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Figure 1: HyperDiffusion enables a new paradigm in directly generating neural implicit fields by predicting their weight
parameters. We leverage implicit neural fields to optimize a set of MLPs that faithfully represent individual dataset instances
(“Overfitting,” top-left). Our network, based on a transformer architecture, then models a diffusion process directly on the
optimized MLP weights (“Diffusion,” bottom-left). This enables synthesis of new implicit fields (“Synthesis,” bottom-right).

Abstract

Implicit neural fields, typically encoded by a multilayer
perceptron (MLP) that maps from coordinates (e.g., xyz)
to signals (e.g., signed distances), have shown remark-
able promise as a high-fidelity and compact representation.
However, the lack of a regular and explicit grid structure
also makes it challenging to apply generative modeling di-
rectly on implicit neural fields in order to synthesize new
data. To this end, we propose HyperDiffusion, a novel ap-
proach for unconditional generative modeling of implicit
neural fields. HyperDiffusion operates directly on MLP
weights and generates new neural implicit fields encoded
by synthesized MLP parameters. Specifically, a collection
of MLPs is first optimized to faithfully represent individual
data samples. Subsequently, a diffusion process is trained
in this MLP weight space to model the underlying distribu-
tion of neural implicit fields. HyperDiffusion enables diffu-
sion modeling over a implicit, compact, and yet high-fidelity
representation of complex signals across 3D shapes and 4D
mesh animations within one single unified framework.

1. Introduction
Recent years have seen profound development in im-

plicit neural field models, demonstrating powerful repre-
sentations, particularly 3D shape geometry [34, 6], neu-
ral radiance fields (NeRF) [31], and complex signals with
higher-order derivative constraints [46]. Typically, an im-
plicit neural field1 maps an input coordinate location in n-
dimensional space to the target signal domain. For example,
an implicit surface representation

{x ∈ Rn|f(x, θ) = 0},

where f : Rn → R is typically characterized by a mul-
tilayer perceptron (MLP). Notably, such neural fields ef-
ficiently represent sparse high-dimensional data in a rela-
tively low-dimensional MLP weight space. This contin-
uous mapping enables sampling at arbitrary-resolution for
surface representations, eliminating explicit resolution con-
straints inherent to classical point, mesh, or voxel represen-
tations. One can then easily reconstruct the mesh underly-

1Implicit neural fields are also referred to as coordinate fields or
coordinate-based networks. We use these terms interchangeably.
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ing this compact representation through methods such as
Marching Cubes [28]. It has enabled faithful 3D recon-
struction where an MLP is optimized to fit a set of point
observations [34], as well as preliminary results in higher-
dimensional 4D reconstruction and tracking [27].

(a) Generated 3D shapes.

(b) Generated 4D animation sequence.

Figure 2: HyperDiffusion is a dimension-agnostic genera-
tive model. The same approach can be trained on data of
various dimensionalities to synthesize high-fidelity exam-
ples. For instance, (a) 3D shapes, and (b) 4D animation
sequences (3D and time).

The aforementioned implicit neural field representation
also poses a new opportunity for generative modeling - that
is, rather than model the raw 3D or 4D surface information,
we aim to directly model the space of optimized neural field
MLPs without relying on any ties to alternative explicit rep-
resentations (e.g., points, meshes, and voxels) or approxi-
mation to latent manifolds (which typically require a pair
of encoder and decoder networks pretrained on large-scale
datasets). In particular, we observe that optimized neural
field MLPs typically maintain an extremely compact repre-
sentation of a high-dimensional 3D or 4D surface.

We thus propose HyperDiffusion, a new paradigm for
generative modeling of neural fields. HyperDiffusion lever-
ages diffusion modeling directly on the weight space of op-
timized neural fields, enabling generative modeling of high-
dimensional data characterized by neural fields. Our Hyper-
Diffusion approach is dimension-agnostic, and we apply the
same method towards both unconditional 3D and 4D (3D
and time) surface generation to demonstrate the power of
directly generating neural fields as MLP weights.

Specifically, to model neural fields characterizing n-
dimensional surface data, we consider a set of MLPs that

have been optimized to represent individual instances from
a dataset. We then employ a transformer-based network
to model the diffusion process directly on the optimized
MLP weights. This enables generative modeling on a low-
dimensional space, and we demonstrate its high-fidelity and
diverse generative modeling capabilities, achieving state-of-
the-art 3D and 4D surface synthesis.

Our contributions can be summarized as follows:

• We present the first approach to model the space of
neural field MLP weights by diffusion modeling, en-
abling a new paradigm for high-dimensional genera-
tive modeling.

• Our MLP optimization of surface occupancy provides
a low-dimensional weight space for effective uncondi-
tional diffusion modeling with a transformer-based ar-
chitecture for both 3D and 4D surfaces at high fidelity.

2. Related Work
Neural Implicit Fields Neural implicit fields have shown
promising results in representing high-fidelity geome-
try and appearance in 3D. One seminal early work is
DeepSDF [34], which encodes the shapes of a class of
objects as signed distance functions using a multi-layer
fully-connected neural network. Neural Radiance Fields
(NeRF) [31] encode a coordinate-based radiance field with
a MLP and is capable to producing photo-realistic 2D ren-
derings at novel views through volumetric rendering. To
address the bias towards learning low-frequency details in
a standard MLP, Fourier features [48] and periodic acti-
vation functions [46] have been proposed to improve rep-
resentation of complex signals. In this work, we train on
the weights of these multi-layer fully-connected neural net-
works and generate new weights that represent valid signals.

Generative Adversarial Networks (GANs) Generative
Adversarial Networks (GANs) [18] has been shown to be
capable of generating high-resolution 2D images, most no-
tably StyleGAN [24, 25, 23, 42]. More recently, GANs
have been adopted for 3D generation with various under-
lying representations. For instance, pi-GAN [9] modu-
lates the MLP network which encodes a radiance field,
EG3D [7] proposes an efficient tri-plane representation, and
GMPI [53] directly generates multiplane images for effi-
cient training and inference. A similar line of work fo-
cuses on generating textures for meshes [44, 17]. A gen-
eral limitation with GANs is volatile training stability due to
the game theoretical nature of generator and discriminator
networks competing against each other. This motivates re-
searcher to look into alternative generative models, includ-
ing Diffusion Process. In this work, we adopt a diffusion
model for the MLP weight generation.
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Figure 3: Overview of HyperDiffusion. We first fit a set of neural field MLPs to a dataset of 3D or 4D shapes in an overfitting
process, producing high-fidelity shape representations that support arbitrary resolutions (left). To support the following
diffusion process on the MLP weights, we use an arbitrary optimized MLP to initialize the rest of the MLP optimization. We
then use a transformer-based architecture to model a diffusion process directly on these optimized MLP weights, predicting
the denoised MLP weights and biases as flattened vectors (middle). This enables synthesis of new neural field representations
as their MLP weights, from which meshes can be extracted through Marching Cubes. Our approach is agnostic to the
resolution of the dataset instances, and we demonstrate effective 3D and 4D shape modeling.

2D Diffusion Models Diffusion probabilistic models [20,
47] have emerged as a powerful alternative to its precursors,
such as GANs [18] and energy-based models (EBMs) [14],
for generative modeling. They have been shown to outper-
form GANs on image synthesis tasks in terms of not only
superior quality and fidelity [12, 40], but also the capabil-
ity to enable text-conditioning [33, 41]. Specifically, Latent
Diffusion [39, 4] enables high-resolution image synthesis
by applying diffusion in the latent space of pretrained au-
toencoders. In contrast to Latent Diffusion, our method op-
erates on the MLP weight space and generates new neural
implicit fields.

3D/4D Diffusion Models Diffusion models have also
been deployed in more challenging tasks beyond image syn-
thesis, including 2D video generation [21], 3D shape and
scene generation [8, 9, 11, 3, 37, 32], and 4D generation
with animation of 3D shapes [45, 49]. In particular, MDM
is a human motion diffusion model where the input is a se-
quence of human poses [49]. They use a transformer ar-
chitecture as the denoising network. It takes in a noisy hu-
man pose sequence input and denoises it to generate a new
motion animation. Unlike their approach, we can directly
generate animated meshes instead of just human poses.

Diffusion modeling in a latent manifold for neural fields
has also been concurrently proposed, including Diffu-
sionSDF [11], 3DShape2VecSet [52], and LION [51]. Such

latent diffusion models require a high-quality latent mani-
fold to be learned, which can be challenging with limited
quantities of 3D and 4D data. In contrast, our approach to
model the weights of optimized neural fields operates on in-
herently high quality shape representations that can be ex-
tremely well-fit per instance. In addition, Shue et al. [43]
proposed a diffusion on triplane features. Compared to tri-
plane diffusion, we observe that our approach on the MLP
weight space enables leveraging the same diffusion frame-
work for various input dimensionalities, enabling effective
4D generative modeling as well.

Cross-modality Diffusion Models A number of recent
publications have been investigating unification of diffusion
models across different data dimensions and modalities, in-
cluding Functa [15], GEM [13], and GASP [16]. Most
recently, Diffusion Probabilistic Fields [55] proposes a ex-
plicit field representation without a latent field parametriza-
tion, and formulates the generative model in a single-stage
end-to-end training. Our method can be seen as an alter-
native solution to uniting methods designed across different
data dimensions, since the implicit neural fields are essen-
tially dimension-agnostic.

3. Method Overview
HyperDiffusion is an unconditional generative model for

implicit neural fields encoded by MLPs. We operate di-
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rectly on MLP weights, enabling generation of new neural
implicit fields characterized by synthesized MLP parame-
ters. Our training paradigm encompasses a two-phase ap-
proach, as shown in Figure 3.

In the first MLP overfitting step, detailed in Section 4,
we optimize a collection of MLPs such that each MLP rep-
resents a faithful neural occupancy field of a data sample
(e.g., a 3D shape) from the training set. This enables highly-
accurate shape fitting due to the representation power of the
neural fields. The optimized MLP weights are flattened into
1D vectors and passed to a downstream diffusion process as
ground truth signals.

In the second step, detailed in Section 5, the aforemen-
tioned optimized MLP weights are passed into a diffusion
network for training. This diffusion network is domain-
agnostic without any assumptions or prior knowledge on
the dimensionality of the underlying signal, since its input
is a set of flattened MLP weight vectors. After training is
completed, new MLP weights, which correspond to a valid
neural implicit field, can be synthesized through the reverse
diffusion process on a randomly sampled noise signal.

For 3D and 4D generation, the underlying meshes can be
further extracted and visualized with Marching cubes [28].

4. Per-Sample MLP Overfitting
In this first step, we optimize MLPs for each data sam-

ple from the training set {Si, i = 1, . . . , N} and save their
optimized network weights. Specifically, for a train sample
Si, the surface at iso-level τ is represented as

{x ∈ Rn, f(x, θi) = τ}, (1)

where f is an MLP parametrized by θi ∈ Rh (i.e., weights
and biases in Fig. 3) and x represents a spatial location. The
goal is to minimize the binary cross entropy loss function

L = BCE(f(x, θi), o
gt
i (x)), (2)

where ogt
i (x) is the ground truth occupancy of x with re-

spect to Si. Here, we exploit the representation power of
neural fields, which can model high-dimensional surfaces
with high accuracy. As these optimized MLPs serve as
ground truth for the following diffusion processes, their
ability to model high-fidelity shapes is crucial.

Unlike prior methods, we do not require any auto-
encoding networks [1, 5] nor auto-decoding networks (e.g.,
DeepSDF [11]), which typically share the same network
parameters across an entire dataset. In contrast, although
we use the same MLP architecture for different samples in
the training dataset, one set of MLP weights is optimized
specifically for each data sample. In other words, there is
no parameter sharing, and this per-sample optimization at-
tains the best fidelity possible for the implicit neural field
representation.

MLP Architecture and Training Our MLP architec-
ture is a standard multi-layer fully-connected network with
ReLU activation functions and an input positional encod-
ing [31]. We use 3 hidden layers with 128 neurons each,
finally outputting a scalar occupancy value. The same MLP
architecture is shared across both 3D shape and 4D anima-
tion experiments, where each MLP encodes an occupancy
field per-train sample. This enables dimension-agnostic
paradigm for encoding of various data signals, in our case
3D and 4D shapes, where only the positional encoding is
adapted for various-dimensional inputs.

To optimize a set of MLP weights and biases for an in-
put 3D shape, we sample points randomly both inside and
outside of the 3D surface. We normalize all train instances
to [−0.5, 0.5]3, and randomly sample 100k points within
the space. To effectively characterize fine-scale surface de-
tail, we further sample 100k points near the surface of the
mesh. Both sets of points are combined and tested for in-
side/outside occupancy using generalized winding numbers
[2]; these occupancies are used to supervise the overfitting
process. We optimize each MLP with a mini-batch size of
2048 points, trained with a BCE loss for 800 epochs until
convergence, which takes ≈ 6 minutes per shape.

MLP overfitting to 4D shapes is performed analogously
to 3D. For each temporal frame, we sample 200k points and
their occupancies, following the 3D shape sampling. The
sampling process is repeated for each frame of an animation
sequence. We optimize one set of MLP weights and biases
for each animation sequence to represent each 4D shape.

Weight Initialization In order to encourage a smooth dif-
fusion process over the set of optimized MLP weights, we
guide the MLP optimization process with consistent weight
initialization. That is, we initially optimize one set of MLP
weights and biases θ1 to represent the first train sample S1,
and use the optimized weights of θ1 to initialize optimiza-
tion of the rest of the MLPs {θ2, ..., θN}.

5. MLP Weight-Space Diffusion
We then model the weight space of our optimized MLPs

through a diffusion process. We consider each set of opti-
mized MLP weights and biases {θi} as a flattened 1D vec-
tor. We use a transformer architecture T , following [35], for
our denoising network. As transformers have been shown
to elegantly handle long vectors in the language domain, we
find it to be a suitable choice for modeling the MLP weight
space. T predicts the denoised MLP weights directly, rather
than the noise. Our h-dimensional vectors {θi} of MLP
weights and biases are input to T . Each θi is divided into 8
tokens by MLP layers, to be encoded by T .

Modeling the MLP weights as a 1D vector for diffusion
enables a general formulation for modeling neural fields, as
the MLP weights are agnostic to varying-dimensional data.
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Denoising

Figure 4: Denoising MLP parameters at various time steps, visualized with their corresponding shapes, from random noise
(left) to fully denoised (right). The image shows the gradual change from 0 denoising steps, which are generated from
random MLP weights, up to 500 steps corresponding to fully-denoised shape. More specifically, we leverage the DDIM [47]
sampling strategy. Interestingly, noisy MLP weights do not necessarily correspond to a valid 3D shape; however, the iterative
application of the denoising operator eventually converges to a quality output shape.

This makes HyperDiffusion flexible to a variety of neural
field representations; in particular, we observe the neural
field ability to compactly represent high-dimensional shape
data and demonstrate generative modeling of MLPs repre-
senting 3D and 4D shapes, respectively.

During diffusion modeling, we apply standard gaussian
noise t times to each vector θ. The noisy vector, along with
the sinusoidal embedding of t, are then input to a linear pro-
jection. The projections are then summed up with a learn-
able positional encoding vector. Then, the transformer out-
puts denoised tokens that we pass through a final output pro-
jection to produce the predicted denoised MLP weights w∗.
We train with a Mean Squared Error (MSE) loss between
the denoised weights θ∗ and the input weights θ.

We illustrate the denoising process for MLPs represent-
ing 3D shapes in Figure 4. Noisy MLPs correspond to in-
valid shapes, which are denoised to MLPs that represent
valid 3D surfaces. We employ Denoising Diffusion Implicit
Models (DDIM) [47] to sample new MLPs from the diffu-
sion process.

Implementation Details Our 3-layer 128-dim MLPs
contain ≈ 36k parameters, which are flattened and tok-
enized for diffusion. We use an AdamW [29] optimizer
with batch size 32 and initial learning rate of 2e−4, which
is reduced by 20% every 200 epochs. We train for ≈ 4000
epochs until convergence, which takes ≈ 4 days on a single
A6000 GPU.

6. Results

6.1. Datasets

For 3D shape generation, we use the car, chair, and air-
plane categories of the ShapeNet [10] dataset. The car, chair
and airplane categories have 3533, 6778, and 4045 shapes
respectively. For the 4D shape generation task, we use 16-

frame animal animation sequences from the DeformingTh-
ings4D [27] dataset, comprising 1772 sequences. For both
datasets, we split the data into non-overlapping partitions,
including training (80%), validation (5%) and testing (15%)
subsets.

6.2. Voxel-based Diffusion Baseline

While several existing methods tackle 3D shape genera-
tion, unconditional 4D shape generation remains underex-
plored. Thus, in addition to existing 3D baselines, we intro-
duce a voxel-based diffusion model as a baseline for both
3D and 4D shape generation.

3D shapes are represented as dense occupancy grids, and
a 3D UNet denoising network is applied on the 3D voxel
grids. 4D shapes are represented similarly, with each frame
of an animation sequence voxelized to a 3D occupancy grid,
producing a 4D occupancy grid representing the full se-
quence. We use the same 3D UNet as a denoising network
to synthesize 4D animation, as a 4D UNet became compu-
tationally intractable.

For our experiments, we use a voxel resolution of 243 for
3D shapes and 16×243 for 4D shapes (the maximum spatial
resolution such that 4D grids could be tractably trained).

6.3. Evaluation Metrics

Evaluation of unconditional synthesis of 3D and 4D
shapes can be challenging due to lack of direct correspon-
dence to ground truth data. We thus follow prior works
[51, 30, 54] in evaluating Minimum Matching Distance
(MMD), Coverage (COV), and 1-Nearest-Neighbor Accu-
racy (1-NNA). For MMD, lower is better; for COV, higher
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is better; for 1-NNA, 50% is the optimal.

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

D(X,Y ),

COV(Sg, Sr) =
|{argminY ∈Sr

D(X,Y )|X ∈ Sg}|
|Sr|

,

1-NNA(Sg, Sr) =

∑
X∈Sg

1[NX ∈ Sg] +
∑

Y ∈Sr
1[NY ∈ Sr]

|Sg|+ |Sr|
,

where in the 1-NNA metric NX is a point cloud that is clos-
est to X in both generated and reference dataset, i.e.,

NX = argmin
K∈Sr∪Sg

D(X,K)

We use a Chamfer Distance (CD) distance measure
D(X,Y ) for computing these metrics in 3D, and report CD
values multiplied by a constant 102. To evaluate 4D shapes,
we extend to the temporal dimension for T frames:

D(X,Y ) =
1

T

T−1∑
t=0

CD(X[t], Y [t]).

We note that the MMD metric has been discussed to be un-
reliable as a measure of generation quality [51]. It suffers
from not capturing diversity and coverage aspects of the
generated set, and thus we also consider perceptual metric
for 3D shape generation. In particular, we follow [52] and
compute a Frechet Pointnet++ Distance [38] (FPD), anal-
ogous to the commonly used Frechet Inception Distance
(FID score) [19] in the image domain. FPD instead uses a
3D Pointnet++ network (trained on the ModelNet [50]) for
feature extraction from generated shapes. For FPD, lower
scores are better.

For evaluation, each synthesized and ground truth shape
is normalized by its mean and standard deviation on a per-
shape basis. To evaluate point-based measures, we sample
2048 points randomly from all baseline outputs; for our ap-
proach and the voxel baseline, points are sampled from the
extracted mesh surface, and for point cloud baselines, points
are sampled directly from the synthesized outputs.

6.4. Unconditional 3D Generation

We demonstrate HyperDiffusion on unconditional neural
field generation of 3D shapes. For our method, we show
output meshes extracted with Marching Cubes [28].

Comparison to state of the art We compare with state-
of-the-art 3D shape generation methods Point-Voxel Diffu-
sion [54] (PVD), Diffusion Point Cloud [30] (DPC), Shape-
GAN [26], as well as our voxel baseline in Table 1. Hyper-
Diffusion achieves improved performance over these base-
lines in all shape categories and all evaluation metrics ex-
cept MMD, which has been noted to be less reliable due

Figure 5: Synthesized 3D shapes with HyperDiffusion
trained on ShapeNet [10]. Each shape is represented with a
3-layer 128-dim MLP. We extract the underlying isosurface
from the MLPs with Marching Cubes [28].

to lack of sensitivity to low-quality results [51]. Notably,
we achieve significantly improved FPD, which captures the
perceptual quality of our synthesized shapes. Figure 6 fur-
ther shows our capability to represent high-resolution detail
as captured in our synthesized neural fields, in comparison
with baselines.

What is the effect of MLP overfitting weight initializa-
tion? We analyze the effect of our weight initialization
strategy for MLP optimization in Table 3, in comparison
with random initialization per-MLP. Instead of initializing
each MLP completely independently, our consistent weight
initialization from a single optimized MLP produces im-
proved results, particularly for the perceptual FPD metric.
This could be attributed to the fact that with a consistent
initialization the MLP weights stay relatively close to each
other.

What is the impact of MLP positional encoding? We
ablate the effect of positional encoding in our per-instance
MLP representations in Table 4, where No PE denotes the
same MLP architecture without any positional encoding.
We see that applying positional encoding to the input co-
ordinates significantly improves generation quality.

Novel shape synthesis. We explore the degree of novelty
in our generated neural fields in 3D shape generation. Fig-
ure 8 our synthesized shapes (red) in comparison to the top-
3 nearest neighbours by Chamfer distance from the train-
ing set (green). We show that our synthesized neural fields
represent shapes not already present in the training set, but
rather novel shape data. This is critical to the core idea of
our approach since it supports the claim that running de-
noising duffusion over neural network parameter weights
facilitates generalizablity within the underlying data distri-
bution of 3D meshes.

14305



Category Method MMD ↓ COV (%) ↑ 1-NNA (%) ↓ FPD ↓

Airplane

Voxel Baseline 6.0 28 94.1 38.9
PVD [54] 3.4 39 76.3 5.8
DPC [30] 3.1 46 74.7 18.7

ShapeGAN [26] 6.6 18 93.8 70.4
Ours 3.4 49 69.3 3.5

Car

Voxel Baseline 4.9 13 98.7 10.4
PVD [54] 3.5 27 76.8 4.5
DPC [30] 3.3 33 82.4 7.6

ShapeGAN [26] 4.3 17 97.6 10.6
Ours 3.4 36 73.1 2.6

Chair

Voxel Baseline 11.8 28 80.6 30.6
PVD [54] 6.8 42 58.3 3.5
DPC [30] 6.3 44 61.4 26.0

ShapeGAN [26] 8.4 42 70.1 5.8
Ours 7.1 53 54.1 1.7

Table 1: Quantitative comparison on unconditional 3D shape generation for the airplane, car and chair categories from
ShapeNet [10]. Our synthesized neural fields outperform the baseline volumetric method and prior state of the art [54, 30],
particularly on the perceptual FPD metric most representative of visual quality.

Methods MMD ↓ COV (%) ↑ 1-NNA (%) ↓
Voxel Baseline 21.9 35 85

Ours 15.5 45 62

Table 2: Quantitative evaluation of 4D unconditional gen-
eration of animation sequences from temporally deform-
ing 3D shapes. HyperDiffusion enables a compact, high-
fidelity representation space for synthesis, producing much
more detailed, high-quality results than voxel-based diffu-
sion.

Init. MMD ↓ COV (%) ↑ 1-NNA (%) ↓ FPD ↓
Random 3.34 49 70.4 4.01
1st MLP 3.45 49 69.3 3.49

Table 3: Ablation on weight initialization for 3D shape gen-
eration (airplanes). Using a consistent initialization from
a single optimized MLP leads to moderately improved re-
sults, most noticeably in the perceptual FPD metric.

MMD ↓ COV (%) ↑ 1-NNA (%) ↓ FPD ↓
No PE 3.75 44 76.5 6.40

With PE 3.45 49 69.3 3.49

Table 4: Ablation on positional encoding in the MLP for 3D
shape generation (airplanes). Without positional encoding
(No PE), performance noticeably degrades.

6.5. Unconditional 4D Generation

As HyperDiffusion can model neural fields that repre-
sent arbitrary dimension data, we exploit the compact rep-

resentation space of neural fields to model 4D sequences
of deforming 3D shapes. The fourth dimension here corre-
sponds to time. Table 2 and Figure 7 show that our approach
can generate much higher quality animation sequences with
more detailed representations than a voxel-based diffusion,
which becomes quickly bound by its quartic growth in di-
mensionality. In Figure 7, we visualize 4 out of 16 gener-
ated frames for both animation sequences. The full anima-
tion sequences in our video and website show that we can
generate temporally consistent 4D animations correspond-
ing to meaningful actions (e.g., jumping, rotating, and rest-
ing). Shape integrity is preserved throughout the generated
animation sequence.

7. Limitations

While HyperDiffusion shows a promising approach to-
wards directly generating neural fields, several limitations
remain. For instance, the diffusion process currently op-
erates only on optimized MLP parameters, without knowl-
edge of any surface reconstruction. Our initial experiments
with a naive secondary reconstruction loss did not improve
performance, but we believe a more sophisticated formu-
lation to encourage the diffusion process to be aware of
the surface being represented would improve its generative
modeling capabilities. Additionally, we operate on datasets
of individual MLPs, while neural implicit scene represen-
tations for large-scale environments [22, 36] typically em-
ploy MLPs on a grid for greater spatial capacity. Extending
to modeling multiple MLPs could enable larger-scale scene
surface modeling.
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Voxel PVD DPC Ours

Figure 6: Qualitative comparison for 3D shape generation.
Voxel-based diffusion produces relatively low-resolution
outputs, while state-of-the-art PVD [54] and DPC [30] syn-
thesize discrete point clouds. In contrast, our neural field
synthesis can generate a high-quality, continuous surface
representation easily extracted as a mesh.

8. Conclusion

We proposed HyperDiffusion, a new generative mod-
eling paradigm for neural implicit fields. We exploit the
compact representation power of neural fields for modeling
high-dimensional surface data, and model the weight space
of the neural fields with a diffusion process. This enables
high-fidelity surface representations by optimizing neural
field MLPs to fit to individual train samples, and using the

Voxel Ours

Figure 7: Qualitative comparison of 4D animation synthe-
sis. Our neural field synthesis generates not only more de-
tailed animations but also achieves smoother temporal con-
sistency. We also refer to our video for the animated shape
results.

Figure 8: Novel shape generation vs nearest neighbor re-
trieval. For generated shapes (red) from our method, we
look up the top-3 nearest neighbors (green) from the train-
ing set based on the Chamfer distance. As shown, our
method does not simply memorize train samples and can
generalize to novel shapes.
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optimized MLP weights to train the downstream diffusion
model. We can then synthesize new neural fields as their
MLP weights from the diffusion model – a low-dimensional
representation that decodes to high-fidelity shape surfaces
for 3D shapes and 4D animation sequences of deforming
shapes. Overall, we believe that our method is a first step to
open up new possibilities for generative modeling of high-
dimensional, complex data, and alternative representations
in the context of diffusion models.
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