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Figure 1: Sampled 3D Human Appearance and Shape. Our generative model is learned from an unstructured 2D image

collection, yet synthesizes novel 3D humans with high-quality appearance and geometry, different identities and clothing

styles including loose clothing such as dresses and skirts. Moreover, our generated 3D humans can be easily animated.

Abstract
While progress in 2D generative models of human ap-

pearance has been rapid, many applications require 3D
avatars that can be animated and rendered. Unfortunately,
most existing methods for learning generative models of
3D humans with diverse shape and appearance require 3D
training data, which is limited and expensive to acquire.
The key to progress is hence to learn generative models
of 3D avatars from abundant unstructured 2D image col-
lections. However, learning realistic and complete 3D ap-
pearance and geometry in this under-constrained setting re-
mains challenging, especially in the presence of loose cloth-
ing such as dresses. In this paper, we propose a new adver-
sarial generative model of realistic 3D people learned from
2D images. Our method captures shape and deformation of
the body and loose clothing by adopting a holistic 3D gener-
ator and integrating an efficient, flexible, articulation mod-
ule. To improve realism, we train our model using multiple
discriminators while also integrating geometric cues in the
form of predicted 2D normal maps. We experimentally find
that our method outperforms previous 3D- and articulation-
aware methods in terms of geometry and appearance. We
validate the effectiveness of our model and the importance
of each component via systematic ablation studies.

*Equal contribution

1. Introduction

Generative models, like GANs [19], can be trained from

large image collections, to produce photo-realistic images

of objects [5, 29–31] and even clothed humans [2, 18, 20,

33, 34, 55]. The output, however, is only a 2D image and

many applications require diverse, high-quality, virtual 3D

avatars, with the ability to control poses and camera view-

points, while ensuring 3D consistency. To enable the gener-

ation of 3D avatars, the research community has been study-

ing generative models that can automatically produce 3D

shapes of humans and/or clothing based on input parame-

ters such as body pose and shape [9, 11, 38, 50]. Despite

rapid progress, most existing methods do not yet consider

texture and require accurate and clean 3D scans of humans

for training, which are expensive to acquire and hence lim-

ited in quantity and diversity. In this paper, we develop a

method that learns a generative model of 3D humans with

texture from only a set of unstructured 2D images of vari-

ous people in different poses wearing diverse clothing; that

is, we learn a generative 3D human model from data that is

ubiquitous on the Internet. See Fig. 1.

Learning to generate 3D shapes and textures of articu-

lated humans from such unstructured image data is a highly

under-constrained problem, as each training instance has a

different shape and appearance and is observed only once

from a particular viewpoint and in a particular pose. Recent

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
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progress in 3D-aware GANs [6, 22, 48] shows impressive

results in learning 3D geometry and appearance of rigid ob-

jects from 2D image collections. However, since humans

are highly articulated and have more degrees of freedom to

model, such methods struggle to generate realistic humans.

By modeling articulation, recent work [4, 47] demonstrates

the feasibility of learning articulated humans from image

collections, allowing the generation of human shapes and

images in desired poses, but only in limited quality and res-

olution. Recently, EVA3D [23] achieves higher resolution

by representing humans as a composition of multiple parts,

each of which is generated by a small network. However,

there is still a noticeable gap between the generated and real

humans in terms of appearance and, in particular, geometry.

Additionally, the compositional design precludes modeling

loose clothing that is not associated with a single body part,

such as dresses shown in Fig. 5c.

In this paper, we contribute a new method for learning

3D human generation from 2D image collections, which

yields state-of-the-art image and geometric quality and nat-

urally models loose clothing. Instead of representing hu-

mans with separate body parts as in EVA3D [23], we adopt

a simple monolithic approach that is able to model the hu-

man body as well as loose clothing, while adding multiple

discriminators that increase the fidelity of perceptually im-

portant regions and improve geometric details.

Holistic 3D Generation and Deformation: To achieve the

goal of high image quality while flexibly handling loose

clothing, we propose a novel generator design. We model

3D humans holistically in a canonical space using a mono-

lithic 3D generator and an efficient tri-plane representa-

tion [6]. To attain high-quality images it is critically im-

portant to enable fast volume rendering. To this end, we

adapt the efficient articulation module, Fast-SNARF [8], to

our generative setting and further accelerate rendering via

empty-space skipping, informed by a coarse human body

prior. Our articulation module is more flexible than prior

methods that base deformations of the clothed body on

SMPL [38], enabling it to faithfully model deformations for

points that are far away from the body.

Modular 2D Discriminators: We further propose multiple

discriminators to improve geometric detail as well as the

perceptually-important face region as we found that a single

adversarial loss on rendered images is insufficient to recover

meaningful 3D geometry in such a highly under-constrained

setting. Motivated by the recent success of methods [25, 69]

that exploit monocular normal cues [54, 65] for the task of

3D reconstruction, we explore the utility of normal infor-

mation for guiding 3D geometry in the generative setting.

More specifically, we discriminate normal maps rendered

from our generative 3D model against 2D normal maps ob-

tained from off-the-shelf monocular estimators [54] applied

to 2D images of human subjects. We demonstrate that this

additional normal supervision serves as useful and comple-

mentary guidance, significantly improving the quality of the

generated 3D shapes. Furthermore, we apply separate face

discriminators on both the image and normal branch to en-

courage more realistic face generation.

We experimentally find that our method outperforms pre-

vious 3D- and articulation-aware methods by a large mar-

gin in terms of both geometry and texture quality, quanti-

tatively (Table 1), qualitatively (Fig. 5) and through a per-

ceptual study (Fig. 4). In summary, we contribute (i) a gen-

erative model of articulated 3D humans with SotA appear-

ance and geometry, (ii) a new generator that is efficient and

can generate and deform loose clothing, and (iii) several,

specialized discriminators that significantly improve visual

and geometric fidelity. Code and models are available at

https://zj-dong.github.io/AG3D/.

2. Related Work

3D-aware Generative Adversarial Networks: Generative

adversarial networks (GANs) [19] achieve photorealistic

image generation [5, 29–31] and show impressive results on

the task of 2D human image synthesis [2, 18, 20, 33, 34, 55].

However, these 2D methods cannot guarantee 3D consis-

tency [10, 33, 39] and do not provide 3D geometry. Several

methods extend 2D GANs to 3D by combining them with

3D representations, including 3D voxels [44, 64], meshes

[36, 58] and point clouds [1, 35]. Recently, many meth-

ods represent 3D objects as neural implicit functions [42,

46, 51, 61, 68]. Such representations are also used for 3D-

aware generative image synthesis [6, 7, 22, 45, 48, 56, 57].

StyleSDF [48] replaces density with an SDF for better ge-

ometry generation and SotA methods like EG3D [6] intro-

duce a tri-plane representation to improve rendering effi-

ciency. Nevertheless, it is not straightforward to extend

these methods to non-rigid articulated objects such as hu-

mans. In this paper, we propose a 3D- and articulation-

aware generative model for clothed humans.

3D Human Models: Parametric 3D human body mod-

els [3, 28, 38, 49, 66] are able to synthesize minimally

clothed human shapes by deforming a template mesh. Ex-

tending these mesh models to generate 3D clothing or

clothed humans is challenging [40]. In the case of meshes,

the geometry is restricted to a fixed mesh topology and large

deviations from the template mesh are hard to model. To

overcome this limitation, methods such as SMPLicit [11]

and gDNA [9] propose to build a 3D generative model of

clothed humans based on implicit surface representations,

either by adding an implicit garment to the SMPL body

or by learning a multi-subject implicit representation with

corresponding skinning weights. The main problem of all

aforementioned approaches, however, is their reliance on
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3D ground truth: their training requires a large number of

complete and registered 3D scans of clothed humans in dif-

ferent poses, which are typically acquired using expensive

3D body scanners. Several methods [13, 17, 27, 32, 53, 62,

63, 73] combine NeRF with human priors to enable 3D hu-

man reconstruction from multi-view data or even monocular

videos. Nevertheless, their proposed human representations

can only be utilized to represent human avatars for a single

subject, wearing a specific garment.

Recently, some methods have been proposed to learn

generative models of 3D human appearance from a collec-

tion of 2D images. ENARF-GAN [47] and GNARF [4]

leverage 3D human models to learn a 3D human GAN, but

they still fail to produce high-quality human images. The

concurrent work EVA3D [23] achieves high-resolution hu-

man image generation by introducing a compositional part-

based human representation. However, none of these meth-

ods including other concurrent arXiv papers [26, 67, 72]

are able to generate and deform loose clothing, and their

geometry typically suffers from noisy artifacts. In contrast,

our method generates both high-quality geometry and ap-

pearance of diverse 3D-clothed humans even wearing loose

clothing, with full control over the pose and appearance. We

empirically demonstrate the benefits of our method over the

more complex EVA3D model [23] in Section 4.2. A com-

parison to the recent arXiv papers [26, 67, 72] is not possi-

ble since the models and code have not been released.

3D Shape from 2D Normals: Several methods predict nor-

mals from a single image for general objects [14–16, 24] or

clothed humans [54, 65]. These predicted 2D normal cues

can be exploited to guide 3D reconstruction using neural

field representations. For instance, MonoSDF [69] lever-

ages predicted normals to improve 3D object reconstruction

from sparse views. Similarly, SelfRecon [25] uses a nor-

mal reconstruction loss to reconstruct a human avatar from

a monocular video. PIFuHD [54] and ICON [65] predict

normal maps as additional input to support single-view 3D

human reconstruction. In this work, we demonstrate that

monocular 2D normal cues are useful for learning a gener-

ative 3D model of articulated objects.

3. Method

Given a large 2D image collection, our goal is to learn a

generative model of diverse 3D human avatars with realistic

appearance and geometry, while enabling control over pose

and identity. An overview of our method is shown in Fig. 2.

In this section, we first introduce an efficient and

articulation-aware 3D human generator (Section 3.1) which

generates the appearance and shape in canonical space and

uses a deformation module to warp into posed space via a

learned continuous deformation field. Next, we describe our

rendering module, which is accelerated by an empty space

skipping strategy that leverages the SMPL body prior. To

enable fast training, we use a super-resolution module to

lift feature maps to high-resolution images.

We optimize the generator using a combination of adver-

sarial losses (Section 3.2) and an Eikonal loss [21]. While

prior work uses a single discriminator formulation, we show

that employing several, specialized discriminators improves

visual fidelity. To this end, we define discriminators that

reason at the level of the whole body and locally at the face

region, respectively. We additionally introduce an adversar-

ial normal loss, which significantly improves the quality of

the generated geometry.

3.1. Holistic 3D Avatar Generator

Canonical Generator: Given a latent vector z ∈ R
nz

and pose parameters p ∈ R
np , our method first gener-

ates 3D human appearance and shape in canonical space

(see Fig. 2). Here, we leverage pose conditioning to model

local pose-dependent deformations of clothes and bodies.

For efficient rendering, the canonical generator builds on

the tri-plane representation proposed in ConvONet [52] and

EG3D [6] to model 3D features. These are then decoded by

an MLP to predict the canonical shape and appearance in

3D space.

We represent geometry using a signed distance field

(SDF). Since existing fashion datasets are imbalanced and

contain mostly frontal views, learning correct 3D geome-

try from such datasets is difficult. Following [23], we ex-

ploit a human shape prior in the form of a canonical SMPL

body [38]. Specifically, for every query point x in canonical

space, we predict an SDF offset Δd(x, z,p) from the base

shape to model details such as hair and clothing. The SDF

value d(x, z,p) is then calculated as

d = d(x, z,p) = dSMPL(x) + Δd(x, z,p), (1)

where dSMPL(x) is the signed distance to the canonical

SMPL surface. Unlike [23], to compute dSMPL(x) effi-

ciently, we represent the SDF as a low-resolution voxel grid

(128× 128× 32), where the value of every grid point is the

(pre-computed) distance to the SMPL mesh. We then query

dSMPL(x) by trilinearly interpolating the SDF voxel grid.

We also compute normals in canonical space. The nor-

mal n at a certain canonical point x is computed as the spa-

tial gradient of the signed distance function at that point:

n = ∇xd(x, z,p). (2)

The canonical appearance is represented by a 3D texture

field c. We also predict features f that are used to guide the

super-resolution module (described later). We denote the

entire mapping from 3D point x, latent vector z and pose

condition p to SDF d, normal n, color c and color features
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Figure 2: Method Overview. Holistic 3D Human Generation: Given a latent vector z, our method generates human shape d
and appearance c in canonical space. In addition, we compute surface normals n via the spatial derivatives of the canonical

shape, which is represented as an SDF. These canonical representations are then posed into the target body pose p via

a flexible deformer and then rendered from the target viewpoint. The rendered images are further super-resolved by 2×.

Adversarial Training: We optimize the generator and the super-resolution module using multiple discriminators. In addition

to an image discriminator operating on the images, we improve geometry by introducing a normal discriminator that compares

our rendered normal maps with the normals of real images predicted by an off-the-shelf normal estimator. To further improve

the quality of the perceptually important face region, we add normal and image discriminators for the face region.

f in canonical space as follows:

g : R3 × R
nz × R

np → R× R
3 × R

3 × R
nf (3)

(x, z,p) �→ (d,n, c, f).

Deformer: To enable animation and to learn from posed

images, we require the appearance and 3D shape in posed
space. In the following we denote quantities in posed space

as (·)′. Given the bone transformation matrix Bi for joint

i ∈ {1, ..., nb}, a canonical point x is transformed into its

deformed version x′ via

x′ =
nb∑

i=1

wi Bi x. (4)

Here, the canonical LBS weight field w : R
3 → R

nb ,

with x �→ (w1, ..., wnb
) where nb is the number of joints,

weights the influence of each bone’s Bi transformation on

the deformed location x′. This weight field is represented

by a low-resolution voxel grid (64 × 64 × 16). We found

that a fixed skinning weights grid, without adaption or vary-

ing resolution is sufficient for our task because the varia-

tion of the shape parameters estimated from training images

is small and our articulation module only requires pose-

independent canonical skinning weights. The normal at the

deformed point x′ is given by

n′ =
(
∑nb

i=1 wi Ri )
−Tn

‖(∑nb

i=1 wi Ri )−Tn‖ (5)

where Ri is the rotation component of Bi [60].

We leverage Fast-SNARF [8] to efficiently warp points

backwards from posed space x′ to canonical space x via ef-

ficient iterative root finding [8]. The SDF value d′, color c′

and feature f ′ at the deformed point are obtained by evaluat-

ing the generator at the corresponding x. In contrast to [8],

which focuses on reconstruction tasks and learns skinning

weights on the fly, we constrain the notoriously difficult ad-

versarial training by averaging the skinning weights of the

nearest vertices on the canonical SMPL mesh.

Volume Renderer: To render a pixel, we follow [43] and

cast ray r′ from the camera center o′ along its view direction

v′. We use two-pass importance sampling of M points in

posed space x′
i = o′+ tiv

′ and predict their SDF values d′i,
colors c′i, color features f ′i and normals n′

i. We convert SDF

values d′i to densities σ′
i via the method of StyleSDF [48].

The color of each pixel in the rendered image I is com-

puted via numerical integration [43]:

I(r) =
M∑

i=1

αi

∏

i<j

(1− αj)c
′
i αi = 1− exp(σ′

iδi) (6)

where δi is the distance between samples. 3D normals N(r)
and feature vectors F (r) are rendered accordingly.

To accelerate rendering and to reduce memory, we take

advantage of the geometric prior of the SMPL model and

define the region within a predefined distance threshold to

the SMPL surface as the occupied region. For points sam-

pled outside of this region, we set the density to zero.

Super Resolution: Although the SMPL-guided volume

rendering is more efficient than previous approaches, it is

still slow and requires a large amount of memory to ren-

der at high resolution. Therefore, we perform volume ren-

dering at a sufficient resolution (2562 pixels) to guarantee

good rendering of the normal image N and rely on a super-
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(a) View Control (b) Pose Control (c) Interpolation

Figure 3: Qualitative Results: 3D Human Generation. We generate 3D human appearance and shape, and render the

resulting 3D representations using different body poses and from different viewpoints. In addition, we show virtual people

generated by interpolating between latent codes. Overall, our synthesized humans exhibit reasonable appearance and geo-

metric quality, remain consistent across different poses and views, and smoothly interpolate when varying the latent code z.

resolution module [6] to upsample the image feature map F
and color I to the final image I+ of size 5122 pixels.

3.2. Training

We train our model on a large dataset of 2D images using

adversarial training, leveraging a combination of multiple

discriminators and an Eikonal loss.

Image Discriminator: The first discriminator Dimage com-

pares full images generated by our method to real images.

Following EG3D [6], we apply the discriminator at both

resolutions: We upsample our low resolution rendering I ,

concatenate it with the super-resolved image I+, and feed

it to a StyleGANv2 [30] discriminator. For real images Ī ,

we downsample and re-upsample them, and concatenate the

results with the original image as input to the discriminator.

Face Discriminator: We observe that the generated face

region suffers from artifacts due to the low resolution of

faces within the full-body image. Motivated by 2D human

GANs [20], we add a small face discriminator Dface image.

Based on estimated SMPL head keypoints, we crop the head

regions of our high resolution output I+ and real data Ī and

feed them into the discriminator for comparison.

Normal Discriminator: A central goal of our work is to

attain geometrically correct 3D avatars. To achieve this,

we propose to use geometric cues present in 2D normal

maps to guide the adversarial learning towards meaning-

ful 3D geometry. To this end, we use an additional normal

discriminator Dnormal. This normal discriminator compares

the predicted 2D normal maps N to 2D normal maps N̄ of

real images Ī predicted by the 2D normal estimator from

PIFuHD [54]. Analogously to the image branch, we use

an additional discriminator Dface normal to further enhance

the geometric fidelity of the generated faces. We refer the

reader to the Sup. Mat. for implementation details.

Eikonal Loss: To regularize the learned SDFs, we apply an

Eikonal loss [21] Leik = Exi (‖∇(Δd(xi))‖ − 1)
2

to the

canonical correspondences {xi} of sampled points {x′
i}.

Training: We train our generator and discriminators

jointly using the non-saturating GAN objective with R1-

regularization [41] and an Eikonal loss. We estimate the 3D

human pose for each training image using an off-the-shelf

pose detector [71]. The collection of the estimated poses

serves as an approximation of the pose distribution. During

training, we draw random samples from the pose collection.

Please refer to the Sup. Mat. for more training details.

4. Experiments

In our experiments, we first demonstrate the quality of

generated samples and then compare our method to other

SotA baselines. In addition, we provide an ablation study to

investigate the importance of each component in our model.

Datasets:* DeepFashion [37] contains an unstructured col-

lection of fashion images of different subjects wearing vari-

ous types of clothing. We use the curated subset with 8k im-

ages from [23] as our training data. UBCFashion [70] con-

*Disclaimer: Standard fashion datasets lack diversity, see Section 4.4.
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Method
DeepFashion UBCFashion

FID↓ FIDnormal ↓ FIDface ↓ FID↓ FIDnormal ↓ FIDface ↓
EG3D 26.38∗ - - 23.95∗ - -

StyleSDF 92.40∗ - - 18.52∗ - -

ENARF-GAN 77.03∗ - - - - -

EVA3D 15.91∗ - - 12.61∗ - -

EVA3D (public) 20.45 30.81 17.21 19.81 49.29 54.42

Ours 10.93 20.38 14.79 11.04 18.79 15.83

Table 1: Quantitative Comparison with SotA Methods. We evaluate FID of full images, cropped face images and normal

maps generated by our method and the SotA method EVA3D (public) [23] using their released trained models. For reference,

we also report quantitative results from the EVA3D paper above the separation line (marked by *).

Figure 4: User Preference. We conduct a perceptual study

with approximately 4000 samples and report how often

participants preferred shapes and images generated by our

method or those generated by EVA3D [23].

tains 500 sequences of fashion videos with subjects wearing

loose clothing such as skirts. Following EVA3D [23], we

treat these videos as individual images without assuming

temporal information. Pre-processing details can be found

in the Sup. Mat.

Metrics: We measure the diversity and quality of generated

images using the Fréchet Inception Distance (FID) between

50k generated images and available real images, denoted by

FIDimage. To measure the generated face quality, we report

an additional FID specifically for the face region, denoted

by FIDface. Furthermore, we evaluate the quality of the syn-

thesized geometry by computing the FID between our ren-

dered normals and pseudo-GT normal maps predicted by

[54] (FIDnormal). We use an inception network [59] pre-

trained on ImageNet [12] for all FID computation. In addi-

tion, we conduct a Perceptual User Study among 50 partic-

ipants with 4000 samples and report how often participants

preferred a particular method over ours.

Baselines: We compare our method to four baseline meth-

ods: EG3D [6], StyleSDF [48], ENARF-GAN [47] and

EVA3D [23]. EG3D and StyleSDF are SotA , 3D-aware,

generative models of rigid objects. For comparison, these

two methods are trained on the aforementioned human

datasets. Since these two methods do not model articu-

lation, they have to learn it implicitly. ENARF-GAN and

EVA3D additionally model articulation for 3D human gen-

eration. The quantitative FID results of all baseline methods

are directly taken from the experiment in EVA3D [6]. In ad-

dition, we evaluate FIDface and FIDnormal on EVA3D based

on their released code and trained model weights.

4.1. Quality of 3D Human Generation

We show our qualitative results in Fig. 3. More results

can be found in the Sup. Mat. Overall, our method generates

realistic human images with faithful details such as clothing

patterns, face and hair, and meaningful 3D geometry even

with fine structures such as hair and shoe heels. Our method

further enables control over the generation as follows.

View Control: As shown in Fig. 3a, by learning humans

in 3D space, our method can generate 3D-consistent high-

quality images and geometry from varied viewpoints.

Pose Control: The generated 3D humans can also be re-

posed into unseen poses as shown in Fig. 3b. The images

and geometry in different poses are consistent due to the

explicit model of human articulation.

Interpolation: Our method learns a smooth latent space of

3D human shape and appearance. As shown in Fig. 3c, our

method yields smooth transitions of appearance and shape

even when interpolating the latent codes of two subjects

with different gender and clothing styles.

4.2. Comparison to SotA

Table 1 summarizes our quantitative comparisons on

both DeepFashion and UBCFashion datasets. Since the

SotA method EVA3D [23] outperforms other baselines by

a significant margin, we focus our discussion on the com-

parison with EVA3D only. More comparisons with other

baselines can be found in the Sup. Mat.

Image Quality: Our method achieves better quantitative

results than EVA3D in terms of FIDimage and FIDface on

both datasets. This improvement is confirmed by our user

study in Fig. 4. Notably, in 81.4% of the cases, partici-

pants consider our generated images to be more realistic

than EVA3D. A qualitative comparison is shown in Fig. 5a.

Our method generates overall sharper images with more de-

14921



(a) Overall Quality (b) Novel Views (c) Loose Clothing

Figure 5: Qualitative Comparison to EVA3D. We show random samples of our method and the SotA method EVA3D [23].

Our method achieves better image and shape quality, degrades more gracefully at side views, and better models loose clothing.

Method FID ↓ FIDnormal ↓ FIDface ↓
Ours 10.93 20.38 14.79

w/o normal GAN 11.15 32.17 14.35
w/o face GAN 11.71 23.96 20.88

Table 2: Ablation. We compare our method and ablated

baselines in which we remove individual discriminators.

tails due to the use of a holistic 3D generator, and synthe-

sizes more realistic faces due to our face discriminators.

Our improvements are particularly pronounced when

considering side views. As shown in Fig. 5b, our method

generates sharp and meaningful images also from the side

where EVA3D’s image quality significantly degrades. This

is a consequence of EVA3D’s pose-guided sampling strat-

egy. As discussed in their paper, EVA3D had to increase

the dataset’s frontal bias during training to achieve reason-

able geometry and face quality. We hypothesize that this

requirement is due to the limited capacity of the lightweight

part models. As a consequence, EVA3D overfits more to

frontal views and generalizes less well. In contrast, our effi-

cient articulation and rendering modules allow us to exploit

a single holistic generator and our face and normal discrim-

inators enable us to directly sample from the data distribu-

tion which leads to better generalization.

Interestingly, the (non-animatable) generative model

EG3D achieves reasonable FID despite not modeling artic-

ulation. This is because the FID evaluation only considers

training poses and views, see also Sup. Mat.

Figure 6: Ablation of the Normal Discriminator. Our nor-

mal discriminator effectively improves the generated geom-

etry while preserving appearance quality.

Geometry: Our method yields significantly better geome-

try compared to EVA3D, as evidenced by the improvement

in FIDnormal in Table 1 and the perceptual study in Fig. 4.

Based on our qualitative results, our geometry is more real-

istic and detailed, in particular on faces. In contrast, noise

and holes can be observed around the shapes generated by

EVA3D, despite their surface representation and regulariza-

tion. We attribute this improvement to our normal discrim-

inators, which provide strong geometric cues.

Loose Clothing: As shown in Fig. 5c, our method outper-

forms EVA3D in modeling loose clothing. Due to its com-

14922



Figure 7: Ablation of the Face Discriminator. Our face

discriminator effectively improves generated face quality.

Figure 8: Ablation Study of the Deformer. Results with

loose clothing in novel poses, generated by EVA3D and our

method with different choices for the articulation module.

positional nature, EVA3D is prone to generating artifacts

between the legs. In contrast, our holistic representation

generates loose clothing without discontinuity artifacts.

Efficiency: Our method is more efficient than EVA3D in

rendering images and normal maps with the same image

and ray sampling resolution. For an image resolution of

2562 and with 28 sample points per ray, our method renders

normals and images together at 10.5 FPS while EVA3D runs

at 5.5 FPS. With a 2D super-resolution module, our method

is more than three times faster than EVA3D when rendering

images of 5122 (9.5FPS vs 3FPS), while achieving better

performance in terms of geometry and appearance. More

details can be found in Sup. Mat.

4.3. Ablation Study

Normal Discriminator: Our normal discriminator serves

an important role in improving the realism of the generated

geometry. Comparing our model to ablated versions where

we remove the normal discriminator (w/o normal GAN), we

observe a significant FIDnormal improvement (see Table 2).

As shown by the qualitative results in Fig. 6, the normal

GAN effectively removes holes and noise on the generated

surface, especially on faces, while preserving image quality.

Face Discriminator: As expected, when training without

face discriminators, we observe a large drop in FIDface (see

Table 2). Given that faces are low resolution and hard to

generate, our adversarial loss on faces forces the generator

to focus on this local region and thus achieves a more real-

istic generation as shown in Fig. 7.

Deformer: To test the importance of our Fast-SNARF

based deformation module, we compare our model to a

SMPL nearest-neighbor-based deformer (denoted by Ours
w/ SMPL), where points are deformed based on the skinning

weights of their K nearest SMPL vertices in posed space.

As shown in Fig. 8, only our method can deform the skirts

without splitting them. This is due to our articulation mod-

ule being able to derive meaningful deformations for points

far away from the SMPL surface. In contrast, our ablated

baselines, with different choices of K, suffer from discon-

tinuity artifacts as they only provide meaningful deforma-

tion at regions close to the SMPL surface. Similar artifacts

can be observed in EVA3D’s results, which we hypothesize

stem from their part-based model.

4.4. Limitations

Since each training instance is observed only in one pose,

the association of pixels to body parts cannot be uniquely

determined. Hence, our model sometimes generates wrong

clothing patterns under arms, or at hands close to the torso.

Future work should investigate techniques to guide associa-

tion, such as 2D correspondence predictions.

Moreover, samples from generative models reflect the bi-

ases present in their training data. The 2D image collections

that we use for training focus on fashion images and lack di-

versity in skin tone, body shape, and age. Our work should

be viewed as a methodological proof of concept and con-

tains no mechanisms to combat these biases. To avoid bi-

ases, future research and deployable systems should i) be

trained on more diverse data or ii) use explicit de-biasing.

Further limitations are discussed in the Sup. Mat.

5. Conclusion
In this paper we contribute a new controllable generative

3D human model that is learned from unstructured 2D im-

age collections alone and does not leverage any 3D super-
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vision. Our model synthesizes high-quality 3D avatars with

fine geometric details and models loose clothing more nat-

urally than prior work. We achieve this through a new gen-

erator design that combines a holistic 3D generator with an

efficient and flexible articulation module. Furthermore, we

show that employing several, specialized discriminators that

operate on the different branches (RGB and normals) and

regions (fully body and facial region), leads to higher visual

fidelity. We experimentally demonstrate that our method

advances the state-of-the-art in learning a 3D human gener-

ator from 2D image collections in terms of both appearance

and geometry and that it is the first generative model of 3D

humans that can handle the deformations of free-flowing,

loose, garments and long hair.
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