
TORE: Token Reduction for Efficient Human Mesh Recovery with Transformer

Zhiyang Dou1† Qingxuan Wu2† Cheng Lin3‡ Zeyu Cao4‡ Qiangqiang Wu5

Weilin Wan1 Taku Komura1 Wenping Wang6

1The University of Hong Kong 2University of Oxford 3Tencent Games
4University of Cambridge 5City University of Hong Kong 6Texas A&M University

Abstract

In this paper, we introduce a set of simple yet effec-
tive TOken REduction (TORE) strategies for Transformer-
based Human Mesh Recovery from monocular images. Cur-
rent SOTA performance is achieved by Transformer-based
structures. However, they suffer from high model complex-
ity and computation cost caused by redundant tokens. We
propose token reduction strategies based on two important
aspects, i.e., the 3D geometry structure and 2D image fea-
ture, where we hierarchically recover the mesh geometry
with priors from body structure and conduct token cluster-
ing to pass fewer but more discriminative image feature to-
kens to the Transformer. Our method massively reduces the
number of tokens involved in high-complexity interactions
in the Transformer. This leads to a significantly reduced
computational cost while still achieving competitive or even
higher accuracy in shape recovery. Extensive experiments
across a wide range of benchmarks validate the superior ef-
fectiveness of the proposed method. We further demonstrate
the generalizability of our method on hand mesh recovery.
Visit our project page at https://frank-zy-dou.
github.io/projects/Tore/index.html.

1. Introduction
Human Mesh Recovery (HMR) has been extensively re-

searched in recent years, given its wide real-world applica-
tions [15, 81, 11, 62, 69, 17, 42, 84]. This task becomes
more challenging when the input is a monocular 2D image,
due to the large pose and shape variation, large appearance
variation, partial observation, and self-occlusion.

There has been steady progress in 3D human mesh re-
covery [30, 50, 36, 24, 60, 39, 40, 8, 5]. Recently, Trans-
former [67] has shown state-of-the-art (SOTA) results on
a wide variety of tasks due to its strong capability of cap-
turing long-range dependency for more accurate predic-
tions [3, 67, 76, 74]. Using tokens constructed from lo-
cal features extracted by a convolutional neural network

†, ‡ denote equal contributions.
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Figure 1. Throughput v.s. Accuracy and GFLOPs v.s. Accuracy
on Human3.6M [23]. Our method dramatically saves GFLOPs and
improves throughput while maintaining highly competitive accu-
racy. The x-axis of the bottom GFLOPs figure is reversed for
demonstration. Eb0 and R50 represent EfficientNet-b0 [65] and
ResNet-50 [20] backbones, respectively.
(CNN) [20, 70] to query the joint and mesh vertex positions,
Transformer-based methods [39, 40, 8] achieved SOTA per-
formance.

However, improved performance comes with costs: the
increased expressivity of Transformers comes with quadrat-
ically increasing computational costs since all pairwise in-
teractions are taken into account [14]. The space and time
complexity of a QKV-attention operation is known to be
O(M2), where M is the number of tokens. The token
number thus plays a vital role in time efficiency: a large
number of tokens inevitably leads to a heavy computation
burden. Unfortunately, almost all the existing Transformer-
based SOTA methods for HMR [39, 40, 8] are suffering
from redundant tokens. This incurs a high model com-
plexity and computational costs, which prevents the current
Transformer-based HMR methods from achieving their full
potential in real-world applications.

In this paper, we make key observations from two im-
portant aspects: the 3D geometry structure and 2D image
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feature, to reveal the problem of token redundancy. First,
to recover the 3D geometry, all existing methods use both
mesh vertices and skeleton joints as tokens for the feature
interaction between input and body shape. Whereas a body
mesh contains numerous vertices, they can be abstracted by
a small number of joints on the skeleton. For instance, when
animating a SMPL [44] avatar, the skeleton joints, together
with a blend shape binding the joints and corresponding
mesh vertices of the local body part, are able to describe
various body meshes. Therefore, the joints can already be
viewed as an underlying structure of a body shape, which
intrinsically encodes the human mesh geometry. Second,
for image-based input, most existing methods indiscrimi-
nately use all the feature patches to capture pose, shape and
appearance variance. However, although the human body
exhibits large variance, the important features for shape in-
ference are dominantly clustered within the body area in an
RGB image. Most features, e.g., image background, are not
informative, thus bringing about redundancy.

Given the aforementioned insights, we argue that the
Pareto-front of accuracy and efficiency for Transformer-
based HMR could be further improved by reducing the
number of tokens [59, 47, 56]. To this end, we introduce a
set of simple yet effective token reduction strategies mainly
from two aspects corresponding to our observations. First,
for 3D mesh recovery, instead of querying both vertices
and joints with input features simultaneously, we consider
learning a small set of body tokens at the skeleton level for
each body part. To recover corresponding mesh vertices,
we use an efficient Neural Shape Regressor (NSR) to infer
the mesh from the body features encoded by these tokens.
This query process can also be interpreted as an attention
matrix decomposition, by which we effectively leverage the
geometric insights encoded at the skeleton level to infer the
mesh structure hierarchically. Second, for the input image
feature, we introduce a learnable token pruner to prune the
tokens of patch-based features extracted by a CNN. We em-
ploy a clustering-based strategy to identify discriminative
features, which results in two appealing properties: 1) the
end-to-end learning of the pruner is unsupervised, avoiding
the need for additional data labeling; 2) it learns semanti-
cally consistent features across various images, thus further
benefiting the geometry reasoning and enhancing the capa-
bility of generalizability. These token reduction strategies
substantially reduce the number of query tokens involved in
the computation without sacrificing the important informa-
tion. An overview is shown in Figure 2.

We conduct extensive experiments across wide bench-
marks [23, 68, 85], including both the human body and
hand mesh recovery, to validate the proposed method. Com-
pared to SOTA methods, our framework faithfully recov-
ers body meshes with fewer tokens, which considerably re-
duces memory and computation overhead while maintain-

ing competitive geometric accuracy.
In summary, our contribution is three-fold:

• We reveal the issues of token redundancy in the exist-
ing Transformer-based methods for HMR.

• We propose effective strategies for token reduction by
incorporating the insights from the 3D geometry struc-
ture and 2D image feature into the Transformer design.

• Our method achieves SOTA performance on vari-
ous benchmarks with less computation cost. For in-
stance, for the Transformer Encoder structure [39] and
the Transformer Encoder-Decoder structure [8] with
ResNet-50 [20] backbone, our method maintains com-
petitive accuracy while saving 82.9%, 50.5% GFLOPs
and improving 139.1%, 39.8% throughput, respec-
tively; see Figure 1 for an overview.

2. Related Work
Human Mesh Recovery (HMR) from monocu-

lar images has achieved great progress in the past
years [4, 30, 50, 36, 10, 40, 24, 60, 5, 39, 8, 82, 71, 58].
Given a monocular RGB image, the goal of HMR is to
recover the 3D body shape, typically using a human body
model, e.g., SMPL [44]. We refer readers to [66] for a
comprehensive review. Existing methods fall into two
categories: Non-Transformer-based and Transformer-based
approaches.
Non-Transformer-based Human Mesh Recovery To
recover the human body shape, one could predict a few
parameters, i.e., joint rotation and body shape, to drive the
parametric model (parametric approach) or directly regress
the vertex positions of the body (non-parametric approach).
Parametric approaches SMPLify [4] estimates human
pose and shape by fitting SMPL to the detected 2D key
points [55] by optimization. Kanazawa et al. [24] adopt
adversarial prior knowledge of the 3D body shape into
the neural network for HMR. SPIN [30] then combines
regression-based and optimization-based methods during
the training loop. Intermediate features such as key
points [54], pixel-to-surface correspondences [77] and
texture consistency [52], have been exploited. HybrIK [36]
proposes a hybrid inverse kinematics via twist-and-swing
decomposition [2]. Regressing the body parameters from
the image is a highly non-linear mapping [50], which thus
limits the performance of parametric-based approaches.
Non-parametric approaches Non-parametric ap-
proaches [50, 32, 9] recover spatial coordinates of a
body shape directly from the image features. I2L-MeshNet
[50] predicts the per-pixel likelihood on 1D heatmaps for
vertex coordinates for a trade-off between accuracy and
computational cost. GraphCMR [32] and Pose2Mesh [9]
employ graph convolutional neural network (GCNN) [27]
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Figure 2. Overview of the proposed framework. Our goal is to reduce tokens for Transformer Encoder and Decoder which are critical
modules in the whole pipeline. Image Token Pruner (ITP) and Neural Shape Regressor (NSR) are two lightweight components.

to regress mesh positions by modeling local interactions
among vertices from the image [32] and 2D pose [9], re-
spectively. Although steady progress has been made, SOTA
accuracy is produced by Transformer-based methods.
Transformer-based Human Mesh Recovery Recently,
Transformer structures have been successfully adopted in
various vision tasks [12, 43, 6, 51, 66, 80]. In HMR, the
SOTA performance is achieved by Transformer-based (at-
tention mechanism) approaches [39, 29, 40, 8]. Specifically,
METRO [39] recovers body mesh using a Transformer
Encoder [67] to model vertex-vertex and vertex-joint
interactions conducting dimension reduction from the
image features to 3D shape. MeshGraphormer [40]
injects Graph Convolutions [27] into the Transformer
Encoder [39] blocks to improve local interactions among
vertices. The recent work FastMETRO [8] employs a
Transformer Encoder-Decoder architecture disentangling
the image encoding and mesh estimation for model re-
duction and acceleration. However, all Transformer-based
approaches [39, 40, 8] suffer from redundant tokens, caus-
ing heavy interaction between body geometry and image
features, which is still cumbersome and computationally
intensive. In this paper, we design strategies driven by
the 3D body geometry and 2D image feature for token
reduction for both Transformer Encoder and Transformer
Encoder-Decoder structures.
Token Reduction for Transformers Token reduction for
Transformer structures has been causing people’s attention
nowadays [56, 47, 59, 78, 16, 38, 46, 7]. In particular,
DynamicViT [56] reduces less informative tokens hierar-
chically with supervision from a teacher network to save
computational costs during inference. TokenLearner [59]
generates a smaller number of tokens with spatial attention
adaptively. Patch-to-Cluster [16] proposes to cluster over
image patches with a token selector. Our method follows
this way and adopts a token selection layer for clustering
over input tokens, reducing tokens and improving general-

ization capability in challenging scenarios. Token pruning
techniques have also been explored in single-view 2D
pose estimation and multi-view 3D pose estimation [47]
by selecting tokens based on the attention value in the
Transformer. Differently, in HMR, besides the key points,
body geometry, i.e., mesh vertices, also introduces a burden
to the Transformer and needs to be carefully considered.

3. Methodology

We employ the popular body parametric model
SMPL [44] to represent a human body. Formally, given a
monocular image I ∈ R224×224, our goal is to recover the
joint positions J ∈ RJ×3 and mesh vertices V ∈ RV×3

where J = 14, V = 6890 are the numbers of joints and the
mesh vertices, respectively. In addition to the human body,
we also demonstrate our method on hand mesh recovery
with MANO model [57] to show its generalizability.

Existing Transformer-based HMR methods fall into two
categories: a single Transformer Encoder structure [39, 40]
and a Transformer Encoder-Decoder structure [8]. Accord-
ingly, we propose two strategies to reduce tokens from 3D
and 2D levels, namely, Geometry Token Reduction (GTR)
and Image Token Pruning (ITP), which can accommodate
different Transformer structures to improve their efficiency.

3.1. Geometry Token Reduction (GTR)

As an essential module, all the existing Transformer-
based methods for HMR [39, 40, 8] have to model the in-
teraction between body geometry and image features with
an attention mechanism. Therefore, an effective token re-
duction method to improve the efficiency for inferring mesh
geometry can benefit the design of Transformer based meth-
ods in a wide scope.

We observe existing methods invariably use both skele-
ton joints and mesh vertices as tokens for regressing their
spatial coordinates. The numerous tokens inevitably lead to
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significant computational costs for a Transformer. In fact,
as an underlying structure of the human body, the skeleton
joints already provide strong priors for perceiving the body
geometry. A human body avatar, like SMPL [44], can be
driven by a small number of joints with the blend shape.
This inspires us to regress the human body mesh in a hier-
archical manner.

Our key idea is to decompose a heavy Transformer into
smaller Transformer modules, each of which involves fewer
tokens, avoiding expensive computation for image feature
interaction. Specifically, our approach only queries the
body tokens, whose count is equivalent to the number of
joints. Since the number of joints is much less than the
number of mesh vertices, we can significantly reduce the
token number in complex 2D-3D feature interactions and
this leads to a substantial enhancement in efficiency.

To faithfully recover body shape from the body tokens,
we introduce a Neural Shape Regressor (NSR) module,
which is a light Transformer structure, to query the ver-
tex tokens from their interaction with body features. Let
FJ = {f j

1 , f
j
2 , ..., f

j
J} denotes a set of learned body fea-

tures and TV = {tv1, tv2, ..., tvV } where tvi represents a set
of vertex tokens which are the query tokens. We conduct
cross-attention between query vertex tokens and body fea-
tures to model the interaction between vertices and learned
body features. Note that non-adjacent vertices are masked
to improve the efficiency [8].

The feature size within NSR is even smaller compared
with the main Transformer. Thanks to the informative ge-
ometric feature encoded in the body tokens, despite not
incorporating image tokens, NSR still faithfully recovers
the surface vertices. Another interesting discovery is that
the learned attention scores reflect the correlation between
joints and vertices at a body part level, similar to body
blending weights (see Sec. 4.7.3). In this way, we can ef-
fectively reduce the cost of redundant interaction by decom-
posing the entire body into encoded constituent parts and
efficiently recovering the whole body shape.

3.2. Image Token Pruning (ITP)

In addition to the geometric insights, for a Transformer
Encoder-Decoder structure, image tokens also affect the
computation overhead. However, the existing methods
adopting this Transformer structure fail to avoid the token
redundancy issue [8] because all available image feature
patches are indiscriminately involved in human mesh recov-
ery. Actually, some features, e.g., image background, are
not informative, thus introducing redundancy and increas-
ing the computational cost of the Transformer.

To tackle this issue, we introduce an effective token
pruning strategy, namely, Image Token Pruning (ITP). Our
key insight is that the informative features in an image for
inferring 3D geometry are overwhelmingly clustered within

the region of the human body. Inspired by recent advances
in token pruning [16, 59, 56, 47], we propose to aggregate
features into a small number of meaningful clusters.

Let 0 < ρ < 1 denote the predefined token pruning ra-
tio. Our goal is to learn a projection that maps feature map
FI ∈ RHW×c extracted from the given image with HW
tokens to ZI ∈ RT×c with T tokens, where T = ⌊ρHW ⌋
and c is the feature dimension. The small number of clus-
ters ZI are expected to capture the fewer but more discrim-
inative features in FI . Inspired by [16, 59], we implement
the projection as a learnable CNN module. We first apply
Conv2D to the input feature, where the kernel size, stride
and zero padding of Conv2D are 3 × 3, 1 and 1, reducing
the feature dimension from c to c′ = c/4 with GELU [21]
activation function applied. We further map the dimension
c to N by MLP and Softmax, producing M ∈ RHW×N .
Finally, the clustered token set is given by ZI = MT · FI .
The mapping matrix MT , in essence, produces a clustering
over origin tokens. Each element mij ∈ MT depicts the
contribution of j token to i-th cluster. Note that LayerNorm
is employed after the clustering.
Token Reduction Supervision In order to encourage ITP to
pay more attention to those discriminative feature regions,
i.e., body parts. during token reduction, we introduce Token
Reduction Supervision. Given the weak-perspective camera
estimated the neural network, we compute the 2D projection
of the ground truth 3D vertices V̂ as sΠ(V̂) + t where Π
represents an orthographic projection, s and t are scale and
translation estimated by the network. The projected results
are downsampled to a discrete H × W grid corresponding
to each token followed by a binary indicator function

Fd(x) =

{
1, if the cell contains a projected point.
0, if the cell does not contain a projected point.

(1)
Then the supervision for token pruning is given by

LP = − 1

NHW

N∑
i

(Fd(sΠ(V̂) + t) ·M[:,i]). (2)

With this supervision, the weights of background tokens
in M [:, i] for each i-th cluster will be penalized during train-
ing, which thus encourages the ITP to learn the discrimina-
tive features.

The proposed ITP has several noticeable advantages.
First, in contrast to other methods relying on explicit su-
pervision, e.g., using a pretrained teacher network to facili-
tate the pruning [56, 78, 33], our token pruner is trained in
an unsupervised manner; Note that no ground truth mask-
ing is required for Token Reduction Supervision. Second,
unlike previous clustering-based pruning methods [16] that
use pre-defined class labels, ITP aims to adaptively identify
discriminative features within the body region. Therefore,
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ITP is not limited to fixed semantic labels but is able to in-
duce higher-level semantics according to the learning target.

Finally, we find the clustered informative features
learned by ITP improve the model generalizability, es-
pecially for challenging datasets, e.g., in-the-wild dataset
3DPW [68] as shown in Table 3. We elaborate on these
properties in Sec. 4.3.2 and Sec. 4.7.1 with extensive exper-
iments.

3.3. Loss Functions

We supervise the network using L1 distance between
predicted mesh vertices at three sampling levels: LV3D =
||V l

3D − V̂ l||1 + ||Vm
3D − V̂m||1 + ||Vh

3D − V̂h||1, where
∗l, ∗m, ∗h denote low, middle and high body mesh resolu-
tion with vertex numbers to be 431, 1723 and 6890 for an
SMPL body. The ground-truth 3D joints are used for super-
vising predicted 3D joints and the ones regressed from the
vertices Vh

3D with a SMPL regression matrix M: LJ 3D =

||J3D − Ĵ3D||1, LR
J 3D = ||M(V)− ˆJ3D||1. A 2D projec-

tion loss LJ2D is used during the network training, where
we employ a weak perspective camera model to project 3D
joints to 2D for supervision: LR

J 2D = ||(sΠ(M(V))+ t)−
ˆJ2D||1,. s, t are scale and translation estimated by the net-

work. Overall, together with the Token Pruning Supervision
LP , the total loss is:

L = α
[
λJ 3D(LR

J 3D + LJ 3D) + λV3D(LV3D) + λPLP

]
+ βλJ 2DLR

J 2D,

where α and β indicate the availability of the supervision.
We set λP , λJ2D, λV 3D, λJ3D to be 1, 100, 100, 1000.

4. Experimental Results

4.1. Datasets and Metrics

We evaluate our model in two scenarios: human body
mesh recovery and hand mesh recovery. We adopt
commonly-used metrics [25, 31, 39, 40, 8]: Mean Per-Joint
Position Error (MPJPE), MPJPE after further alignment,
i.e., Procrustes Analysis (PAMPJPE) and Mean Per-Vertex
Error (MPVE). For human body mesh recovery, our net-
work is trained with Human3.6M [23], MuCo-3DHP[48],
UP-3D [34], COCO [41], MPII [1]. Following previous
works [39, 40, 8], we use the pseudo mesh data in Hu-
man3.6M [23] for training, splitting subjects S1, S5, S6,
S7, S8 for training and S9, S11 for testing. We also report
our performance on 3DPW [68], a more challenging in-the-
wild dataset. To further evaluate the generalization ability
of the proposed method, we test our method on hand mesh
recovery on FreiHAND [85] dataset. For analyzing the ef-
ficiency of our method, we report GFLOPs and throughput
(image per second), strictly following [56, 49, 59, 47, 38].

Table 1. Comparison with the Transformer Encoder structure
METRO (M) [39] on Human3.6M [23]. We test with ResNet-50
(R50) [20] and HRNet-W64 (H64) [70] as backbones. GFLOPsT

is GFLOPs of the transformer.

Method GFLOPs ↓ GFLOPsT ↓ Throughput (im/s) ↑ PAMPJPE ↓
M-H64 [39] 56.5 27.5 141.0 36.7
M-H64+GTR 30.2 (-46.5%) 0.8 (-97.1%) 210.1 (+49.0%) 37.1 (+1.1%)
M-R50 [39] 31.6 27.5 247.0 40.6
M-R50+GTR 5.4 (-82.9%) 0.8 (-97.1%) 590.6 (+139.1%) 42.0 (+3.4%)

4.2. Implementation Details

Network Training We implement the network using Py-
Torch. For the Transformer Encoder-Decoder structure, we
set the learning rate to be 1×10−4. We use the AdamW op-
timizer [45] and train for 60 epochs, with a batch size of 16
per GPU on 4 Nvidia A100 GPUs. When comparing with
Transformer Encoder structure METRO [39] (see Table 1),
we follow the setting of METRO where we train the models
with a batch size of 30 per GPU on 8 Nvidia A100 GPUs in
total. We adopt Adam optimizer [26] and train the models
for 200 epochs. See more details in Appendix A.
Performance Evaluation To analyze the performance on
a consumer-level GPU device, we measure the through-
put on an NVIDIA RTX 3090 GPU with 24G VRAM.
When comparing with encoder-decoder Transformer struc-
ture FastMETRO [8], we set the batch size to 32 following
PPT [47]. The comparison with Transformer Encoder struc-
ture METRO [39] uses 16 as the batch size. Note that the
batch size is limited by the size of the original METRO [39]
model. To factor out the influence of the batch size, we pro-
vide a more detailed performance report in Appendix B.

4.3. Performance on Human Mesh Recovery

Currently, there only exist two types of representa-
tive Transformer structures for HMR: Encoder-only struc-
ture (METRO [39]) and Encoder-Decoder structure (Fast-
METRO [8]). To demonstrate the effectiveness of our
method to both Transformer structures, we first conduct ex-
periments by adding GTR to two structures: METRO and
FastMETRO. Since ITP is designed for the encoder-decoder
structure, we further report the results on FastMETRO with
both ITP and GTR in Sec. 4.3.2. The overall comparison is
shown in Table 5.

4.3.1 Transformer Encoder Structure

As shown in Table 1, GTR effectively reduces the com-
putation costs while still producing competitive accu-
racy results. For the encoder-based Transformer model
METRO [39] with HRNet-W64 [70] as a backbone, apply-
ing GTR saves the GFLOPs of the whole model for 46.5%
and the Transformer part for 97.1%, with throughput im-
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Figure 3. Qualitative results of GTR equipped Encoder-Decoder
structure [39] (H64) on Human3.6M [23] and 3DPW [68].

Table 2. Comparison with the Transformer Encoder-Decoder
structure FastMETRO (FM) [8] on Human3.6M [23]. We test with
EfficientNet-b0 (Eb0) [65], ResNet-50 (R50) [20] and HRNet-
W64 (H64) [70] as backbones. GFLOPsT stand for GFLOPs for
the transformer.

Method GFLOPs ↓ GFLOPsT ↓ Throughput (im/s) ↑ PAMPJPE ↓
FM-H64 [8] 35.7 6.6 221.5 33.7
FM-H64+GTR 30.2 (-15.4%) 0.7 (-89.4%) 249.2 (+12.5%) 34.8 (+3.2%)
FM-R50 [8] 10.9 6.6 576.0 37.3
FM-R50+GTR 5.4 (-50.5%) 0.7 (-89.4%) 805.3 (+39.8%) 38.6 (+3.4%)
FM(S)-R50 [8] 6.4 2.2 953.5 39.4
FM(S)-R50+GTR 4.6 (-28.1%) 0.3 (-86.4%) 1128.9 (+18.4%) 38.6 (-2.0%)
FM-Eb0 7.1 6.6 517.6 45.8
FM-Eb0+GTR 1.7 (-76.1%) 0.7 (-89.4%) 870.5 (+68.2%) 44.2 (-3.5%)

proved by 49%. For the ResNet-50 [20] backbone, GTR
helps save the GFLOPs of the whole model for 82.9% and
the Transformer part for 97.1%, with throughput improved
by 139.1%. These results validate the effectiveness of the
proposed GTR on the Transformer Encoder structure. Qual-
itative results of METRO-H64+GTR can be found in Fig-
ure 3, in which the model produces high-quality results in
human mesh recovery over various input monocular images.

4.3.2 Transformer Encoder-Decoder Structure

We experiment on the Transformer Encoder-Decoder struc-
ture FastMETRO [8] with its two variants: models with 1
and 3 Encoder-Decoder layers. For 1-layer FastMETRO,
we denote it as FastMETRO(S). In Table 2, GTR equipped

FastMETRO [39] produces competitive accuracy while re-
ducing 15.4% in GFLOPs for the whole model, 89.4% in
GFLOPs for the Transformer part and improving 12.5%
in throughput with an HRNet-W64 [70] CNN backbone.
When testing with ResNet-50 [20], GTR helps save 50.5%
in GFLOPs for the whole model, 89.4% in GFLOPs for the
Transformer part and improves 39.8% in throughput. No-
tably, our FastMETRO(S)-R50+GTR and FastMETRO(S)-
Eb0+GTR yield 38.6, 44.2 mm PAMPJPE respectively, sur-
passing the corresponding baselines while greatly saving
computational costs.

We then present the performance of the Transformer
Encoder-Decoder structure with GTR and ITP using
ResNet-50 [20] and EfficientNet-b0 [65] CNN backbones.

Table 3. Influence of ITP for monocular 3D human mesh recovery
on 3DPW [68].

Method MPVE MPJPE PAMPJPE
FastMETRO-H64+GTR 91.3 75.4 46.7
FastMETRO-H64+GTR+ITP@20% 88.2 72.3 44.4

As shown in Table 4, TORE (GTR+ITP) is effective for
the Encoder-Decoder Transformer structure. Specifically,
when pruning with 20%, 50% in ITP, the models save the
GLOPs of the Transformer structure by 14.3%, 14.3% and
28.5%, 42.9% while receiving competitive accuracy or even
higher accuracy i.e., FM-Eb0+GTR+ITP@20% improves
PAMPJPE compared with the baseline.

Table 5. Comparison with the SOTA methods for monocular 3D
human mesh recovery on 3DPW [68] and Human3.6M [23].

Method
3DPW Human3.6M

MPVE MPJPE PAMPJPE MPJPE PAMPJPE
HMR [25] – 130.0 76.7 88.0 56.8
GraphCMR [32] – – 70.2 – 50.1
SPIN [30] 116.4 96.9 59.2 62.5 41.1
I2LMeshNet [50] – 93.2 57.7 55.7 41.1
PyMAF [83] 110.1 92.8 58.9 57.7 40.5
ROMP–R50 [64] 105.6 89.3 53.5 – –
PARE–R50 [29] 99.7 82.9 52.3 – –
DSR–R50 [13] 99.5 85.7 51.7 60.9 40.3
METRO–R50 [39] – – – 56.5 40.6
METRO–H64 [39] 88.2 77.1 47.9 54.0 36.7
METRO–H64+GTR 87.9 75.5 46.6 57.6 37.1
FastMETRO-R50 [8] 90.6 77.9 48.3 53.9 37.3
FastMETRO-R50+GTR+ITP@20% 99.2 82.4 52.3 59.8 40.5
FastMETRO-H64 [8] 84.1 73.5 44.6 52.2 33.7
FastMETRO-H64+GTR+ITP@20% 88.2 72.3 44.4 59.6 36.4
FastMETRO-Eb0 [8] 112.5 93.8 60.2 69.2 45.8
FastMETRO-Eb0+GTR+ITP@20% 112.5 93.7 60.1 63.2 43.9

In addition, we find that ITP helps improve the accuracy
on the challenging in-the-wild 3DPW [68] dataset, shown
in Table 3. Specifically, when further equipped with ITP,
the model performance in MPVE, MPJPE and PAMPJPE
are improved by 3.1mm, 3.1mm and 2.3 mm, respectively.
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Table 4. Statistics of all proposed components (GTR + ITP) for Encoder-Decoder structure FastMETRO (FM) [8] on Human3.6M [23].
The backbones are EfficientNet-b0 (Eb0) [65] and ResNet-50 (R50) [20]. GFLOPsT stands for GFLOPs of the Transformer.

Method + Pruning Rate #Tokens GFLOPs ↓ GFLOPsT ↓ Throughput (im/s) ↑ PAMPJPE ↓
FM-R50+GTR 49 5.4 0.7 805.3 38.6
FM-R50+GTR+ITP@20% 39 5.3 (-1.8%) 0.6 (-14.3%) 794.7 (−1.3%) 40.5 (+4.9%)
FM-R50+GTR+ITP@50% 24 5.1 (-5.5%) 0.5 (-28.5%) 806.1 (+0.1%) 40.7 (+5.4%)

FM-Eb0+GTR 49 1.7 0.7 870.5 44.2
FM-Eb0+GTR+ITP@20% 39 1.6 (-5.9%) 0.6 (-14.3%) 876.3 (+0.7%) 43.9 (-0.%)
FM-Eb0+GTR+ITP@50% 24 1.4 (-17.6%) 0.4 (-42.9%) 870.4 (−0.1%) 44.0 (-0.5%)

Figure 4. Qualitative results of FastMETRO+GTP+ITP@20% on Human3.6M [23] and 3DPW [68].

These results indicate that the ITP module learns more dis-
criminative features and thus enhances the capability of
generalization, allowing methods with ITP to achieve bet-
ter performance in more challenging in-the-wild scenarios.
The strong representation capability of ITP can also be seen
in the clustering process, which promotes competitive accu-
racy with fewer tokens while producing semantically mean-
ingful clustering results, as demonstrated in Sec. 4.7.1.

We conduct comparisons with existing SOTA ap-
proaches (both Transformer and Non-Transformer based)
on monocular human mesh recovery. The results are sum-
marized in Table 5. It is notable that, with effective to-
ken reduction techniques, our method produces competitive
or higher accuracy on Human3.6M [23] and 3DPW [68]
datasets. For instance, on 3DPW, our METRO-H64+GTR
achieves 87.9mm MPVE, 75.5mm MPJPE and 46.6mm
PAMPJPE surpassing METRO–H64. In general, token
reduction results in information loss, which leads to a
slight drop in accuracy. For MPVE, using an HRNet-
W64 backbone, GTR typically causes a larger error in-
crease of 2.6 mm (from 84.1 to 86.7), while ITP is 1.5
mm (from 86.7 to 88.2). This suggests GTR sacrifices
more accuracy for efficiency, while ITP has less impact.
Qualitative results of FastMETRO+GTR+ITP@20% are vi-
sualized in Figure 4, where our method produces accu-
rate and robust human mesh recovery from monocular im-
ages. In the inset, we also provide a qualitative com-
parison of FastMETRO+GTR+ITP@20% (w/ GTR+ITP)
and the baseline model FastMETRO (w/o GTR+ITP),

where the joint-vertex attention is
similar to the blending weights in
SMPL, which properly captures the
shape structure. However, the
model w/o GTR+ITP redundantly
correlates local joints with distant
vertices, leading to additional in-
teraction costs. In summary, ex-
tensive experiments validate the ef-
fectiveness of proposed strategies
for token reduction across different
Transformer structures (Encoder-
based METRO [39] and Encoder-Decoder-based Fast-
METRO [8]) and different Transformer model sizes (Fast-
METRO and FastMETRO(S)).

4.4. ITP v.s. TokenLearner [59]

Table 6. Comparison with TokenLearning [59] in ITP for token
reduction on 3DPW [68] and Human3.6M [23].

Method GFLOPs
3DPW Human3.6M

MPVE MPJPE PAMPJPE MPJPE PAMPJPE
TokenLearner [59] 5.7 99.3 82.4 52.6 61.2 45.4
Image Token Pruning 5.3 99.2 82.4 52.3 59.8 40.5

We compare ITP with another popular pruning strategy
Tokenlearner [59] for HMR on Human3.6M and 3DPW
in Table 6. We use Encoder-Decoder structure [8] with
ResNet-50 [20] as a backbone. The pruning rate is 20%. In
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Figure 5. Qualitative results on FreiHAND [85] by FastMETRO+H64+GTR+ITP@20% model.

Table 8, ITP saves more computational costs while achiev-
ing the highest accuracy in terms of both human mesh re-
covery and joint estimation.

4.5. NSR v.s. GCN [27] and MLP

We discuss the effectiveness of NSR in GTR. We com-
pare NSR with other implementations, including Multi-
Layer Perceptron and Graph Convolutional Network [27]
following Pose2Mesh [9]. We condition the backbone on
ResNet-50 [20] using Encoder-Decoder structure [8]. In
Table 7, NSR achieves higher performance on Human3.6M
and 3DPW. This indicates that the attention mechanism in
NSR provides a stronger modeling capability of vertices
given the learned body features, which thus improves the
quality of recovered mesh vertices.

Table 7. Comparison of different network structures of NSR for
GTR on 3DPW [68] and Human3.6M [23].

Model
3DPW Human3.6M

MPVE MPJPE PAMPJPE MPJPE PAMPJPE
Multi-Layer Perceptron 99.0 80.4 49.6 57.7 38.9
Graph Convolutional Network 98.8 81.5 49.8 58.2 38.8
Neural Shape Regressor 95.9 79.2 49.2 57.2 38.6

4.6. Generalization on Hand Mesh Recovery

To investigate the generalizability of our frame-
work, we conduct an experiment on monocular hand
mesh recovery, which is summarized in Table 8.
Following FastMETRO [8], we report PAMPJPE, F-
score@15mm (F@15mm) on FreiHand [85] together with
GFLOPsT and throughput. The qualitative results are pro-
vided in Figure 5. The hand vertex-joint interactions are
visualized in Appendix C.

4.7. Further Discussion

4.7.1 Analysis of Image Token Pruning

Image Token Pruning, in essence, achieves body-aware
clustering results encoding discriminative body features.

Table 8. Comparison with the SOTA methods on hand mesh re-
covery on FreiHAND [85].

Method GFLOPsT ↓Throughput ↑PAMPJPE ↓F@15mm ↑
METRO-H64 [39] 13.1 186.7 6.8 0.981
FastMETRO-H64 [8] 3.3 228.4 6.5 0.982
FastMETRO-H64+GTR+ITP@20% 1.0 260.2 6.7 0.980

Input R-Elbow R-Knee L-Elbow L-Knee

Figure 6. Visualization of learned semantics by ITP. Note that the
clustering results are consistent across different identities, i.e, dif-
ferent clusters correspond to different body joints.

We visualize the heatmap of the predicted clustering scores
in Figure 6, where the model is with ITP at 50% pruning
rate (resulting in 24 image tokens) and GTR. The backbone
is ResNet-50. As shown in Figure 6, clustering-based prun-
ing maps original tokens to a fewer number of clusters with
semantics corresponding to the body joints. Note that the
semantics is consistent across different identities.

4.7.2 ITP with Token Reduction Supervision

In Figure 7, we visualize the scores predicted by ITP in
HMR. The mask supervision is generated by projecting
mesh vertices to image patches using estimated camera pa-
rameters as shown in Figure 7 (b)(c). ITP effectively learns
to pay attention to a human body region in the given image.
Quantitatively, the projection supervision improves PAM-
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(a) (b) (c) (d)

Figure 7. Visualization of learned semantics by Image Token
Pruner. (a) projected joints. (b) projected mesh vertices. (c) mask
supervision. (d) scores predicted by ITP.

Input R-Elbow R-Knee L-Elbow L-Knee Head

Figure 8. Visualization of cross-attention between joint and ver-
tices. Samples are from Human3.6M and 3DPW.

PJPE from 41.6 to 40.6 on Human3.6M.

4.7.3 Vertex-Body Feature Interactions

We show the interactions between vertices and joints mod-
eled by cross attention within Neural Shape Regressor; See
Figure 8, where the heatmap is obtained by averaging atten-
tion scores across all heads of the multi-head cross-attention
between query vertices and body features. As shown in Fig-
ure 8, the interactions of mesh vertices and joints are at the
body part level, e.g., elbow, knee, head, which are similar
to the way of the blending of a human body model, i.e.,
SMPL [44] and thus validates our claims.

4.8. Limitations and Future Work

When an extremely high pruning rate is applied to ITP,
the accuracy of the model drops dramatically, e.g, when
the token number is pruned to be one, the accuracy of the
model drops dramatically (12.1%) from 38.6 to 43.3 PAM-
PJPE. For GTR, since we regress joints and vertices pro-
gressively, the quality of the recovered vertices by NSR de-
pends on the learned body features. More failure cases are
in Appendix D. In future work, one of the promising direc-
tions could be applying the shown enhanced efficiency of

HMR from monocular images to methods exhibiting high
complexity for improving the model efficiency, especially
in tasks such as human-environment/object interaction that
perceives environments [37, 22, 18, 75, 73, 19, 61], as
well as HMR from videos that involve temporal informa-
tion [28, 53, 35, 63, 79, 72].

5. Conclusion
In this paper, we investigate the issues of token redun-

dancy in the existing Transformer-based methods for both
body and hand mesh recovery tasks. To tackle the prob-
lem, we introduce two effective token reduction strategies
for Transformers by incorporating insights from both 3D
geometry structure and 2D image features. Specifically, we
recover the body shape in a hierarchical manner and clus-
ter for image features to feed fewer but more discrimina-
tive tokens to the Transformer. Our method dramatically re-
duces the high-complexity interactions in the Transformer,
improving the Pareto-front of accuracy and efficiency. Ex-
tensive experiments validate the proposed strategies.
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