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Abstract

Meta-learning-based few-shot detectors use one K-
average-pooled prototype (averaging along K-shot dimen-
sion) in both Region Proposal Network (RPN) and Detec-
tion head (DH) for query detection. Such plain operation
would harm the FSOD performance in two aspects: 1) the
poor quality of the prototype, and 2) the equivocal guidance
due to the contradictions between RPN and DH. In this pa-
per, we look closely into those critical issues and propose
the σ-Adaptive Decoupled Prototype (σ-ADP) as a solution.
To generate the high-quality prototype, we prioritize salient
representations and deemphasize trivial variations by ac-
cessing both angle distance and magnitude dispersion (σ)
across K-support samples. To provide precise information
for the query image, the prototype is decoupled into task-
specific ones, which provide tailored guidance for ‘where to
look’ and ‘what to look for’, respectively.

Beyond that, we find our σ-ADP can gradually
strengthen the generalization power of encoding network
during meta-training. So it can robustly deal with intra-
class variations and a simple K- average pooling is enough
to generate a high-quality prototype at meta-testing. We
provide theoretical analysis to support its rationality. Ex-
tensive experiments on Pascal VOC, MS-COCO and FSOD
datasets demonstrate that the proposed method achieves
new state-of-the-art performance. Notably, our method sur-
passes the baseline model by a large margin – up to around
5.0% AP50 and 8.0% AP75 on novel classes.

1. Introduction

In recent years, object detectors based on deep learning
have achieved impressive performance [36, 37, 14] due to a
large amount of human-annotated data. However, humans
can observe novel objects with limited instances. Thus,

*Equal contribution. Author ordering determined by coin flip.
†Corresponding author.
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Figure 1: The visualization of attention maps for a novel class
of ‘walking shoe’. The attention maps are generated by common
practice (average-pooling along K-shot dimension) vs. weighted
pooling (weights deriving from either angle distance or a com-
bination with magnitude deviation), depicted as (b), (c) and (d),
respectively. Compared to other operations, σ-ADP (d) is able to
active salient regions and suppress trivial features among K sup-
port samples, resulting in the robust class representation. We have
only shown the two most representative samples for comparison,
as the activation map is the same for K samples.

few-shot object detection (FSOD) comes to rescue.
In general, there are two main categories of FSOD

approaches : fine-tuning and meta-learning based meth-
ods. The fine-tuning approaches [46, 41, 48, 50], with-
out considering the class-level representations, may pro-
duce negative transfer when the differences among cate-
gories are obvious. Other meta-learning-based methods
[18, 19, 49, 8, 54, 56, 55] are designed to acquire class-
level meta-knowledge and improve model generalization
to novel classes through feature re-weighting. Currently,
FSOD meta-detectors use episodic training with inputs of
K-support images and a query image. A class-level pro-
totype, generated from K-support images, re-weights the
query image and guides the learner for final detection re-
sults. Therefore, two main factors directly affect FSOD per-
formance: 1) the quality of prototype and 2) the precision of
guidance information.

For the first one, most meta-learning-based methods em-
ploy some form of class prototypes (globally semantic-rich
or locally spatially-aware) from a set of support samples.
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For example, methods [8, 54, 56, 29] form vectorial proto-
types via global average-pooled features, bilinearly-pooled
second-order representations, kernelized descriptors and
condition-coupled information respectively. Other works
[15, 55, 53] delve into the spatially-aware prototypes. They
treat different support samples equally (averaging along K-
shot dimension). Such plain operation struggles to capture
the salient regions, overwhelming by the non-target objects
1 and the intra-class variations, as shown in Figure 1 (b).

Generally, assigning weights for K-support features
based on the angle distance (measured by cosine similarity)
helps to reduce the intra-class variance [46], e.g., the co-
sine similarity between per sample to their average-pooled
points. This way, the refined prototype can target the rel-
evant objects, while discarding the most irrelevant regions
across K-shot support images. We observe that accounting
for cosine similarity alone is insufficient(Figure 1(c)). As a
vector is represented by its angle and magnitude (or length),
it makes sense to re-evaluate K support features based on
the magnitude deviation. And this deviation can be captured
by σ, which is a statistical measurement for measuring the
dispersion of a set of points.

In short, we first propose a novel σ-Adaptive Prototype
(σ-AP) to provide a high-quality class-level representation.
Specifically, the σ is power normalized [22] to properly up-
date the cosine-similarity-refined prototype, enhancing the
significance of descriptors that are similar to intrinsic rep-
resentations. The activations produced by our method high-
light salient features across support samples, leading to im-
proved class-level representation, as shown in Figure 1 (d).

For the second one, as analysed by the DeFRCN [33],
there are potential contradictions between the Region Pro-
posal Network (RPN) and the Detection Head (DH), which
may lead to reduced FOSD power. DeFRCN, a fine-turning
based method, alleviates conflicts through a gradient de-
coupled layer. For our meta-learning-based detector, we
decouple the prototype into task-specific ones in the spirit
of divide-and-conquer. The task-agnostic prototype is di-
vided, and each one plays a specific role in conquering the
where to look and what to look for. This allows our proto-
type learning to purposefully target inconsistent goals, re-
sulting in precise guidance information.

Beyond satisfying those two requirements, we find our
model gradually allows the encoding network (EN) to fo-
cus on generic features and factor out outliers across a set
of support samples during the training stage. So, the gener-
alization power of EN is strengthened and we can directly
utilize the basic average-pooled prototype at the inference
stage. We theoretically analyse prioritizing the samples
with small σ can speed up the process of prototype learn-
ing. And the EN’s generalization power is strengthened by
raising the lower bound of the optimal prototype. Extensive

1The regions are not part of the support object.

experiments demonstrate that our model achieves state-of-
the-art results, especially on the FSOD dataset without meta
fine-tuning on novel classes, which conforms to our model’s
generalization ability.

In summary, we propose the σ-Adaptive Decoupled Pro-
totype, which includes (i) a novel σ-Adaptive Prototype
for robust class-level representations, and (ii) the decou-
pled task-specific prototypes to provide precise guidance
for query detection. We call our approach σ-ADP and its
resultant network σ-ADP Net.

2. Related work

Below, we describe popular object detection and few-
shot learning algorithms followed by a short discussion on
few-shot object detection.

Object Detection. A classical problem of object detection
in Computer Vision (CV) performs localization of bounding
boxes of objects and recognition of their classes. Histori-
cally, object detection relied on sliding windows and hand-
crafted features [5, 12, 45]. Deep learning approaches in-
clude one-stage detectors which directly regress images to
bounding box annotations [35, 36, 26, 28]. Two-stage de-
tectors, inspired by R-CNN [37], generate class-agnostic re-
gion proposals which are then classified into class concepts
by another network [37, 14, 25, 21]. Two-stage approaches
can filter unrelated locations by the Region Proposal Net-
work and outperform one-stage methods [39]. Object detec-
tors are trained on large-scale datasets and do not scale well
to novel classes in the low-sample training regime. Few-
shot Learning (FSL) described below is better at adaptation
to novel classes.

Few-shot Learning. FSL has been heavily explored in
CV, with the prominent older shallow approaches [1, 9, 23]
and recent convolutional neural network (CNN) based ap-
proaches [20, 44, 40, 10, 42, 52]. FSL approaches can be
divided into metric learning and meta-learning approaches.
The aim of FSL with the underlying metric-learning mech-
anism [20, 38, 42] is to capture the similarity between train-
ing images sufficiently enough to provide good generaliza-
tion during testing with novel classes. Koch et al. [20]
employ Siamese networks for one-shot image classifica-
tion. Prototypical Networks [40] learns a model that com-
putes distances between a datapoint and prototype repre-
sentations of each class. Meta-learning approaches [11, 13]
contain two optimization loops, with the outer loop finding
a meta-initialization, from which the inner loop can effi-
ciently learn new tasks. Ravi and Larochelle [34] propose
an LSTM-based meta-learner that is trained to attain a quick
convergence on new tasks. These classification methods do
not scale to detection that requires object localization and
recognition.

Few-shot Object Detection. FSOD is an emerging less ex-
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plored problem than few-shot classification. Recent meth-
ods can be categorized into fine-tuning and meta-learning
based models. Firstly, the fine-tuning-based frameworks
[3, 46, 50, 33] learn to transfer knowledge from base cat-
egories to novel categories via fine-tuning. A Low-Shot
Transfer Detector (LSTD) [3] leverages a rich source do-
main to construct a target domain detector with few training
samples. TFA [46] shows that only fine-tuning the last lay-
ers of detection head on novel classes can significantly im-
prove the FSOD performance. NP-RepMet [50] introduces
a negative- and positive- representative learning framework
via triplet losses that bootstrap the classifier. On the other
hand, meta-learning-based methods [49, 8, 54, 56] learn a
class-agnostic detector by performing an exemplar search
at the instance level given K support images. Those ap-
proaches can generalize better to novel classes. Recently,
FSOD-ARPN [8], PNSD [54] and KFSOD [56] focus on
the prototype generation paradigm, that is, they generate
a vectorial prototype using different strategies or multiple
high-order features. Then support prototypes and query fea-
ture maps are matched by channel-wise attention. Other
approaches [15, 55, 53] delve into the spatially-aware pro-
totype by K-shot average pooling in the process of pro-
totype learning. But this basic prototype is intra-class bi-
ased due to the photometric and geometric variations across
a set of support images. This would affect the feature
re-weighting with the query image and thus significantly
harms the performance of FSOD. We thus revalue K sup-
port features based on the reliable weights which are ad-
justed for both angle similarity and the magnitude devia-
tion σ. Besides, previous meta-learning-based methods uti-
lize the task-agnostic prototype and fail to handle the con-
tradictions between Region Proposal Network and Detec-
tion Head. Our method draws on the spirit of divide-and-
conquer while proposing task-specific prototypes.

3. Problem Setting

The FSOD operates on L-way K-shot episodes which
are formed by sampling a query image containing multiple
objects, and K support crops per each of L sampled classes.
Specifically, we have a base dataset Db containing abun-
dant examples of base classes Cb, and a novel dataset Dn

comprising only a handful of examples of novel classes Cn.
The two sets of classes do not overlap, ie., Cb ∩ Cn = ∅.
Formally, Db = {(x, y)|y = {(ci, bi)}, ci ∈ Cb}, Dn =
{(x, y)|y = {(ci, bi)}, ci ∈ Cn}, where x ∈ I is an input
image, and y ∈ Y is the corresponding annotation; ci and
bi are the class label and bounding box coordinates of ith

image of I, respectively. The goal is to detect objects in the
query image for novel classes using few-shot support crops.

4. The Proposed Approach

In this section, we first introduce the architecture of our
σ-ADP Net and then elaborate on σ-Adaptive Prototype and
Decoupled Task-specific Prototypes. Finally, we provide a
brief discussion about rationality.

4.1. Overview

FSOD relies on limited support information to detect ob-
jects of novel classes, and there are two important aspects
that determine its performance: 1) the quality of the proto-
type, and 2) the precision of the guidance information for
the query detection. These two factors motivate our designs
of σ-AP and decoupled task-specific prototypes.

As a plug-and-play module, we implement σ-ADP in
two architectures [8, 17] to demonstrate that the proto-
types generated by our method are both spatially-aware and
semantic-rich. Generally, both architectures consist of an
Encoding Network (EN), Support-Query Aggregation (S-
QA), Region Proposal Network (RPN) and detection head
(DH), but the S-QA and DH designs differ.

The overall architecture of our σ-ADP Net is illustrated
in Figure 2. Specifically, given a set of K support crops
{Xk}k∈Ik

(Ik stands for the index set of K-shot) and a
query image X∗ per episode, we use the EN (e.g., ResNet-
101) with shared weights to extract feature map Φ ∈ RC×N

per image (of N = W ×H spatial size and C channel di-
mension) from query and support images. Then, taking as
the inputs {Φk}k∈Ik

and their K-shot average-pooled fea-
ture Φ̄, σ-ADP aims to build the task-specific prototypes.
They are individually applied in the subsequent two units:
1) S-QA which matches the prototype with query features
to activate co-existing features, passed into the traditional
RPN [37] to generate region proposals, and 2) DH with the
inputs of proposal-prototype pairs to learn localization and
classification for the query image.

4.2. σ-Adaptive Prototype

Motivations: 1) Extracting discriminative and salient fea-
tures can help create high-quality representations. The clas-
sic K-shot average pooling is detrimental to the prototype’s
quality which is mainly affected by the intra-class varia-
tions and non-target objects. While cosine similarity can
reduce intra-class variances by measuring angle distances,
it may not be sufficient as it does not take into account
modulus changes. In order to produce high-quality proto-
types, our aim is to exploit the underlying variability by ad-
ditionally capturing magnitude deviations within the same
class. 2) For the dynamic aggregation of support features in
a spatially-aware way, FCT [16] uses the transformer [43]
architecture for dynamic support feature aggregation, while
DAnA [4] generates weights with stacked FC layers. These
methods introduce more parameters, which can be detri-
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Figure 2: The framework of σ-ADP Net. Compared to the baseline, the model of σ- Adaptive Decoupled Prototype is inserted into the
pipeline to provide the task-specific prototypes, performing ‘where to look’ and ‘what to look for’ in RPN and Detection Head (as depicted
by boxes in yellow and blue for clear reference), respectively. We first employ the affine transformation for feature decoupling, and then
capture distance of angle & magnitude, either spatially-wise or channel-wise, for space decoupling. During meta-testing, we remove the
σ-ADP model. Best viewed in color and zoomed in.

mental to FSOD by increasing model complexity, thereby
reducing network generalization.

In short, we first intend to revalue the representations per
sample by measuring both angle and magnitude distances.
This filtering process will remove the variability and ensure
a robust prototype. In addition, the proposed model should
be parameterless. We propose a conceptually simple but
practically powerful paradigm in prototype learning.

Given a set of support features {Φk}k∈Ik
and K-shot

average-pooled prototype Φ̄, we transform them into ma-
trices with size of {Φk}k∈Ik

∈ RK×N×C and {Φ̄} ∈
R1×N×C , where K, N , C represent the number of support
images, the number of pixels and the channel dimension,
respectively.

First, the cosine similarity between the prototype and
support samples is formulated, as follows:

Γ̃(Φ̄,Φk) =
(Φ̄) • (Φk)

T∥∥Φ̄∥∥
2
• ∥Φk∥2

, (1)

where ‘•’ indicate matrix multiplication, and the size of Γ
is RK×N×N .

Herein, the magnitude dispersion of K support samples
is measured by the standard deviation σk per shot sample,
defined as:

σk(Φ̄,Φk) =

√√√√ 1

C

C∑
i

(ϕk
i − ϕ̄T

i )
2, (2)

where lowercase symbols ϕk
i and ϕ̄i denote vectors, e.g.,

Φk ≡{ϕk
i ∈RN×1}i∈IC

and Φ̄≡{ϕ̄i ∈RN×1}i∈IC
. For

brevity, we define Σ ≡ {σk}k∈Ik
∈ RK×N×N .

In order to positively affect the angle similarity, the Σ−1

should be used. However, since Σ is in the denominators,
the gradient may sometimes explode at the beginning of
training. To avoid this issue, we turn to the Spectral Power
Normalization, a so-called SigmE PN function [22] which
transforms the inputs into the range [0, 1]. Then, we use one
minus power normalization results in practice, defined by:

Σ̃ = 1− GSigmE(Σ; η) =
2

eηΣ + 1
, (3)

where 1 ≤ η ≈ N depicts the number of features in[22],
while it plays a different role in our method. η controls the
large dispersion features to be filtered out, leading to better
adaptation. Refer to the §5 and Supplementary Material §C
for further analyses.

We combine the above steps to form the following for-
mulation:

Γ(Φ̄,Φk) = Γ̃(Φ̄,Φk) + Σ̃(Φ̄,Φk). (4)
Then, K support features are re-weighted, as follows:

Γ(Φ̄,Φk) •Φk. (5)
The final robust prototype Φ̄′ is K- summation across re-
evaluated support features.

4.3. Decoupled Task-specific Prototypes

Inspirations: Our pipeline is based on a two-stage architec-
ture called Faster R-CNN, which comprises a Region Pro-
posal Network (RPN) for generating query proposals and a
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Figure 3: The attention maps in (b), (c), and (d) are generated by
different variants trained using either angle distance, magnitude
deviation, or both.

Detection Head (DH) for performing classification and lo-
calization. Both these sub-networks are guided by the sup-
port prototype. There is an inconsistency among these sub-
networks [33]. To address this issue, we design spatially-
wise and channel-wise prototypes, one for RPN of ‘where
to look’, and the other for DH of ‘what to look for’. This
is important because an entangled task-agnostic prototype
may provide imprecise guidance for individual tasks, as it
needs to balance the different needs of both tasks.

When computing Γ(·) in Eq.4, the relation map (RM)
would be entangled in both spatial and channel dimensions,
ie., Φ̄(1 × N × C) and Φk(K × N × C) are measured
along the second and third dimensions. The size of RM
is K × N × N . We intend to divide Γ(·) to Γ‡(·) and
Γ†(·), each with the size of N × 1 × K and C × 1 × K
for capturing the similarity& discrepancy along spatial and
channel modes. The two types of RM are obtained by anal-
ogy with the same operations as in Γ(·), but different in-
put dimensions via the operation of permutation. Specifi-
cally, we begin by using two 1 × 1 convolutional kernels
to map K-support features to different representations (fea-
ture decoupling), both with weights of C×C, similar to the
affine transformation layer [33]. Such outputs are then per-
muted: for measuring spatially-wise similarity& discrep-
ancy (space decoupling), Conv1(Φk) is rearranged to the
size of N × K × C, while for channel-wise relationships,
the size of permuted Conv2(Φk) is C × K × N . The
corresponding prototypes are, of course, K-average pooled
across those transformed support features, respectively. The
above processes are marked as ‘Perm(Conv1(Φk))’ and
‘Perm(Conv2(Φk))’, which replace the inputs of Eq. 4.
The final spatially-wise Φ̄‡ and channel-wise Φ̄† are ob-
tained by weighted summation where the weights are from
Γ‡(·) and Γ†(·), respectively:

Φ̄‡ = Γ‡(Φ̄,Φk) •Φk, Φ̄† = Γ†(Φ̄,Φk) •Φk. (6)

4.4. Discussion

Readers may understandably ask about the rationale be-
hind the form of Eq. 4. We provide an initial overview of
this design and discuss its crucial factor by providing qual-
itative results based on the attention map of the prototype.

We also give a theoretical analysis of σ-Adaptive Prototype
and its impact on EN’s generalization ability.
‘Refine once’ and ‘Refine twice’ perform similarly. One
common method is to refine the basically K-averaged
pooled prototype in a step-by-step process. First, the proto-
type is updated by aggregating K weighted features based
on their cosine similarity to the mean. Then, the K features
are re-evaluated again based on their dispersion around the
first refined prototype for final one. In short, the basic pro-
totype is refined twice. As a serial ‘Refine twice’ is cumber-
some, we try to use a parallel structure by computing cosine
similarity and σ between support samples and the basic pro-
totype in parallel, then resulted in σ-adapted cosine similar-
ity for weighting K features. The final prototype is obtained
by refining the basic prototype at once instead of one by one
(‘Refine once’). We examine two designs from a theoreti-
cal standpoint, as provided in the Supplementary Material
§B, supported by the empirical evidence in §5. And we
can safely make the 1st observation that ‘Refine once’ and
‘Refine twice’ perform similarly.
A residual link is crucial for ensuring ‘Refine once’
works properly. We perform training where the σ-ADP
uses only the magnitude deviation (σ) during meta-training.
The resulting attention map is shown in the top row of Fig-
ure 3(c), where the prototype features are represented by a
few trivial variations. This prototype cannot precisely re-
weight query features for detection task, resulting in lower
FSOD results. If there are large differences in appearance
or photometry, it can be hard to capture common features
based on the sample’ dispersion. However, cosine similar-
ity measures the angle distances between two sets of vectors
and is not affected by the magnitude of the vectors being
compared (the top row of Figure 3 (b)). Therefore, it is bet-
ter to first use angle distance following a residual sample’
dispersion. We obtain the 2nd observation that a residual
link is crucial for ensuring ‘Refine once’ works properly.

These two observations explain why two statistical rep-
resentations are combined by a residual link (element addi-
tion) in Eq 4. Even in the worst case, σ wouldn’t impede
prototype learning; instead, it would enhance it (Figure 3
(d)).
Theoretical Analysis: For meta-learning-based detectors,
the high quality class-level prototype (Φ̄) should be robust
enough to represent K support samples (Φk). In other
words, an optimal prototype should be similar to all sam-
ples within the same class, as indicated by maximum ex-
pectation of cosine similarity among them, and also across
L classes ( Φ̄L ≡ {Φ̄l}l∈IL

). This process is formulated
as:

maxEΦ̄l
[EΦk

[Cos(Φ̄l,Φk)]], (7)

Proposition 1 Approximating the optimal prototype is
equivalent to minimizing the variance D[ϕk

i ], Φk ≡
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{ϕk
i }i∈IC

:

EΦ̄l
[EΦk

[Cos(Φ̄,Φk)]] ≥
∑C

i=1E[ϕk
i ]

2∑C
i=1D[ϕk

i ] +
∑C

i=1E[ϕk
i ]

2

(8)

We give the proof in the Supplementary Material §A. The
Eq.8 presents a learning task with adjustable speed, where
the speed gradually increases as the variance becomes
smaller. Therefore, if the meta-learner is trained with low-
dispersion points, it can speed up the process of approach-
ing the expected prototypes. Thus, we emphasize low-
dispersion descriptors and deemphasize trivial variations by
explicitly using σ in prototype learning.

Besides, the intra-class variations can significantly af-
fect the generalization ability of CNNs, resulting in lower
generalization performance on new classes [32, 51]. Thus,
EN should also take advantage of the robust prototypes. In
Eq.8, when the objective of prototype learning is achieved,
the lower boundary will be raised. This learning process
can help EN to deal robustly with outliers and strengthen
features that spread less from the salient features. This is
empirically supported by Figure 4b, which shows the devi-
ation between the estimated prototype and the optimal one.

5. Experiments
Datasets and Evaluation. We evaluate our method on
three benchmark datasets: PASCAL VOC 2007/12 [7], MS
COCO [27] and FSOD [8]. For PASCAL VOC 2007/12,
we use three random splits, each consisting of 20 categories
that are randomly divided into base/novel classes at a ratio
of 15/5. Few-shot learning is performed on each novel cate-
gory with K∈{1, 2, 3, 5, 10} objects sampled from the com-
bination of VOC07 and VOC12 train/val set. Following pre-
vious works [18, 8, 54, 24], we evaluate the detector perfor-
mance using the mean Average Precision with intersection
over union (IoU) with the threshold of 0.5 (AP50). For MS
COCO [27], we adopt 20 categories that overlap with PAS-
CAL VOC as novel categories and utilize the remaining 60
categories as base classes, as done in [49]. During the few-
shot fine-tuning step, we choose K ∈ {10, 30} annotated
samples for each category and the standard COCO-style AP
metric is employed to evaluate our method. For the FSOD
dataset [8], we divide its 1000 categories into base/novel
classes at a ratio of 800/200, and report the detection perfor-
mance using the commonly used metrics AP50 and AP75.
Implementation Details. The proposed model is trained
with a genetic detection loss that has been used by exist-
ing methods [8, 56, 54], ie., Ldet = Lrpn + Lcls + Lreg ,
where Lrpn aims to refine the region proposals generated
from RPN, Lcls is the binary cross-entropy loss for the box
classifier, and Lreg is a smooth ℓ1 loss for the bounding-
box regression. The model is trained with the SGD opti-

mizer (momentum 0.9, weight decay 1e-4, batch size 4) on
4 NVIDIA V100 GPUs. We follow the same training/fine-
tuning iterations as [8, 54, 56]. Images are resized to have
a shorter edge of 600 pixels and a maximum longer edge
of 1000 pixels. Each support image is cropped based on
ground-truth boxes, bilinearly interpolated and padded to
320×320 pixels. We keep all hyper-parameters the same
across all three datesets, unless specified otherwise.
Training Framework. To transfer knowledge from base
categories to novel categories, we adopt the typical two-step
training scheme:

(1) Meta-learning on base classes. We leverage
episode-based training on base classes with an encoder net-
work (ResNet-101) pre-trained on ImageNet [6]. Each
episode includes a single query image and K randomly
sampled support instances per class. During the meta-
testing step, we generalize the class-agnostic model to novel
classes by simply calculating their class prototypes.

(2) Fine-tuning on novel classes (optimal step). For
PASCAL VOC and MS COCO datasets, we fine-tune our
model on novel classes using the same training strategy as
meta-learning on base classes. For the FSOD dataset, we do
not use fine-tuning.

5.1. Main Results

5.1.1 Comparisons with Main Baselines
We first show the effectiveness of our method by compar-
ing it with two baselines. As shown in Table 1 and Ta-
ble 2, Ours+FSOD and Ours+DCNet achieved significant
improvements of ∼4.8% and 6.1%, respectively, over the
main baselines on PASCAL VOC benchmark. Even in ex-
tremely low-shot scenarios, σ-ADP still benefits FSOD per-
formance as it allows for self-refinement within samples.
Moreover, σ-ADP consistently improves the performance
of both baselines on the more challenging FSOD and COCO
benchmarks, as demonstrated in Table 3a and Table 3b.
5.1.2 Comparisons with the State-of-the-Art
PASCAL VOC 2007/12. We compare our method to
FADI [2], QSAM[24], FSODup [47], FSCE [41], TFA [46],
MetaDet [49], NP-RepMet [50], MPSR[48], FSOD [8],
PSND [54], KFSOD [56], MGHL [53], and DCNet [17].
Table 1 shows the AP50 of the novel classes on the three data
splits with K training shots. σ-ADP outperforms TENET
(the second-best) by a remarkable margin of ∼ 1.82–4.4%,
highlighting the effectiveness of our designs. Moreover, Ta-
ble 2 provides detailed class-wise results of each novel/base
category under the (class split 1, 3-shot setting), which show
that the proposed σ-ADP significantly boosts the detection
performance for the base categories (69.5% and 72.2%)
compared with the second-best method [56], indicating our
method has better generalization ability and can alleviate
the catastrophic forgetting issue when transferring the base
knowledge to a novel domain.
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Table 1: Comparison of different methods in terms of AP50 (%) under 3 different splits for 5 novel categories with K shots. RED/BLUE
denote the best/the second best.* represents average results over multiple runs. ‘–’: No reported results.

Novel Set 1 Novel Set 2 Novel Set 3Method / Shots Venue 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FSRW ICCV 2019 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
MetaDet ICCV 2019 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1

TFA w/ fc ICML 2020 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2
TFA w/ cos ICML 2020 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
Xiao et al. ECCV 2020 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

MPSR ECCV 2020 41.7 42.5 51.4 55.2 61.8 24.4 29.3 39.2 39.9 47.8 35.6 41.8 42.3 48.0 49.7
FSOD CVPR 2020 37.8 43.6 51.6 56.5 58.6 22.5 30.6 40.7 43.1 47.6 31.0 37.9 43.7 51.3 49.8
PNSD ACCV2020 38.4 44.1 51.3 57.2 59.1 25.2 33.2 43.3 45.4 49.3 32.8 38.7 45.6 52.9 52.4

NP-RepMet NeurIPS20 37.8 39.2 31.7 37.3 49.4 41.6 41.3 43.4 47.4 49.1 33.3 35.6 39.8 41.5 44.8
SRR-FSD CVPR 2021 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4

FSCE CVPR 2021 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
FSODup ICCV 2021 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.5
MGHL CVPR 2021 48.6 51.1 52.0 53.7 54.3 41.6 45.4 45.8 46.3 48.0 46.1 51.7 52.6 54.1 55.0
CME CVPR 2021 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5
FADI NeurIPS21 50.3 54.8 54.2 59.3 63.2 30.6 35.0 40.3 42.8 48.0 45.7 49.7 49.1 55.0 59.6

QSAM WACV2022 31.1 35.7 39.2 50.7 59.4 22.9 28.4 32.1 35.4 42.7 24.3 29.1 35.0 50.0 53.6
KFSOD CVPR2022 44.6 – 54.4 60.9 65.8 37.8 – 43.1 48.1 50.4 34.8 – 44.1 52.7 53.9
DeFRCN ICCV2021 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4

Ours+DCNet 52.3 55.5 63.1 65.9 66.7 42.7 45.8 48.7 54.8 56.3 47.8 51.8 56.8 60.3 62.4

TFA w/ cos* ICML 2020 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
TIP* CVPR 2021 27.7 36.5 43.3 50.2 59.6 22.7 30.1 33.8 40.9 46.9 21.7 30.6 38.1 44.5 50.9

DCNet* CVPR 2021 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7
TENET* ECCV 2022 34.1 – 50.2 52.0 60.7 24.0 – 40.5 40.2 47.4 33.3 – 38.9 43.7 51.4

Ours+DCNet* 35.9 40.3 49.8 56.8 65.1 25.6 30.3 41.7 41.8 50.3 33.9 35.6 43.5 47.1 55.9

Table 2: Comparison with SOTA on the PASCAL VOC 2007 testing set for novel and base categories (class split 1, 3-shot protocol) in
terms of AP50 (%). RED/BLUE denote the best/the second best. The ¨FSOD indicates that the results are reproduced by us.
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FSRW ICCV2019 26.1 19.1 40.7 20.4 27.1 26.7 73.6 73.1 56.7 41.6 76.1 78.7 42.6 66.8 72.0 77.7 68.5 42.0 57.1 74.7 70.7 64.8
Meta R-CNN ICCV2019 30.1 44.6 50.8 38.8 10.7 35.0 67.6 70.5 59.8 50.0 75.7 81.4 44.9 57.7 76.3 74.9 76.9 34.7 58.7 74.7 67.8 64.8

¨FSOD CVPR2020 35.8 61.2 57.6 60.2 44.7 51.9 68.0 73.3 58.6 54.1 79.5 81.7 48.4 62.9 79.1 83.6 76.3 36.6 65.2 75.4 62.3 67.0
MPSR ECCV2020 35.1 60.6 56.6 61.5 43.4 51.4 – – – – – – – – – – – – – – – 67.8

NP-RepMet NeurIPS2020 12.9 60.5 39.9 43.1 52.2 41.7 79.8 82.5 66.9 73.8 71.6 57.6 52.9 64.1 49.6 70.7 71.8 58.7 74.2 55.0 69.5 66.6
KFSOD CVPR2022 39.8 61.9 59.6 58.3 45.7 53.1 78.1 73.4 60.3 58.2 79.4 81.0 52.2 61.1 83.3 74.9 80.8 41.3 76.6 71.7 70.5 69.5

Ours+FSOD 40.2 65.3 65.7 68.4 50.3 57.9 69.7 75.8 63.7 56.8 82.5 85.8 52.6 64.9 81.1 86.6 78.6 38.9 68.4 78.6 65.7 69.8
Ours+DCNet 49.5 68.8 70.5 60.5 43.6 63.1 79.2 78.3 65.1 59.4 85.9 82.7 45.7 64.3 88.7 78.6 82.3 45.1 75.0 77.7 75.1 72.2

FSOD. Table 3a presents a comparison of σ-ADP with
FSOD [8], PNSD [54], KFSOD [56], TENET [55] and
LSTD (FRN) [3] under 5-shot protocol. Our method
achieves the SOTA results of 36.9% AP50 and 32.8% AP75

on this setting, surpassing all other methods. Note that all
methods in the table are directly applied to detect unseen
categories without fine-tuning, except for LSTD (FRN),
which transfers base knowledge to the novel domain.
MS COCO. We further 3b compare σ-ADP with FADI
[2], FSCE [41], TFA [46], Meta R-CNN [49], KFSOD
[56] and DeFRCN [33] on the MS COCO minival set (20
novel categories, 10/30-shot protocol), a more challenging
dataset with more complex scenarios and larger data size.
our model consistently outperforms recent SOTAs on the
10/30 shot protocol, achieving approximately 1.8% mAP

improvement over the best method in the 10-shot regime.
Notably, even without using advanced techniques such as
gradient decoupled layers, our method still outperforms De-
FRCN [33] in the 30-shot setting.

5.2. Ablation Analysis

In this section, we conduct a comprehensive ablation
analysis to investigate the impact of each key component
in our σ-ADP. To achieve this, we build our σ-ADP upon
the strong baseline FSOD [8]. We report the ablation re-
sults on the 5-shot protocol for each novel category on the
FSOD dataset without any further fine-tuning.
Prototype generation strategies. Herein, we investi-
gate the effectiveness of our σ-ADP module to generate a
good prototype. We compare three different strategies for
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Table 3: Evaluation on the FSOD testset (3a) and MS COCO mini-
val set (3b). RED/BLUE denote the best/the second best. ‘–’ de-
notes results not provided.

Method Venue
AP50 AP75

5 5

LSTD
(FRN) AAAI18 23.0 12.9

FSOD CVPR20 27.5 19.4
PNSD ACCV20 29.8 22.6
QSAM WACV22 30.7 25.9
KFOSD CVPR22 33.4 29.6
TENET ECCV22 35.4 31.6

Ours+FSOD 32.7 27.3
Ours+DCNet 36.9 32.8

(a)

Method Venue mAP AP75

10 30 10 30

MPSR ECCV20 9.8 14.1 9.7 14.2
PNSD ACCV20 10.3 15.5 10.7 14.8

SRR-FSD CVPR21 11.3 14.7 9.8 13.5
FSCE CVPR21 11.9 16.4 10.5 16.2
FADI NeurIPS21 12.2 16.1 11.9 15.8

KFSOD CVPR22 18.5 – 18.7 –
DCNet CVPR21 12.8 18.6 11.2 17.5

DeFRCN ICCV21 18.5 22.6 – –

Ours+FSOD 16.2 20.8 16.9 18.0
Ours+DCNet 20.3 22.8 20.8 23.6

(b)

Table 4: Evaluation on FSOD testset (5-shot protocol on novel
classes) for the effectiveness of decoupled task-specific prototypes
(Φ̄‡ and Φ̄†) vs. an entangled task-agnostic prototype (Φ̄′).

Φ̄′ Φ̄‡ Φ̄† Aff. Trans. Novel(5-shot)
mAP AP50 AP75

a

✓ 28.0 29.8 25.7
✓ 27.3 29.1 25.4

✓ 27.6 29.4 25.9
✓ ✓ 29.3 31.8 26.8

b ✓ ✓ 28.1 30.5 26.4
✓ ✓ ✓ 29.9 32.7 27.3

producing prototypes: training with (1) the basically K-
average pooled prototype (‘K-avg.’), (2) K-weighted sum-
mation based on cosine similarity only (‘K-cos.’), and (3)
K-weighted summation based on standard deviation only
(‘K-σ’). We also ablate the process for basic prototype re-
finement (Re. once and Re. twice). Table 5a presents the
ablation results. The results show that ‘K-cos.’ and ‘K-
σ’ are unable to provide high-quality class-level prototypes
as both of them lead to a decrease in object detection per-
formance. Also, the two processes of prototype refinement
perform similarly and provide up to 5.0% mAP/7.0% AP75

gain over ‘K-avg.’ in novel classes (5-shot protocol).
Impact of task-specific prototypes. Designing task-
specific prototypes for mismatched tasks in RPN and DH
should help the detection of novel objects. To evaluate our
claim, we conduct ablations and present the results in Table
4. We use (a) an affine transformation layer for feature de-
coupling and (b) the metrics of similarity&deviation along
spatial and channel for space decoupling. In the setting of
(a), the superior performance of the last row demonstrates
space decoupling is more effective than using either proto-
type alone. Furthermore, under the 5-shot regime on novel
categories, we observed a drop in detection performance
by ∼1% mAP and ∼2% AP50 without using space decou-
pling. In the setting of (b), our ablations confirmed that fea-

Table 5: Results on FSOD testset (5-shot protocol on novel
classes) for applying different strategies of prototype generation
(5a). Effect on the generalization ability of encoding network (EN)
in (5b).

Prototype
Generation

Novel(5-shot)
mAP AP50 AP75

K-avg. 23.1 27.5 19.4
K-cos. 24.2 28.3 20.7
K-σ 24.8 28.7 21.3

Re. once 28.1 30.5 26.4
Re. twice 28.0 30.7 26.1

(a)

TrainingTesting Novel(5-shot)
mAPAP50AP75

K-avg. K-avg. 23.1 27.5 19.4

σ-AP K-avg. 28.1 30.5 26.4
σ-AP 28.7 30.6 26.9
(b)

Figure 4: Impact of varying the value of η in SigmE PN for
both entangled task-agnostic and decoupled task-specific proto-
types (4a). Comparison, w.r.t. the standard deviation (σ) of the
estimated prototype from the expected one, is reported in (4b),
where an expected prototype is a cluster center of all training sup-
port examples in the same class.

(a) (b)

ture decoupling brings slight benefits to object detection in
mismatched tasks in RPN and DH. However, the most sig-
nificant impact on FSOD performance was observed when
both decoupling tactics were used together, increasing per-
formance from 28.0%to 29.9% mAP.
Effects on the generalization of EN. During meta-training
and meta-testing, we apply hybrid strategies to examine
how our method impacts the power of the encoding network
(EN). Table 5b summarizes the results for novel classes. We
have the following key observations: 1) prototype learn-
ing with k-average pooled entity leads to low generaliza-
tion power, and 2) considering the similarity&deviation of
features to their prototype during training improves EN’s
generalization, and 3) with generalized EN, the simple K-
average pooling operation is sufficient for providing the
high-quality prototypes and precise guidance for query de-
tection during meta-testing. Moreover, as shown in Fig-
ure 4b, the prototype generated by σ-ADP is closer to the
expected value (the cluster center of the support examples
in the same class) than K-average pooling (our baseline).
Note we report the average distance for all novel classes.
Hyper-parameter Analysis. We examine the influence of
η in SigmE PN for both entangled and decoupled proto-
types, which is responsible for filtering out the large disper-
sion features. This leads to a better combination with cosine
similarity. We first vary η from 0.5 to 4. Figure 4a shows
that our model performance is stable when η ≥ 2.5. We
further observe that 2.5/1.5 gives the best performance for
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entangled/decoupled prototypes.
Inference results for multi-support crops. For inference
only, we randomly crop several patches based on the ground
truth bounding box of the support object for prototype esti-
mation. Table 6 shows the ablation on different numbers
of crops (vs. the baseline FSOD). Increasing the number
of features in the prototype estimation improves the perfor-
mance, but exceeding 3 crops leads to performance degra-
dation. The presence of valuable/positive support samples
is crucial for achieving good results, as emphasized by the
method [30] (Sec 4.1, ‘Bigger is not necessarily better’).
Our model exhibits robustness in handling noisy support
crops (#crop>1) vs. baseline.

Table 6: Inference results for multi-support crops on FSOD testset
(5-shot, averaged mAP/AP75 over 5 runs).

Method 1-crop 2-crop 3-crop 4-crop 5-crop

FSOD 23.1 / 19.4 23.1 / 19.5 22.5 / 18.1 22.0 / 17.2 21.5 / 16.7
Ours+FSOD 29.9 / 27.3 30.1 / 27.9 30.3 / 28.1 29.3 / 27.2 28.8 / 26.7

Generalization on transformer-extractor. We adopt
the transformer-based extractor Swin-B, pretrained on
ImageNet-22K, as the encoding network(EN) for PASCAL
VOC, MS COCO, and FSOD datasets (AP50%), follow-
ing the architecture of FSOD. The results show in Table
7, where the superscript represents the window size. Im-
portantly, σ-ADP consistently outperforms the baseline in
transformer-based EN by 4.8–6.2%, showcasing its excel-
lent compatibility. Refer to the Supplementary Material §F
for details on applying σ-ADP to FCT [16].

Table 7: Results on PASCAL VOC, MS COCO and FSOD testset
w.r.t. the generalization on Swin-B, measured by mAP/AP50.

Method ResNet-101 Swin-B7 Swin-B12

5-shot
(VOC)

5-shot
(FSOD)

10-shot
(COCO)

5-shot
(VOC)

5-shot
(FSOD)

10-shot
(COCO)

5-shot
(VOC)

5-shot
(FSOD)

10-shot
(COCO)

FSOD 56.8 27.5 18.6 57.1 28.6 19.1 56.3 28.3 18.4
Ours+FSOD 62.0 32.7 23.9 63.1 33.4 25.3 62.7 33.2 24.9

6. Conclusions
We have proposed σ-ADP to generate high-quality pro-

totypes tailored to each task in RPN and DH for FSOD. To
factor out underlying intra-class variations within support
samples, we consider both amplitude and angle distance of
K-shot samples from the mean. Thus, we leverage a sim-
ple standard deviation formula (σ) to adaptively update the
cosine similarity. Our theoretical analysis verifies that prior-
itizing the low-dispersion samples can speed up the process
of prototype learning, and also benefit the EN’s generaliza-
tion power. Finally, we decouple the prototype into task-
specific ones to conquer the contradicted tasks in RPN and
DH. Extensive experiments on three few-shot benchmarks
demonstrate its effectiveness.
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