
TAPIR: Tracking Any Point with per-frame Initialization and temporal
Refinement

Carl Doersch∗ Yi Yang∗ Mel Vecerik∗† Dilara Gokay∗ Ankush Gupta∗

Yusuf Aytar∗ Joao Carreira∗ Andrew Zisserman∗‡

∗Google DeepMind † University College London
‡VGG, Department of Engineering Science, University of Oxford

Abstract

We present a novel model for Tracking Any Point (TAP)
that effectively tracks any queried point on any physical sur-
face throughout a video sequence. Our approach employs
two stages: (1) a matching stage, which independently lo-
cates a suitable candidate point match for the query point
on every other frame, and (2) a refinement stage, which up-
dates both the trajectory and query features based on lo-
cal correlations. The resulting model surpasses all baseline
methods by a significant margin on the TAP-Vid benchmark,
as demonstrated by an approximate 20% absolute average
Jaccard (AJ) improvement on DAVIS. Our model facilitates
fast inference on long and high-resolution video sequences.
On a modern GPU, our implementation has the capacity to
track points faster than real-time. Given the high-quality
trajectories extracted from a large dataset, we demonstrate
a proof-of-concept diffusion model which generates trajec-
tories from static images, enabling plausible animations.
Visualizations, source code, and pretrained models can be
found at https://deepmind-tapir.github.io.

1. Introduction
The problem of point level correspondence —i.e., deter-

mining whether two pixels in two different images are pro-
jections of the same point on the same physical surface—
has long been a fundamental challenge in computer vision,
with enormous potential for providing insights about physi-
cal properties and 3D shape. We consider its formulation as
“Tracking Any Point” (TAP) [12]: given a video and (po-
tentially dense) query points on solid surfaces, an algorithm
should reliably output the locations those points correspond
to in every other frame where they are visible, and indicate
frames where they are not – see Fig. 4 for illustration.

Our main contribution is a new model: TAP with
per-frame Initialization and temporal Refinement (TAPIR),

2020 2021 2022 2023

20

30

40

50

60

Av
er

ag
e 

Ja
cc

ar
d

RAFT

COTR

Kubric-VFS

PIPs

TAPNet

TAPIRDavis Kinetics

Figure 1. Retrospective evolution of point tracking performance
over time on the recent TAP-Vid-Kinetics and TAP-Vid-DAVIS
benchmarks, as measured by Average Jaccard (higher is better).
In this paper we introduce TAPIR, which significantly improves
performance over the state-of-the-art. This unlocks new capabili-
ties, which we demonstrate on motion-based future prediction.

which greatly improves over the state-of-the-art on the
recently-proposed TAP-Vid benchmark [12]. There are
many challenges to TAP: we must robustly estimate oc-
clusions and recover when points reappear (unlike optical
flow and structure-from-motion keypoints), meaning that
search must be incorporated; yet when points remain visi-
ble for many consecutive frames, it is important to integrate
information about appearance and motion across many of
those frames in order to optimally predict positions. Fur-
thermore, little real-world ground truth is available to learn
from, so supervised-learning algorithms need to learn from
synthetic data without overfitting to the data distribution
(i.e., sim2real).

There are three core design decisions that define TAPIR.
The first is to use a coarse-to-fine approach. This approach
has been used across many high-precision estimation prob-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

10061



lems in computer vision [7, 28, 32, 38, 41, 58, 69, 73, 78].
For our application, the initial ‘coarse’ tracking consists
of an occlusion-robust matching performed separately on
every frame, where tracks are hypothesized using low-
resolution features, without enforcing temporal continuity.
The ‘fine’ refinement iteratively uses local, spatio-temporal
information at a higher resolution, wherein a neural net-
work can trade-off smoothness of motion with local appear-
ance cues to produce the most likely track. The second de-
sign decision is to be fully-convolutional in time: the layers
of our neural network consist principally of feature com-
parisons, spatial convolutions, and temporal convolutions,
resulting in a model which efficiently maps onto modern
GPU and TPU hardware. The third design decision is that
the model should estimate its own uncertainty with regard
to its position estimate, in a self-supervised manner. This
ensures that low-confidence predictions can be suppressed,
which improves benchmark scores. We hypothesize that
this may help downstream algorithms (e.g. structure-from-
motion) that rely on precision, and can benefit when low-
quality matches are removed.

We find that two existing architectures already have
some of the pieces we need: TAP-Net [12] and Persis-
tent Independent Particles (PIPs) [19]. Therefore, a key
contribution of our work is to effectively combine them
while achieving the benefits from both. TAP-Net performs
a global search on every frame independently, providing a
coarse track that is robust to occlusions. However, it does
not make use of the continuity of videos, resulting in jit-
tery, unrealistic tracks. PIPs, meanwhile, gives a recipe for
refinement: given an initialization, it searches over a local
neighborhood and smooths the track over time. However,
PIPs processes videos sequentially in chunks, initializing
each chunk with the output from the last. The procedure
struggles with occlusion and is difficult to parallelize, re-
sulting in slow processing (i.e., 1 month to evaluate TAP-
Vid-Kinetics on 1 GPU). A key contribution of this work is
observing the complementarity of these two methods.

As shown in Fig. 1, we find that TAPIR improves over
prior works by a large margin, as measured by performance
on the TAP-Vid benchmark [12]. On TAP-Vid-DAVIS,
TAPIR outperforms TAP-Net by ∼20% while on the more
challenging TAP-Vid-Kinetics, TAPIR outperforms PIPs by
∼20%, and substantially reduces its inference runtime. To
demonstrate the quality of TAPIR trajectories, we show-
case a proof-of-concept model trained to generate trajec-
tories given individual images, and find that this model can
generate plausible animations from single photographs.

In summary, our contributions are as follows: 1) We
propose a new model for long term point tracking, bridg-
ing the gap between TAP-Net and PIPs. 2) We show that
the model achieves state-of-the-art results on the challeng-
ing TAP-Vid benchmark, with a significant boost on per-

formance. 3) We provide an extensive analysis of the ar-
chitectural decisions that matter for high-performance point
tracking. 4) We provide a proof-of-concept of video predic-
tion enabled by TAPIR’s high-quality trajectories. Finally,
5) after analyzing components, we separately perform care-
ful tuning of hyperparameters across entire method, in or-
der to develop the best-performing model, which we release
at https://www.github.com/deepmind/tapnet
for the benefit of the community.

2. Related Work

Physical point correspondence and tracking have been
studied in a wide range of settings.
Optical Flow focuses on dense motion estimation between
image pairs [22, 36]; methods can be divided into classical
variational approaches [4, 5] and deep learning approaches
[14, 23, 47, 60, 62, 71]. Optical flow operates only on sub-
sequent frames, with no simple method to track across long
videos. Groundtruth is hard to obtain [6], so it is typically
benchmarked on synthetic scenes [6, 14, 40, 59], though
limited real data exists through depth scanners [15].
Keypoint Correspondence methods aim at sparse keypoint
matching given image pairs, from hand-defined discrimi-
native feature descriptors [3, 34, 35, 54] to deep learning
based methods [11, 27, 37, 43]. Though it operates on im-
age pairs, it is arguably “long term” as the images may be
taken at different times from wide baselines. The goal, how-
ever, is typically not to track any point, but to find easily-
trackable “keypoints” sufficient for reconstruction. They
are mainly used in structure-from-motion (SfM) settings
and typically ignore occlusion, as SfM can use geometry
to filter errors [20, 52, 65, 66]. This line of work is thus
often restricted to rigid scenes [39, 75], and is benchmarked
accordingly [1, 10, 29, 30, 53, 76].
Semantic Keypoint Tracking is often represented as key-
points or landmarks [26, 45, 56, 61, 64, 70]. Land-
marks are often “joints”, which can have vastly differ-
ent appearance depending on pose (i.e. viewed from the
front or back); thus most methods rely on large supervised
datasets [2, 9, 48, 55, 72, 77], although some works track
surface meshes [18, 67]. One interesting exception uses
sim2real based on motion [13], motivating better surface
tracking. Finally, some recent methods discover keypoints
on moving objects [24, 25, 63, 74], though these typically
require in-domain training on large datasets.
Long-term physical point tracking is addressed in a
few early works [33, 49, 51, 57, 68], though such hand-
engineered methods have fallen out of favor in the deep
learning era. Our work instead builds on two recent
works, TAP-Net [12] and Persistent Independent Particles
(PIPs) [19], which aim to update these prior works to the
deep learning era.

10062



feature maps

depthwise
conv

updated
(x, y) + occlusion + uncertainty

video frames

query point

co
st

 v
ol

um
e

initial (x,y), occlusion, uncertainty

lo
ca

l f
ea

tu
re

s

score maps

feature maps

re
fin

em
en

t i
te

ra
tio

ns

x12

x4

Figure 2. TAPIR architecture summary. Our model begins with
a global comparison between the query point features and the
features for every other frame to compute an initial track esti-
mate, including an uncertainty estimate. Then, we extract features
from a local neighborhood (shown in pink) around the initial es-
timate, and compare these to the query feature at a higher resolu-
tion, post-processing the similarities with a temporal depthwise-
convolutional network to get an updated position estimate. This
updated position is fed back into the next iteration of refinement,
repeated for a fixed number of iterations. Note that for simplicity,
multi-scale pyramids are not shown.

3. TAPIR Model

Given a video and a query point, our goal is to estimate
the 2D location pt that it corresponds to in every other frame
t, as well as a 1D probability ot that the point is occluded
and a 1D probability ut on the uncertainty of the estimated
location. To be robust to occlusion, we first match candidate
locations in other frames, by comparing the query features
with all other features, and post-processing the similarities
to arrive at an initial estimate. Then we refine the estimate,
based on the local similarities between the query point and
the target point. Note that both stages depend mostly on
similarities (dot products) between the query point features
and features elsewhere (i.e. not on the feature alone); this
ensures that we don’t overfit to specific features that might
only appear in the (synthetic) training data.

Fig. 2 gives an overview of our model. We initialize an
estimate of the track by finding the best match within each

TAP-Net [12] PIPs [19] TAPIR

Per-frame Initialization ✓ ✗ ✓
Fully Convolutional In Time ✓ ✗ ✓
Temporal Refinement ✗ ✓ ✓
Multi Scale Feature ✗ ✓ ✓
Stride-4 Feature ✗ test-time only ✓
Parallel Inference ✓ ✗ ✓
Uncertainty Estimate ✗ ✗ ✓
Number of Parameters 2.8M 28.7M 29.3M

Table 1. Overview of models. TAPIR combines the merits from
both TAP-Net and PIPs and further adds a handful of crucial com-
ponents to improve performance.

frame independently, ignoring the temporal nature of the
video. This involves a cost volume: for each frame t, we
compute the dot product between the query feature Fq and
all features in the t’th frame. We post-process the cost vol-
ume with a ConvNet, which produces a spatial heatmap,
which is then summarized to a point estimate, in a man-
ner broadly similar to TAP-Net. Given the initialization, we
then compare the query feature to all features in a small re-
gion around an initial track. We feed the comparisons into a
neural network, which updates both the query features and
the track. We iteratively apply multiple such updates to ar-
rive at a final trajectory estimate. TAPIR accomplishes this
with a fully-convolutional architecture, operating on a pyra-
mid of both high-dimensional, low-resolution features and
low-dimensional, high-resolution features, in order to max-
imize efficiency on modern hardware. Finally, we add an
estimate of uncertainty with respect to position throughout
the architecture in order to suppress low-accuracy predic-
tions. The rest of this section describes TAPIR in detail.

3.1. Track Initialization

The initial cost volume is computed using a relatively
coarse feature map F ∈ RT×H/8×W/8×C , where T is the
number of frames, H and W are the image height and
width, and C is the number of channels, computed with a
standard TSM-ResNet-18 [31] backbone. Features for the
query point Fq are extracted via bilinear interpolation at the
query location, and we perform a dot product between this
query feature and all other features in the video.

We compute an initial estimate of the position p0t =
(x0

t , y
0
t ) and occlusion o0t by applying a small ConvNet to

the cost volume corresponding to frame t (which is of shape
H/8×W/8×1 per query). This ConvNet has two outputs: a
heatmap of shape H/8×W/8×1 for predicting the position,
and a single scalar logit for the occlusion estimate, obtained
via average pooling followed by projection. The heatmap is
converted to a position estimate by a “spatial soft argmax”,
i.e., a softmax across space (to make the heatmap positive
and sum to 1). Afterwards, all heatmap values which are
too far from the argmax position in this heatmap are set to
zero. Then, the positions for each cell of the heatmap are
averaged spatially, weighted by the thresholded heatmap

10063



magnitudes. Thus, the output is typically a location close
to the heatmap’s maximum; the “soft argmax” is differen-
tiable, but the thresholding suppresses spurious matches,
and prevents the network from “averaging” between mul-
tiple matches. This can serve as a good initialization, al-
though the model struggles to localize points to less than a
few pixels’ accuracy on the original resolution due to the
8-pixel stride of the heatmap.

Position Uncertainty Estimates. A drawback of predict-
ing occlusion and position independently from the cost vol-
ume (a choice that is inspired by TAP-Net) is that if a point
is visible in the ground truth, it’s worse if the algorithm pre-
dicts a vastly incorrect location than if it simply incorrectly
marks the point as occluded. After all, downstream applica-
tions may want to use the track to understand object motion;
such downstream pipelines must be robust to occlusion, but
may assume that the tracks are otherwise correct. The Av-
erage Jaccard metric reflects this: predictions in the wrong
location are counted as both a “false positive” and a “false
negative.” This kind of error tends to happen when the algo-
rithm is uncertain about the position, e.g., if there are many
potential matches. Therefore, we find it’s beneficial for the
algorithm to also estimate its own certainty regarding po-
sition. We quantify this by making the occlusion pathway
output a second logit, estimating the probability u0

t that the
prediction is likely to be far enough from the ground truth
that it isn’t useful, even if the model predicts that it’s visi-
ble. We define “useful” as whether the prediction is within
a threshold δ of the ground truth.

Therefore, our loss for the initialization for a given video
frame t is L(p0t , o0t , u0

t ), where L is defined as:

L(pt, ot, ut) = Huber(p̂t, pt) ∗ (1− ôt)

+ BCE(ôt, ot)
+ BCE(ût, ut) ∗ (1− ôt)

where, ût =

{
1 if d(p̂t, pt) > δ
0 otherwise

(1)

Here, ôt ∈ {0, 1} and p̂ ∈ R2 are the ground truth oc-
clusion and point locations respectively, d is Euclidean dis-
tance, δ is the distance threshold, Huber is a Huber loss, and
BCE is binary cross entropy (both ot and ut have sigmoids
applied to convert them to probabilities). ût, the target for
the uncertainty estimate ut, is computed from the ground
truth position and the network’s prediction: it’s 0 if the
model’s position prediction is close enough to the ground
truth (within the threshold δ), and 1 otherwise. At test time,
the algorithm should output that the point is visible if it’s
both predicted as unoccluded and if the model is confident
in the prediction. We therefore do a soft combination of

the two probabilities: the algorithm outputs that the point is
visible if (1− ut) ∗ (1− ot) > 0.5.

3.2. Iterative Refinement

Given an estimated position, occlusion, and uncertainty
for each frame, the goal of each iteration i of our refinement
procedure is to compute an update (∆pit,∆oit,∆ui

t), which
adjusts the estimate to be closer to the ground truth, inte-
grating information across time. The update is based on a
set of “local score maps” which capture the query point sim-
ilarity (i.e. dot products) to the features in the neighborhood
of the trajectory. These are computed on a pyramid of dif-
ferent resolutions, so for a given trajectory, they have shape
(H ′ ×W ′ × L), where H ′ = W ′ = 7, the size of the local
neighborhood, and L is the number of levels of the spatial
pyramid (different pyramid levels are computed by spatially
pooling the feature volume F ). As with the initialization,
this set of similarities is post-processed with a network to
predict the refined position, occlusion, and uncertainty esti-
mate. Unlike the initialization, however, we include “local
score maps” for many frames simultaneously as input to the
post-processing. We include the current position estimate,
the raw query features, and the (flattened) local score maps
into a tensor of shape T × (C + K + 4), where C is the
number of channels in the query feature, K = H ′ ·W ′ · L
is the number of values in the flattened local score map, and
4 extra dimensions for position, occlusion, and uncertainty.
The output of this network at the i’th iteration is a residual
(∆pit,∆oit,∆ui

t,∆Fq,t,i), which is added to the position,
occlusion, uncertainty estimate, and the query feature, re-
spectively. ∆Fq,t,i is of shape T ×C; thus, after the first it-
eration, slightly different “query features” are used on each
frame when computing new local score maps.

These positions and score maps are fed into a
12-block convolutional network to compute an update
(∆pit,∆oit,∆ui

t,∆Fq,t,i), where each block consists of a
1×1 convolution block and a depthwise convolution block.
This architecture is inspired by the MLP-Mixer used for re-
finement in PIPs: we directly translate the Mixer’s cross-
channel layers into 1×1 convolutions with the same number
of channels, and the within-channel operations become sim-
ilarly within-channel depthwise convolutions. Unlike PIPs,
which breaks sequences into 8-frame chunks before running
the MLP-Mixer, this convolutional architecture can be run
on sequences of any length.

We found that the feature maps used for computing the
“score maps” are important for achieving high precision.
The pyramid levels l = 1 through L − 1 are computed by
spatially average-pooling the raw TSM-ResNet features F
at a stride of 8 · 2l−1, and then computing all dot products
between the query feature Fq and the pyramid features. For
the t’th frame, we extract a 7 × 7 patch of dot products
centered at pt. At training time, PIPs leaves it here, but at

10064



test time alters the backbone to run at stride 4, introduc-
ing a train/test domain gap. We find it is effective to train
on stride 4 as well, although this puts pressure on system
memory. To alleviate this, we compute a 0-th score map on
the 64-channel, stride-4 input convolution map of the TSM-
ResNet, and extract a comparable feature for the query from
this feature map via bilinear interpolation. Thus, the final
set of local score maps has shape (7 · 7 · L).

After (∆pit,∆oit,∆ui
t,∆Fq,t,i) is obtained from the

above architecture, we can iterate the refinement step as
many times as desired, re-using the same network parame-
ters. At each iteration, we use the same loss L on the output,
weighting each iteration the same as the initialization.
Discussion As there is some overlap with prior work, Fig-
ure 3 depicts the relationship between TAPIR and other
architectures. For the sake of ablations, we also develop
a “simple combination” model, which is intended to be a
simpler combination of a TAP-Net-style initialization with
PIPs-style refinements, and follows prior architectural deci-
sions regardless of whether they are optimal. To summarize,
the major architectural decisions needed to create the “sim-
ple combination” of TAP-Net and PIPs (and therefore the
contributions of this model) are as follows. First we exploit
the complementarity between TAP-Net and PIPs. Second,
we remove “chaining” from PIPs, replacing that initializa-
tion with TAP-Net’s initialization. We directly apply PIPs’
MLP-Mixer architecture by ‘chunking’ the input sequence.
Note that we adopt TAP-Net’s feature network for both ini-
tialization and refinement. Finally, we adapt the TAP-Net
backbone to extract a multi-scale and high resolution pyra-
mid (follow PIPs stride-4 test-time architecture, but match-
ing TAP-Net’s end-to-end training). We apply losses at all
layers of the hierarchy (whereas TAP-Net has a single loss,
PIPs has no loss on its initialization). The additional contri-
butions of TAPIR are as follows: first, we entirely replace
the PIPs MLP-Mixer (which must be applied to fixed-length
sequences) with a novel depthwise-convolutional architec-
ture, which has a similar number of parameters but works
on sequences of any length. Second, we introduce uncer-
tainty estimate, which are computed at every level of the
hierarchy. These are ‘self-supervised’ in the sense that the
targets depend on the model’s own output.

3.3. Training Dataset

Although TAPIR is designed to be robust to the sim2real
gap, we can improve performance by minimizing the gap
itself. One subtle difference between the Kubric MOVi-
E [16] dataset and the real world is the lack of panning:
although the Kubric camera moves, it is always set to “look
at” a single point at the center of the workspace. Thus, sta-
tionary parts of the scene rotate around the center point of
the workspace on the 2D image plane. Models thus tend to
fail on real-world videos with panning. Therefore, we mod-

ified the MOVi-E dataset so that the “look at” point moves
along a random linear trajectory. The start and end points of
this trajectory are enforced to be less than 1.5 units off the
ground and lie within a radius of 4 units from the workspace
center; the trajectory must also pass within 1 unit of the
workspace center at some point, to ensure that the camera
is usually looking toward the objects in the scene. See Ap-
pendix 5.2 for details.

4. Experiments

We evaluate on the TAP-Vid [12] benchmark, a recent
large-scale benchmark evaluating the problem of interest.
TAP-Vid consists of point track annotations on four differ-
ent datasets, each with different challenges. DAVIS [44] is
a benchmark designed for tracking, and includes complex
motion and large changes in object scale. Kinetics [8] con-
tains over 1000 labeled videos, and contains all the com-
plexities of YouTube videos, including difficulties like cuts
and camera shake. RGB Stacking is a synthetic dataset of
robotics videos with precise point tracks on large texture-
less regions. Kubric MOVi-E, used for training, contains
realistic renderings of objects falling onto a flat surface; it
comes with a validation set that we use for comparisons.
We conduct training exclusively on the Kubric dataset, and
selected our best model primarily by observing DAVIS. We
performed no automated evaluation for hyperparameter tun-
ing or model selection on any dataset. We train and evaluate
at a resolution of 256× 256.

Implementation Details We train for 50,000 steps with a
cosine learning rate schedule, with a peak rate of 1× 10−3

and 1,000 warmup steps. We use 64 TPU-v3 cores, using 4
24-frame videos per core in each step. We use an Adam-W
optimizer with β1 = 0.9 and β2 = 0.95 and weight decay
1×10−2. For most experiments, we use cross-replica batch
normalization within the (TSM-)ResNet backbone only, al-
though for our public model we find instance normalization
is actually more effective. For most experiments we use
L = 5 to match PIPs, but in practice we find L > 3 has
little impact (See Appendix 4.3). Therefore, to save com-
putation, our public model uses L = 3. See Appendix 5.1
for more details.

4.1. Quantitative Comparison

Table 2 shows the performance of TAPIR relative to prior
works. TAPIR improves by 10.6% absolute performance
over the best model on Kinetics (TAP-Net) and by 19.3%
on DAVIS (PIPs). These improvements are quite significant
according to the TAP-Vid metrics: Average Jaccard con-
sists of 5 thresholds, so under perfect occlusion estimation,
a 20% improvement requires improving all points to the
next distance threshold (half the distance). It’s worth noting

10065



video frames

feature maps

cost
volume

(x, y)
+

occlusion

query point

frame chunks

query point

updated (x,y) + occlusion

M
L

P 
m

ix
er

TAP-Net

PIPs

depthwise
conv

TAPIR 

constant init

updated (x, y) + occlusion + uncertainty

M
L

P 
m

ix
er

TAP-Net
 init

updated (x,y) + occlusion

video frames

feature maps

query point

(x, y)
+

occlusion
co

st
 v

ol
um

e

video frames

feature maps

query point

(x, y) + occlusion + 
uncertainty

co
st

 v
ol

um
e

TAP-Net
 init

TAP-Net
 init

TAP-Net
 init

TAP-Net + PIPs
refinement iterations refinement iterations refinement iterations

Figure 3. Comparison of Architectures. Left: the initial TAP-Net and PIPs models: TAP-Net has an independent estimate per frame,
whereas PIPs breaks the video into fixed-size chunks and processes chunks sequentially. Middle: a “simple combination” of these two
architectures, where TAP-Net is used to initialize PIPs-style chunked iterations. Right: Our model, TAPIR, which removes the chunking
and adds uncertainty estimate. Note that for simplicity, multi-scale pyramids are not shown.

Kinetics Kubric DAVIS RGB-Stacking
Method AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA

COTR [27] 19.0 38.8 57.4 40.1 60.7 78.55 35.4 51.3 80.2 6.8 13.5 79.1
Kubric-VFS-Like [16] 40.5 59.0 80.0 51.9 69.8 84.6 33.1 48.5 79.4 57.9 72.6 91.9
RAFT [62] 34.5 52.5 79.7 41.2 58.2 86.4 30.0 46.3 79.6 44.0 58.6 90.4
PIPs [19] 35.3 54.8 77.4 59.1 74.8 88.6 42.0 59.4 82.1 37.3 51.0 91.6
TAP-Net [12] 46.6 60.9 85.0 65.4 77.7 93.0 38.4 53.1 82.3 59.9 72.8 90.4

TAPIR (MOVi-E) 57.1 70.0 87.6 84.3 91.8 95.8 59.8 72.3 87.6 66.2 77.4 93.3
TAPIR (Panning MOVi-E) 57.2 70.1 87.8 84.7 92.1 95.8 61.3 73.6 88.8 62.7 74.6 91.6

Table 2. Comparison of TAPIR to prior results on TAP-Vid. < δxavg is the fraction of points unoccluded in the ground truth, where the
prediction is within a threshold, ignoring the occlusion estimate; OA is the accuracy of predicting occlusion. AJ is Average Jaccard, which
considers both position and occlusion accuracy.

that, like PIPs, TAPIR’s performance on DAVIS is slightly
higher than on Kinetics, whereas for TAP-Net, Kinetics has
higher performance, suggesting that TAPIR’s reliance on
temporal continuity isn’t as useful on Kinetics videos with
cuts or camera shake. Note that the bulk of the improve-
ment comes from the improved model rather than the im-
proved dataset (TAPIR (MOVi-E) is trained on the same
data as TAP-Net, while ‘Panning’ is the new dataset). The
dataset’s contribution is small, mostly improving DAVIS,
but we found qualitatively that it makes the most substan-
tial difference on backgrounds when cameras pan. This is
not well represented in TAP-Vid’s query points, but may
matter for real-world applications like stabilization. RGB-
stacking, however, is somewhat of an outlier: training on
MOVi-E is still optimal (unsurprising as the cameras are

static), and there the improvement is only 6.3%, possibly
because TAPIR does less to help with textureless objects,
indicating an area for future research. Fig. 4 shows some
example predictions on DAVIS. TAPIR corrects many types
of errors, including problems with temporal coherence from
TAP-Net and problems with occlusion from PIPs. We in-
clude further qualitative results on our project webpage,
which illustrate how noticeable a 20% improvement is.

TAP-Vid proposes another evaluation for videos at the
resolution of 256 × 256 called ‘query-first.’ In the typical
case (Table 2), the query points are sampled in a ‘strided’
fashion from the ground-truth tracks: the same trajectory
is therefore queried with multiple query points, once ev-
ery 5 frames. In the ‘query first’ evaluation, only the first
point along each trajectory is used as a query. These points

10066



Kinetics DAVIS RGB-Stacking
Method AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA

TAP-Net 38.5 54.4 80.6 33.0 48.6 78.8 53.5 68.1 86.3
TAP-Net (Panning MOVi-E) 39.5 56.2 81.4 36.0 52.9 80.1 50.1 65.7 88.3
TAPIR (MOVi-E) 49.6 64.2 85.2 55.3 69.4 84.4 56.2 70.0 89.3
TAPIR (Panning MOVi-E) 49.6 64.2 85.0 56.2 70.0 86.5 55.5 69.7 88.0

Table 3. Comparison under query first metrics. We see largely
the same relative performance trend whether the model is queried
in a ‘strided’ fashion or whether the model is queried with the first
frame where the point appeared, although performance is overall
lower than the ‘strided’ evaluation.

are slightly harder to track than those in the middle of the
video, because there are more intervening frames wherein
the point’s appearance may change. Table 3 shows our re-
sults on this approach. We see that the performance broadly
follows the results from the ‘strided’ evaluation: we outper-
form TAP-Net by a wide margin on real data (10% absolute
on Kinetics, 20% on DAVIS), and by a smaller margin on
RGB-Stacking (3%). This suggests that TAPIR remains ro-
bust even if the output frames are far from the query point.

We also conduct a comparison of computational time for
model inference on the DAVIS video horsejump-high with
a resolution of 256x256. All models are evaluated on a sin-
gle GPU using 5 runs on average. With Just In Time (JIT)
Compilation with JAX, for 50 query points randomly sam-
pled on the first frame, TAP-Net finishes within 0.1 seconds
and TAPIR finishes within 0.3 seconds, i.e., roughly 150
frames per second. This is possible because TAPIR, like
TAP-Net, maps efficiently to GPU parallel processing. In
contrast, PIPs takes 34.5 seconds due to a linear increase
with respect to the number of points and frames processed.
See Appendix 1 for more details.

4.2. Ablation Studies

TAPIR vs Simple Combination We analyze the con-
tributions of the main ideas. Our first contribution is to
combine PIPs and TAP-Net (Fig. 3, center). Comparing
this directly to PIPs is somewhat misleading: running the
open-source ‘chaining’ code on Kinetics requires roughly 1
month on a V100 GPU (roughly 30 minutes to process a 10-
second clip). But how crucial is chaining? After all, PIPs
MLP-mixers have large spatial receptive fields due to their
multi-resolution pyramid. Thus, we trained a naı̈ve version
of PIPs without chaining: it initializes the entire track to
be the query point, and then processes each chunk inde-
pendently. For a fair comparison, we train using the same
dataset and feature extractor, and other hyperparameters as
TAPIR, but retain the 8-frame MLP Mixer with the same
number of iterations as TAPIR. Table 4 shows that this al-
gorithm (Chain-free PIPs) is surprisingly effective, on par
with TAP-Net. Next, we combine the Chain-free PIPs with
TAP-Net, replacing the constant initialization with TAP-
Net’s prediction. The “simple combination” (Fig. 3, center)
alone improves over PIPs, Chain-free PIPs, and TAP-Net
(i.e. 43.3% v.s. 50.0% on DAVIS). However, the other new

Average Jaccard (AJ) Kinetics DAVIS RGB-Stacking Kubric

PIPs [19] 35.3 42.0 37.3 59.1
TAP-Net [12] 48.3 41.1 59.2 65.4
Chain-Free PIPs 47.2 43.3 61.3 75.3
Simple Combination 52.9 50.0 62.7 78.1
TAPIR 57.2 61.3 62.7 84.7

Table 4. PIPs, TAP-Net, and a simple combination vs TAPIR.
We compare TAPIR (Fig. 3 right) to TAP-Net, PIPs (Fig. 3 left),
and the “simple combination” (Fig. 3 center). Chain-Free PIPs
is our reimplementation of PIPs that removes the extremely slow
chaining operation and uses the TAPIR backbone network. All
models in this table are trained on Panning MOVi-E except PIPs,
which uses its own dataset.

Average Jaccard (AJ) Kinetics DAVIS RGB-Stacking Kubric

Full Model 57.2 61.3 62.7 84.7
- No Depthwise Conv 54.9 53.8 61.9 79.7
- No Uncertainty Estimate 54.4 58.6 61.5 83.4
- No Higher Res Feature 54.0 54.0 59.5 80.4
- No TAP-Net Initialization 54.7 59.3 60.3 84.1
- No Iterative Refinement 48.1 41.6 60.3 64.9

Table 5. Model ablation by removing one major component at a
time. -No Depthwise Conv uses a MLP-Mixer on a chunked video
similar to PIPs. -No Uncertainty Estimate uses the losses directly
as described in TAP-Net. -No Higher Res Feature uses only 4
pyramid levels in iterative refinement and has no features at stride
4. -No TAP-Net Initialization uses a constant initialization for it-
erative refinement. All the components contribute non-trivially to
the performance of the model.

ideas in TAPIR also account for a substantial portion of the
performance (i.e. 50.0% v.s. 61.3% on DAVIS).

Model Components Table 5 shows the effect of our ar-
chitectural decisions. First, we consider two novel architec-
tural elements: the depthwise convolution which eliminates
chunking from the PIPs model, and the uncertainty esti-
mate. We see for Kinetics, both methods contribute roughly
equally to performance, while for DAVIS, the depthwise
conv is more important. A possible interpretation is that
DAVIS contains more temporal continuity than Kinetics, so
chunking is more harmful. Higher-resolution features are
also predictably important to performance, especially on
DAVIS. Table 5 also considers a few other model compo-
nents that are not unique to TAPIR. TAP-Net initialization is
important, but the model still gives reasonable performance
without it. Interestingly, the full model without refinement
(i.e. TAP-Net trained on Panning MOVi-E with the uncer-
tainty estimate) performs similarly to TAP-Net trained on
Panning MOVi-E (Table 4, second line); one possible inter-
pretation is that TAP-Net is overfitting to its training data,
leading to biased uncertainty estimate.

Iterations of Refinement Finally, Table 6 shows how per-
formance depends on the number of refinement iterations.
We use the same number of iterations during training and

10067



TAPIR

TAPNet

PIPs

Query points

Figure 4. TAPIR compared to TAP-Net and PIPs. Top shows the query points on the video’s first frame. Predictions for two later frames
are below. We show predictions (filled circles) relative to ground truth (GT) (ends of the associated segments). x’s indicate predictions
where the GT is occluded, while empty circles are points visible in GT but predicted occluded (note: models still predict position regardless
of occlusion). The majority of the street scene (left) gets occluded by a pedestrian; as a result, PIPs loses many points. TAP-Net fails on
the right video, possibly because the textureless clothing is difficult to match without relying on temporal continuity. TAPIR, meanwhile,
has far fewer failures.

Average Jaccard (AJ) Kinetics DAVIS RGB-Stacking Kubric

0 iterations 48.1 41.6 60.3 64.9
1 iteration 55.7 55.0 62.7 80.1
2 iterations 56.7 58.8 62.0 83.1
3 iterations 56.8 60.6 60.9 84.1
4 iterations 57.2 61.3 62.7 84.7
5 iterations 57.8 61.6 61.5 84.3
6 iterations 57.2 60.4 56.6 82.9

Table 6. Evaluation performance against the number of itera-
tive updates. It can be observed that after 4 iterations, the perfor-
mance no longer improves significantly. This could be attributed
to the fact that TAP-Net already provides a good initialization.

testing for all models. Interestingly, we observed the best
performance for TAPIR at 4-5 iterations, whereas PIPs used
6 iterations. Likely a stronger initialization (i.e., TAP-Net)
requires fewer iterations to converge. The decrease in per-
formance with more iterations implies that there may be
some degenerate behavior, such as oversmoothing, which
may be a topic for future research. In this paper, we use 4
iterations for all other experiments.

Further model ablations, including experiments with
RNNs and dense convolutions as replacements for our
depthwise architecture, the number of feature pyramid lay-
ers, and the importance of time-shifting in the features, can

be found in Appendix 4. Depthwise convolutions work as
well or better than the alternatives while being less expen-
sive. We find little impact of adding more feature pyramid
layers as PIPs does, so we remove them from TAPIR. Fi-
nally, we find the impact of time-shifting to be minor.

5. Animating still images with TAPIR

Generative modeling of images and videos has expe-
rienced an explosion in popularity due to recent striking
text-conditioned generation results using diffusion mod-
els [17, 21, 42, 46, 50]. Animating still images remains
extremely challenging, due to the high computational cost
of video modeling and the difficulty of generating realistic
motion. Is it possible to improve the generated videos via
an explicit representation of surface motion? Here, we de-
velop a proof-of-concept for a diffusion-based system that
uses TAPIR tracks to do this.

We perform video prediction using a pair of diffusion
models: one which generates dense trajectories given an
input image (the “trajectory” model), and a second which
takes the input image and the trajectories and generates pix-
els (the “pixel” model). At test time, the outputs from the

10068



trajectory model dictate the motion that should be present in
the video, ideally ensuring physical plausibility. The pixel
model uses the trajectories to attend to the appropriate loca-
tion in the first frame, in order to produce appearance which
is consistent across the video.

For the trajectory model, we encode the conditioning im-
age with a small ConvNet, which produces a dense grid of
features at stride 4. This is used as conditioning for a U-
Net that performs diffusion denoising on the trajectories.
We find that encoding the trajectories is important: for each
frame, we include the raw x and y positions, both in ab-
solute coordinates and coordinates relative to the starting
position, and we also include a position encoding of the ab-
solute locations with 32 Fourier features. The U-Net ar-
chitecture includes self-attention layers, so the Fourier fea-
tures allow the model to measure whether trajectories are
spatially nearby late in an animation. For simplicity and
memory efficiency, we stack these values for all frames
along the channel axis: thus, the input is a 2D grid of shape
H//4×W//4× (T · (1+2+2+32)), (occlusion, relative
position, absolute position, fourier encoding), which is pro-
cessed with a 2D U-Net. The model predicts the clean data
given the noisy data, which is the typical “clean data predic-
tion” diffusion setup. The pixel model is a more traditional
image generation model, which predicts the noise residual
given noisy pixels. It takes three inputs, and outputs a sin-
gle denoised frame. The first input is 3 noisy frames, allow-
ing the model to infer some temporal context. The second
is the first frame, warped according to the trajectories from
the trajectory model. The third is features for the first frame,
computed by a standard ConvNet before, being warped ac-
cording to the same trajectories. We train on an internal
dataset of 1M video clips, processed into 24-frame clips at
256× 256 resolution. See supplementary for more details.

Fig. 5 shows the trajectories produced by our trajectory
prediction model on selected images. Our model can make
multiple different physically-plausible predictions for mo-
tion for each input image, suggesting that it can recognize
people and do rudimentary human pose estimation with-
out supervision. Note that this demonstrates two levels of
transfer: TAPIR was never trained on humans, while the
trajectory-prediction model was trained on video rather than
still images like these. It is difficult to judge these motions
from a static figure, so we encourage the reader to view
videos generated with our pipeline in the supplementary.

6. Conclusion
In this paper, we introduce TAPIR, a novel model for

Tracking Any Point (TAP) that adopts a two-stage ap-
proach, comprising a matching stage and a refinement stage.
It demonstrates a substantial improvement over the state-
of-the-art, providing stable predictions and occlusion ro-
bustness, and scales to high-resolution videos. We also

Figure 5. Animating still frames. Top row shows the input im-
ages. Each following row shows a visualization of a single sample
from our trajectory model: the dark purple end is the starting point
of the trajectory, while the colors get brighter and yellower with
distance. In the left image, one sample shows the hand moving
forward in a cutting motion, with a slight incline of the head; in
the other, the entire person moves to the left. On the right, the
first sample moves one arm in a circle, while the second shows the
head turning and the other arm being raised.

show a proof-of-concept of animating still frames, which
we hope can serve as a foundation for future graphics re-
search. TAPIR still has some limitations, such as difficulty
in precisely perceiving the boundary between background
and foreground, and it may still struggle with large appear-
ance changes. Nevertheless, our findings indicate a promis-
ing future for TAP in computer vision.

Acknowledgements We would like to thank Lucas
Smaira and Larisa Markeeva for help with datasets and
codebases, and Jon Scholz and Todor Davchev for advice
on the needs of robotics. We also thank Adam Harley, Vior-
ica Patraucean and Daniel Zoran for helpful discussions,
and Mateusz Malinowski for paper comments. Finally, we
thank Nando de Freitas for his support.

10069



References
[1] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krys-

tian Mikolajczyk. Hpatches: A benchmark and evaluation of
handcrafted and learned local descriptors. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 5173–5182, 2017.

[2] Marian Stewart Bartlett, Gwen Littlewort, Mark G Frank,
Claudia Lainscsek, Ian R Fasel, Javier R Movellan, et al.
Automatic recognition of facial actions in spontaneous ex-
pressions. J. Multim., 1(6):22–35, 2006.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf:
Speeded up robust features. In Proceedings of European
Conference on Computer Vision (ECCV), pages 404–417.
Springer, 2006.

[4] Thomas Brox, Christoph Bregler, and Jitendra Malik. Large
displacement optical flow. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 41–48. IEEE, 2009.

[5] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim
Weickert. High accuracy optical flow estimation based on a
theory for warping. In Proceedings of European Conference
on Computer Vision (ECCV), pages 25–36. Springer, 2004.

[6] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and
Michael J Black. A naturalistic open source movie for optical
flow evaluation. In Proceedings of European Conference on
Computer Vision (ECCV), pages 611–625. Springer, 2012.

[7] Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and Ji-
tendra Malik. Human pose estimation with iterative error
feedback. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4733–4742,
2016.

[8] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In Pro-
ceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 6299–6308, 2017.

[9] Zezhou Cheng, Jong-Chyi Su, and Subhransu Maji. On
equivariant and invariant learning of object landmark repre-
sentations. In Proceedings of IEEE International Conference
on Computer Vision (ICCV), pages 9897–9906, 2021.

[10] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5828–5839, 2017.

[11] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detec-
tion and description. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 224–236, 2018.

[12] Carl Doersch, Ankush Gupta, Larisa Markeeva, Adrià Re-
casens, Lucas Smaira, Yusuf Aytar, João Carreira, Andrew
Zisserman, and Yi Yang. Tap-vid: A benchmark for track-
ing any point in a video. Proceedings of Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

[13] Carl Doersch and Andrew Zisserman. Sim2real transfer
learning for 3d human pose estimation: motion to the res-
cue. Proceedings of Neural Information Processing Systems
(NeurIPS), 32, 2019.

[14] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Pro-
ceedings of IEEE International Conference on Computer Vi-
sion (ICCV), pages 2758–2766, 2015.

[15] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3354–3361.
IEEE, 2012.

[16] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapra-
gasam, Florian Golemo, Charles Herrmann, Thomas Kipf,
Abhijit Kundu, Dmitry Lagun, Issam Laradji, Hsueh-
Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Rad-
wan, Daniel Rebain, Sara Sabour, Mehdi S. M. Sajjadi,
Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun,
Suhani Vora, Ziyu Wang, Tianhao Wu, Kwang Moo Yi,
Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: a scal-
able dataset generator. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

[17] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo
Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vec-
tor quantized diffusion model for text-to-image synthesis. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10696–10706, 2022.

[18] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos.
Densepose: Dense human pose estimation in the wild. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7297–7306, 2018.

[19] Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki.
Particle video revisited: Tracking through occlusions using
point trajectories. In Proceedings of European Conference
on Computer Vision (ECCV), pages 59–75. Springer, 2022.

[20] Richard Hartley and Andrew Zisserman. Multiple view ge-
ometry in computer vision. Cambridge university press,
2003.

[21] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. arXiv:2204.03458, 2022.

[22] Berthold KP Horn and Brian G Schunck. Determining opti-
cal flow. Artificial Intelligence, 17(1-3):185–203, 1981.

[23] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-
tion of optical flow estimation with deep networks. In Pro-
ceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2462–2470, 2017.

[24] Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea
Vedaldi. Unsupervised learning of object landmarks through
conditional image generation. Proceedings of Neural Infor-
mation Processing Systems (NeurIPS), 31, 2018.

[25] Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea
Vedaldi. Self-supervised learning of interpretable keypoints
from unlabelled videos. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
8787–8797, 2020.

[26] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia

10070



Schmid, and Michael J Black. Towards understanding action
recognition. In Proceedings of IEEE International Confer-
ence on Computer Vision (ICCV), pages 3192–3199, 2013.

[27] Wei Jiang, Eduard Trulls, Jan Hosang, Andrea Tagliasacchi,
and Kwang Moo Yi. Cotr: Correspondence transformer for
matching across images. In Proceedings of IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 6207–
6217, 2021.

[28] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B
Choy, Philip HS Torr, and Manmohan Chandraker. Desire:
Distant future prediction in dynamic scenes with interacting
agents. In Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 336–345, 2017.

[29] Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker,
Noah Snavely, Ce Liu, and William T Freeman. Learning
the depths of moving people by watching frozen people. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4521–4530, 2019.

[30] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2041–2050, 2018.

[31] Ji Lin, Chuang Gan, Kuan Wang, and Song Han. Tsm:
Temporal shift module for efficient and scalable video un-
derstanding on edge devices. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

[32] Lahav Lipson, Zachary Teed, Ankit Goyal, and Jia Deng.
Coupled iterative refinement for 6d multi-object pose esti-
mation. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6728–6737,
2022.

[33] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense
correspondence across scenes and its applications. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
33(5):978–994, 2010.

[34] David G Lowe. Object recognition from local scale-invariant
features. In Proceedings of IEEE International Conference
on Computer Vision (ICCV), volume 2, pages 1150–1157.
Ieee, 1999.

[35] David G Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60(2):91–110, 2004.

[36] Bruce D Lucas and Takeo Kanade. An iterative image reg-
istration technique with an application to stereo vision. In
Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), pages 674–679, 1981.

[37] Lucas Manuelli, Yunzhu Li, Pete Florence, and Russ
Tedrake. Keypoints into the future: Self-supervised corre-
spondence in model-based reinforcement learning. arXiv
preprint arXiv:2009.05085, 2020.

[38] Francesco Marchetti, Federico Becattini, Lorenzo Seidenari,
and Alberto Del Bimbo. Mantra: Memory augmented net-
works for multiple trajectory prediction. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 7143–7152, 2020.

[39] David Marr and Tomaso Poggio. A computational theory of
human stereo vision. Proceedings of the Royal Society of
London. Series B. Biological Sciences, 204(1156):301–328,
1979.

[40] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4040–4048, 2016.

[41] Richard A Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J Davison, Pushmeet
Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.
Kinectfusion: Real-time dense surface mapping and track-
ing. In 2011 10th IEEE international symposium on mixed
and augmented reality, pages 127–136. Ieee, 2011.

[42] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021.

[43] Yuki Ono, Eduard Trulls, Pascal Fua, and Kwang Moo Yi.
Lf-net: Learning local features from images. Proceedings of
Neural Information Processing Systems (NeurIPS), 31, 2018.

[44] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017
davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017.

[45] Deva Ramanan, David A Forsyth, and Andrew Zisserman.
Strike a pose: Tracking people by finding stylized poses.
In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume 1, pages 271–278.
IEEE, 2005.

[46] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022.

[47] Anurag Ranjan and Michael J Black. Optical flow estima-
tion using a spatial pyramid network. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 4161–4170, 2017.

[48] Yu Rong, Jingbo Wang, Ziwei Liu, and Chen Change
Loy. Monocular 3d reconstruction of interacting hands
via collision-aware factorized refinements. In 2021 Inter-
national Conference on 3D Vision (3DV), pages 432–441.
IEEE, 2021.

[49] Michael Rubinstein, Ce Liu, and William Freeman. Towards
longer long-range motion trajectories. In Proceedings of
British Machine Vision Conference, 2012.

[50] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022.

[51] Peter Sand and Seth Teller. Particle video: Long-range mo-
tion estimation using point trajectories. International Jour-
nal of Computer Vision, 80(1):72–91, 2008.

[52] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4104–4113, 2016.

[53] Thomas Schops, Johannes L Schonberger, Silvano Galliani,

10071



Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 3260–3269, 2017.

[54] Ishwar K Sethi and Ramesh Jain. Finding trajectories of fea-
ture points in a monocular image sequence. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, (1):56–
73, 1987.

[55] Jie Shen, Stefanos Zafeiriou, Grigoris G Chrysos, Jean Kos-
saifi, Georgios Tzimiropoulos, and Maja Pantic. The first
facial landmark tracking in-the-wild challenge: Benchmark
and results. In Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV) Workshops, pages 50–
58, 2015.

[56] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua
Susskind, Wenda Wang, and Russell Webb. Learning
from simulated and unsupervised images through adversarial
training. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2107–2116,
2017.

[57] Josef Sivic, Frederik Schaffalitzky, and Andrew Zisserman.
Object level grouping for video shots. In Proceedings of Eu-
ropean Conference on Computer Vision (ECCV), 2004.

[58] Yongzhi Su, Mahdi Saleh, Torben Fetzer, Jason Rambach,
Nassir Navab, Benjamin Busam, Didier Stricker, and Fed-
erico Tombari. Zebrapose: Coarse to fine surface encoding
for 6dof object pose estimation. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6738–6748, 2022.

[59] Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun
Jampani, Michael Krainin, Huiwen Chang, Ramin Zabih,
William T Freeman, and Ce Liu. Autoflow: Learning a better
training set for optical flow. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 10093–10102, 2021.

[60] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 8934–
8943, 2018.

[61] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang.
Deep learning face representation by joint identification-
verification. Proceedings of Neural Information Processing
Systems (NeurIPS), 27, 2014.

[62] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In Proceedings of European
Conference on Computer Vision (ECCV), pages 402–419.
Springer, 2020.

[63] James Thewlis, Hakan Bilen, and Andrea Vedaldi. Unsuper-
vised learning of object landmarks by factorized spatial em-
beddings. In Proceedings of IEEE International Conference
on Computer Vision (ICCV), pages 5916–5925, 2017.

[64] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken
Perlin. Real-time continuous pose recovery of human hands
using convolutional networks. ACM Transactions on Graph-
ics (ToG), 33(5):1–10, 2014.

[65] Philip HS Torr and Andrew Zisserman. Feature based meth-
ods for structure and motion estimation. In International

workshop on vision algorithms, pages 278–294. Springer,
1999.

[66] Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia
Schmid, Rahul Sukthankar, and Katerina Fragkiadaki. Sfm-
net: Learning of structure and motion from video. arXiv
preprint arXiv:1704.07804, 2017.

[67] Timo von Marcard, Roberto Henschel, Michael J Black,
Bodo Rosenhahn, and Gerard Pons-Moll. Recovering ac-
curate 3d human pose in the wild using imus and a moving
camera. In Proceedings of European Conference on Com-
puter Vision (ECCV), pages 601–617, 2018.

[68] Heng Wang and Cordelia Schmid. Action recognition with
improved trajectories. In Proceedings of IEEE International
Conference on Computer Vision (ICCV), pages 3551–3558,
2013.

[69] Yue Wang and Justin M Solomon. Prnet: Self-supervised
learning for partial-to-partial registration. Proceedings of
Neural Information Processing Systems (NeurIPS), 32, 2019.

[70] Xuehan Xiong and Fernando De la Torre. Supervised descent
method and its applications to face alignment. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 532–539, 2013.

[71] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and
Dacheng Tao. Gmflow: Learning optical flow via global
matching. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8121–8130,
2022.

[72] Jiarui Xu and Xiaolong Wang. Rethinking self-supervised
correspondence learning: A video frame-level similarity per-
spective. In Proceedings of IEEE International Conference
on Computer Vision (ICCV), pages 10075–10085, 2021.

[73] Zhichao Yin, Trevor Darrell, and Fisher Yu. Hierarchical
discrete distribution decomposition for match density esti-
mation. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6044–6053,
2019.

[74] Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan
He, and Honglak Lee. Unsupervised discovery of object
landmarks as structural representations. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2694–2703, 2018.

[75] Zhengyou Zhang. A flexible new technique for camera cali-
bration. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(11):1330–1334, 2000.

[76] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning
view synthesis using multiplane images. arXiv preprint
arXiv:1805.09817, 2018.

[77] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan
Russell, Max Argus, and Thomas Brox. Freihand: A dataset
for markerless capture of hand pose and shape from single
rgb images. In Proceedings of IEEE International Confer-
ence on Computer Vision (ICCV), 2019.

[78] Michael Zollhöfer, Matthias Nießner, Shahram Izadi,
Christoph Rehmann, Christopher Zach, Matthew Fisher,
Chenglei Wu, Andrew Fitzgibbon, Charles Loop, Christian
Theobalt, et al. Real-time non-rigid reconstruction using
an rgb-d camera. ACM Transactions on Graphics (ToG),
33(4):1–12, 2014.

10072


