,
and s3. The errors are the averaged accuracy of successful
cases which show that below 70% outlier ratio the success
rate has more than 80%, and as long as inlier points are
picked, the estimation accuracy is very promising.

Outlier Ratio Success Rate ξR[deg] ξt[deg] ξScale
10% 100% 0.193 0.018 0.009
20% 100% 0.199 0.133 0.076
30% 100% 0.574 0.188 0.175
40% 96.4% 0.997 0.159 0.122
50% 90.7% 1.344 0.442 0.169
60% 87.1% 1.128 0.134 0.137
70% 81.4% 0.895 0.143 0.060
80% 66.3% 1.495 0.328 0.329
90% 42.7% 1.749 0.134 0.139

Table 2. Performance of the 4-point problem under a RANSAC
scheme given different outlier ratios using the synthetic dataset.

5.3. Real-world Experiments
In order to test the proposed technique on real-world

data, we chose the LaMAR [22]1 dataset, which contains
both indoor and outdoor images with illumination and se-
mantic changes as well as dynamic objects. We used the im-
age sequences captured by a multi-camera rig (HoloLens 2).

1https://lamar.ethz.ch/
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Figure 6. Boxplot of the relative errors under increasing image noise with a maximum value of 1 pixel. Top Row: Rotation error in degree.
Middle Row: Translation error in degree. Bottom Row: Translation scale error. From left column to right column are general motion,
sideways motion, forward motion and semi-pure translation, respectively.

Solver Success
Rate (%)

# of real sols. (# of positive real sols.) GPU-HC Timings (ms) Mean Julia
Timings (ms)
(8-core CPU)

Julia
GPU-HCmin max median mean min max median mean

4-point (DP) 99.78 34(4) 93(12) 68(8) 68.5(8.1) 9.6 32.8 16.8 17.4 428.26 24.6×
4-point (SP) 99.06 32(2) 89(10) 52(5) 53.2(5.1) 5.3 15.7 7.2 7.3 58.7×
6-line (DP) 98.67 52 139 87 87.7 2.9 72.4 35.4 34.1 1103 32.3×
6-line (SP) 97.63 48 120 84 82.4 5.2 15.4 7.1 7.2 153.2×

Table 3. Success rate of finding the true solutions and the timings of solving the problems.

Figure 7. An example of four images from the LaMAR CAB dataset
captured by a multi-camera rig with four cameras.

It has a specialized large field-of-view (FOV) multi-camera
tracking rig with four cameras. In general, this dataset con-
tains three large scale sequences including: (i) HGE, the
ground floor of a historic university building consists of nu-
merous large halls and broad esplanades on either side with
18000 m2. (ii) CAB, a multi-story office building that fea-
tures a variety of small and large offices, a kitchen, stor-

age rooms, and two courtyards with 12000 m2. (iii) LIN,
several blocks of an ancient town, characterized by shops,
restaurants, and narrow passageways with 15000 m2. To
setup the experiments we extracted triplets of multi-camera
images from the mapping set, where the ground-truth poses
are available. From each trajectory in the mapping set we
select consecutive triplets satisfying the following criteria;
the distance between consecutive rigs is in [0.2m, 5m] and
and at least two image pairs have more than 50 matches.
This yielded in total 1280 (CAB), 1537 (HGE) and 2213
(LIN) triplets for evaluation. Pairwise 2d-2d matches are
established using the SIFT[16] implementation in [23].

Since there are no related solvers for generalized three-
view relative pose problem, we only compare the pro-
posed 4-point solver with the two-view 6-point solver [25].
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Figure 8. The cumulative distribution functions of the rotation, translation and scale errors. Being accurate is interpreted as a curve close
to the top-left corner.

LaMAR Solver ξR ξt ξS Inlier Iter

CAB 4-point 0.54 1.65 0.63 329 105
6-point 0.94 6.51 0.73 317 189

HGE 4-point 0.58 3.12 0.80 392 99
6-point 0.97 8.25 0.85 387 193

LIN 4-point 0.46 2.01 0.72 573 100
6-point 0.78 4.86 0.81 535 199

Table 4. The median errors, the number of inliers and the number
of RANSAC iterations on the LaMAR dataset.

To make a fair comparison, we use the solvers in a sim-
ple RANSAC framework with a maximum number of
RANSAC iterations set to 500. The inlier-outlier threshold
is set to 2 pixels. In Fig. 8, we show the cumulative distribu-
tion functions (CDF) of the rotation (in degrees), translation
(in degrees) and scale errors on the three tested datasets.
Being accurate is interpreted as a curve close to the top-left
corner. The median errors are reported in Table 4. The pro-
posed solver leads to more accurate results, more inliers and
fewer iterations than the compared two-view method. Due

to the lack of space we only show the results using intra cor-
respondences. Results for inter correspondences and mean
errors are shown in the supplementary material.
Limitations. The main limitation is that the refinement
step is currently done in CPU. We will consider to include
the refinement in the GPU computation in the future.
6. Conclusion

We discuss minimal cases of generalized three-view rel-
ative pose estimation. In particular, we propose GPH-HC
based solvers to the 4-point and 6-line cases. Experiments
on thousands of image pairs from publicly available datasets
show that the proposed three-view 4-point solver is superior
to the state-of-the-art two-view 6-point solver. One goal
of future research is to use the technique proposed in [11]
to improve the efficiency. We believe that the proposed
method is promising and will be a good complement to ex-
isting methods to improve the accuracy and stability of the
structure from motion systems.
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