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Abstract

Domain adaptation has been vastly investigated in com-

puter vision but still requires access to target images at train

time, which might be intractable in some uncommon condi-

tions. In this paper, we propose the task of ‘Prompt-driven

Zero-shot Domain Adaptation’, where we adapt a model

trained on a source domain using only a general descrip-

tion in natural language of the target domain, i.e., a prompt.

First, we leverage a pretrained contrastive vision-language

model (CLIP) to optimize affine transformations of source

features, steering them towards the target text embedding

while preserving their content and semantics. To achieve

this, we propose Prompt-driven Instance Normalization

(PIN). Second, we show that these prompt-driven augmen-

tations can be used to perform zero-shot domain adapta-

tion for semantic segmentation. Experiments demonstrate

that our method significantly outperforms CLIP-based style

transfer baselines on several datasets for the downstream

task at hand, even surpassing one-shot unsupervised do-

main adaptation. A similar boost is observed on object de-

tection and image classification. The code is available at

https://github.com/astra-vision/PODA .

1. Introduction

The last few years have witnessed tremendous success

of supervised semantic segmentation methods towards bet-

ter high-resolution predictions [5, 6, 9, 31, 50], multi-scale

processing [30,57] or computational efficiency [56]. In con-

trolled settings where segmentation models are trained us-

ing data from the targeted operational design domains, the

accuracy can meet the high industry-level expectations on

in-domain data; yet, when tested on out-of-distribution data,

these models often undergo drastic performance drops [35].

This hinders their applicability in real-world scenarios for

critical applications like in-the-wild autonomous driving.

To mitigate this domain-shift problem [2], unsuper-

vised domain adaptation (UDA) [16, 18, 45, 46, 48, 59] has

emerged as a promising solution. Training of UDA meth-

ods requires labeled data from source domain and unlabeled
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Figure 1. Zero-shot adaptation with prompt. PØDA enables the

adaptation of a segmenter model (here, DeepLabv3+ trained on

the source dataset Cityscapes) to unseen conditions with only a

prompt. Source-only predictions are shown as smaller segmenta-

tion masks to the left or right of the test images.

data from target domain. Though seemingly effortless, for

some conditions even collecting unlabeled data is complex.

For example, as driving through fire or sandstorm rarely oc-

curs in real life, collecting raw data in such conditions is

non-trivial. One may argue on using Internet images for

UDA. However, in the industrial context, the practice of us-

ing public data is limited or forbidden. Recent works aim to

reduce the burden of target data collection campaigns by de-

vising one-shot [33,54] UDA methods, i.e., using one target

image for training. Pushing further this line of research, we

frame the challenging new task of prompt-driven zero-shot

domain adaptation where given a target domain description

in natural language (i.e., a prompt), our method accordingly

adapts the segmentation model to this domain of interest.

Figure 1 outlines the primary goal of our work with a few

qualitative examples. Without seeing any fire or sandstorm

images during training, the adapted models succeed in seg-

menting out critical scene objects, exhibiting fewer errors

than the original source-only model.

Our method, illustrated in Fig. 2, is made possible by

leveraging the vision-language connections from the sem-

inal CLIP model [39]. Trained on 400M web-crawled

image-text pairs, CLIP has revolutionized multi-modal rep-

resentation learning, bringing outstanding capability to

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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zero-shot image synthesis [15, 24, 37], zero-shot multi-

modal fusion [20], zero-shot semantic segmentation [26,

58], open-vocabulary object detection [34], few-shot learn-

ing [10], etc. In our work, we exploit the CLIP’s latent

space and propose a simple and effective feature styliza-

tion mechanism that converts source-domain features into

target-domain ones (Fig. 2, left), which can be seen as a spe-

cific form of data augmentation. Fine-tuning the segmenta-

tion model on these zero-shot synthesized features (Fig. 2,

middle) helps mitigating the distribution gap between the

two domains thus improving performance on unseen do-

mains (Fig. 2, right). Owing to the standard terminology of

“prompt” that designates the input text in CLIP-based im-

age generation, we coin our approach Prompt-driven Zero-

shot Domain Adaptation, PØDA in short.

To summarize, our contributions are as follows:

• We introduce the novel task of prompt-driven zero-shot

domain adaptation, which aims at adapting a source-

trained model on a target domain provided only an ar-

bitrary textual description of the latter.

• Unlike other CLIP-based methods that navigate CLIP

latent space using direct image representations, we al-

ter only the features, without relying on the appearance

in pixel space. We argue that this is particularly use-

ful for downstream tasks such as semantic segmentation

where good features are decisive (and sufficient). We

present a simple and effective Prompt-driven Instance

Normalization (PIN) layer to augment source features,

where affine transformations of low-level features are

optimized such that the representation in CLIP latent

space matches the one of target-domain prompt.

• We show the versatility of our method by adapting

source-trained semantic segmentation models to differ-

ent conditions: (i) from clear weather/daytime to ad-

verse conditions (snow, rain, night), (ii) from synthetic

to real, (iii) from real to synthetic. Interestingly, PØDA

outperforms state-of-the-art one-shot unsupervised do-

main adaptation without using any target image.

• We show that PØDA can also be applied to object de-

tection and image classfication.

2. Related works

Unsupervised Domain Adaptation. The UDA literature is

vast and encompasses different yet connected approaches:

adversarial learning [16, 46], self-training [29, 60], entropy

minimization [36, 48], generative-based adaptation [18],

etc. The domain gap is commonly reduced at the level of

the input [18, 55], of the features [16, 32, 45, 52] or of the

output [36, 46, 48].

Recently, the more challenging setting of One-Shot Un-

supervised Domain Adaptation (OSUDA) has been pro-

posed. To the best of our knowledge, two works on OSUDA

for semantic segmentation exist [33, 54]. Luo et al. [33]

show that traditional UDA methods fail when only a sin-

gle unlabeled target image is available. To mitigate the

risk of over-fitting on the style of the single available im-

age, the authors propose a style mining algorithm, based

on both a stylized image generator and a task-specific mod-

ule. Wu et al. [54] introduce an approach based on style

mixing and patch-wise prototypical matching (SM-PPM).

During training, channel-wise mean and standard deviation

of a randomly sampled source image’s features are linearly

mixed with the target ones. Patch-wise prototypical match-

ing helps overcome negative adaptation [27].

In the more challenging zero-shot setting (where no tar-

get image is available), Lengyel et al. [25] tackle day-to-

night domain adaptation using physics priors. They intro-

duce a color invariant convolution layer (CIConv) that is

added to make the network invariant to different lighting

conditions. We note that this zero-shot adaption is orthogo-

nal to ours and restricted to a specific type of domain gap.

Text-driven image synthesis. Recently, contrastive image-

language pretraining has shown unprecedented success for

multimodal learning in several downstream tasks such as

zero-shot classification [39], multi-modal retrieval [21] and

visual question answering [28]. This encouraged the com-

munity to modify images using text descriptions, a task that

was previously challenging due to the gap between vision

and language representations. For example, StyleCLIP [37]

uses prompts to optimize StyleGAN [22] latent vectors and

guide the generation process. However, the generation is

limited to the training distribution of StyleGAN. To over-

come this issue, StyleGAN-NADA [15] utilizes CLIP em-

beddings of text-prompts to perform domain adaptation of

the generator, which is in this case trainable. Similarly, for

text-guided semantic image editing, FlexIT [12] optimizes

the latent code in VQGAN autoencoder’s [13] space.

For text-guided style transfer, CLIPstyler [24] does not

rely on a generative process. This setting is more realistic

for not being restricted to a specific distribution, and chal-

lenging at the same time for the use of the encapsulated

information in CLIP latent space. Indeed, there is no one-

to-one mapping between image and text representations and

regularization is needed to extract the useful information

from a text embedding. Thus, in the same work [24], a

U-net autoencoder that preserves the content is optimized

while the output image embedding in CLIP latent space is

varying during the optimization process.

We note that a common point in prior works is the map-

ping from pixel-space to CLIP latent space during the opti-

mization process. In contrast with this, we directly manip-

ulate deep features of the pre-trained CLIP visual encoder.

3. Prompt-driven Zero-shot Adaptation

Our framework, illustrated in Fig. 2, builds upon

CLIP [39], a vision-language model pre-trained on 400M
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Figure 2. Overview of PØDA, a Prompt-driven Zero-shot Domain Adaptation. (Left) Using only a single textual description (“...”) of

an unseen target domain, we leverage a frozen ResNet encoder with CLIP weights to learn source�target low-level feature stylizations.

Applied to a source image low-level feature map fs with latent embedding f̄s, these stylizations provide augmented features fs�t which

embeddings (here, f̄night, f̄snow, f̄rain) are closer to their respective target prompt embeddings (+). (Middle) Zero-shot domain adaptation is

achieved by fine-tuning a segmenter model (M ) on the feature-augmented source domain with the learned transformations. (Right) This

enables inference on unseen domains.

image-text pairs crawled from the Internet. CLIP trains

jointly an image encoder Eimg and a text encoder Etxt over

many epochs and learns an expressive representation space

that effectively bridges the two modalities. In this work, we

leverage this property to “steer” features from any source

image towards a target domain in the CLIP latent space,

with guidance from an arbitrary prompt describing the tar-

get domain, e.g., “driving at night” or “navigating the roads

in darkness” for the night domain. Our goal is to modify

the style of source image features, bringing them closer to

imaginary counterparts in the targeted domain (Fig. 2, left),

while preserving their semantic content. The learned aug-

mentations can then be applied on source images to gener-

ate features, in a zero-shot fashion, that correspond to the

unseen target domain and can be further used to fine-tune

the model towards handling target domain (Fig. 2, middle).

This ultimately allows inference on unseen domains only

described by a simple prompt at train time (Fig. 2, right).

Our approach faces several challenges: (i) How to gener-

ate informative features for the target domain without hav-

ing access to any image from it; (ii) How to preserve pixel-

wise semantics while augmenting features; (iii) Based on

such features, how to adapt the source model to the unseen

target domain. We address these questions in the following.

Problem formulation. Our main task is semantic seg-

mentation, that is, pixel-wise classification of input image

into semantic segments. We start from a K-class segmen-

tation model M , pre-trained on a source domain dataset

Ds = {(xs,ys) | xs ∈ R
H×W×3,ys ∈ {0, 1}

H×W×K}.
By using a single predefined prompt TrgPrompt describ-

ing the targeted domain, we adapt the model M such

that its performance on the unseen test target dataset

Dt = {xt | xt ∈ R
H×W×3} is improved. The segmenter M

is a DeepLabv3+ model [6] with CLIP image encoder Eimg

(e.g., ResNet-50) as the frozen feature extractor backbone

Mfeat and a randomly initialized pixel classification head

Mcls: M = (Mfeat,Mcls). We train M in a supervised man-

ner for the semantic segmentation task on the source do-

main. In order to preserve the compatibility of the encoder

features with the CLIP latent space we keep Mfeat frozen

and train only the pixel classifier Mcls. Interestingly, we

empirically show in Tab. 1 that keeping the feature extractor

Mfeat frozen also prevents overfitting to the source in favor

of generalization. From the extractor we remove the atten-

tion pooling head of Eimg to keep the spatial information for

the pixel classifier. We denote f the intermediate features

extracted by Mfeat and f̄ their corresponding CLIP embed-

ding computed with the attention pooling layer of Eimg. In

Fig. 3 we illustrate the difference between f and f̄ .

Overview of the proposed method. Our solution is

to mine styles using source-domain low level features

set Fs={fs|fs=feat-ext(Mfeat,xs)} and TrgEmb, where

TrgEmb=Etxt(TrgPrompt) is the CLIP text embedding of

the target domain prompt. For generality, feat-ext(·) can

pull features from any desired layer but we later show that

using the lowest features works best.

The augment(·) operation, depicted in Fig. 3, augments

the style-specific components of fs with guidance from the

target domain prompt, synthesizing fs�t with style informa-

tion from the target domain. We emphasize that the features

fs and fs�t have the same size h×w×c and identical seman-

Mfeat CS Night Snow Rain GTA5

Yes 66.82 18.31 39.28 38.20 39.59

No 69.17 14.40 22.27 26.33 32.91

Table 1. Segmentation with source-only trained models.

Performance (mIoU %) on “night”, “snow” and “rain” parts of

ACDC [44] validation set and on a subset of 1000 GTA5 images

for models trained on Cityscapes (CS). ‘Mfeat ’: frozen backbone.
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Algorithm 1: Style Mining (see Fig. 3)

Input : Set Fs of source image features

Target domain description embedding TrgEmb

Param : Number N of optimization steps

Learning rate lr and momentum m

of gradient descend (GD)

Output: Set Ss�t of target styles

1 Ss�t ← ∅
2 foreach fs ∈ Fs do

3 µ
0 ← mean(fs)

4 σ
0 ← std(fs)

// Optimization

5 for i = 1, 2, · · · , N do

6 f
i
s�t ← PIN(fs,µ

i−1,σi−1)

7 f̄
i
s�t ← get-embedding(f

i
s�t)

8 µ
i ← GDlrm(µi−1,∇µLµ,σ(f̄

i
s�t,TrgEmb))

9 σ
i ← GDlrm(σi−1,∇σLµ,σ(f̄

i
s�t,TrgEmb))

10 end

11 (µt,σt)← (µN ,σN )
12 Ss�t ← Ss�t ∪ {(µt,σt)}

13 end

tic content, though they encapsulate different visual styles.

For adaptation, the source features fs are augmented with

the mined styles then used to fine-tune the classifier Mcls,

resulting in the final adapted model. The overall pseudo-

code is provided in Supplementary Material.

3.1. Zero­shot Feature Augmentation

We take inspiration from Adaptive Instance Normaliza-

tion (AdaIN) [19], an elegant formulation for transferring

style-specific components across deep features. In AdaIN,

the styles are represented by the channel-wise mean µ ∈ R
c

and standard deviation σ ∈ R
c of features, with c the num-

ber of channels. Stylizing a source feature fs with an arbi-

trary target style (µ(ft), σ(ft)) reads:

AdaIN(fs, ft) = σ(ft)

(

fs − µ(fs)

σ(fs)

)

+ µ(ft), (1)

with µ(·) and σ(·) as the two functions returning channel-

wise mean and standard deviation of input feature; multipli-

cations and additions are element-wise.

We design our augmentation strategy around AdaIN as

it can effectively manipulate the style information with a

small set of parameters. In the following, we present our

augmentation strategy which mines target styles.

As we do not have access to any target (i.e. style) im-

age, µ(ft) and σ(ft) are unknown. Thus, we propose

Prompt-driven Instance Normalization (PIN):

PIN(fs,µ,σ) = σ

(

fs − µ(fs)

σ(fs)

)

+ µ, (2)

where µ and σ are optimizable variables driven by a

prompt.

a source image

backbone
(CLIP pre-trained, frozen) 

Prompt-driven feature augmentation 

''driving at night''

optimized statistics

Layer1

origin

GD update

PIN

initialization

Figure 3. Target style mining from a source image. We illus-

trate here the optimization loops of Algorithm 1. The source im-

age is forwarded through the CLIP image encoder Eimg to extract

low-level features fs and subsequent CLIP embedding f̄s. At each

optimization step i, augment(·) takes the style of the previous it-

eration, (µi−1,σi−1) and injects it within fs via the PIN layer, to

synthesize fis�t and the corresponding embedding f̄
i
s�t. The loss

Lµ,σ is the cosine distance between f̄
i
s�t and the target prompt

embedding TrgEmb. Its optimization via gradient descent updates

style to (µi,σi).

We aim to augment source image features Fs such that

they capture the style of the target domain. Here, the prompt

describing a target domain could be fairly generic. For in-

stance, one can use prompts like “driving at night” or “driv-

ing under rain” to bring source features closer to the night-

time or rainy domains. The prompt is processed by the

CLIP text encoder Etxt into the TrgEmb embedding.

We describe in Algorithm 1 the first step of our zero-

shot feature augmentation procedure: mining the set Ss�t

of styles in targeted domain. For each source feature map

fs ∈ Fs, we want to mine style statistics corresponding to

an imaginary target feature map ft. To this end, we formu-

late style mining as an optimization problem over the origi-

nal source feature fs, i.e. optimizing (µ,σ) in Eq. (2). The

optimization objective is defined as the cosine distance in

the CLIP latent space between the CLIP embedding f̄s�t of

the stylized feature fs�t = PIN(fs,µ,σ) and the description

embedding TrgEmb of target domain:

Lµ,σ(f̄s�t,TrgEmb) = 1−
f̄s�t · TrgEmb

∥f̄s�t∥ ∥TrgEmb∥
. (3)

This CLIP-space cosine distance, already used in prior text-

driven image editing works [37], aims to steer the stylized

features in the direction of the target text embedding. One

step of the optimization is illustrated in Fig. 3. In practice,

we run several such steps leading to the mined target style

denoted (µt,σt).
As there might be a variety of styles in a target domain,

our mining populates the Ss�t set with as many variations of
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target style as there are source images, hence |Ss�t| = |Ds|.
Intuitively, our simple augmentation strategy can be seen

as a cost-efficient way to cover the distribution of the target

domain by starting from different anchor points in the CLIP

latent space coming from the source images and steering

them in the direction of the target text embedding. This

mitigates the diversity problem discussed in one-shot fea-

ture augmentation in [33, 54].

3.2. Fine­tuning for Adaptation

For adaptation, at each training iteration we stylize the

source features using a mined target style (µt,σt) randomly

selected from Ss�t. The augmented features are computed

as fs�t = PIN(fs,µt,σt) and are used for fine-tuning the

classifier Mcls of the segmenter M (Fig. 2, middle). As

we only adjust the feature style which keeps the semantic-

content unchanged [19], we can still use the labels ys to

train the classifier with a standard segmentation loss. To

this end, we simply forward augmented features through re-

maining layers in Mfeat followed by Mcls. In the backward

pass, only weights of Mcls are updated by the loss gradients.

We denote the fine-tuned model as M ′ = (Mfeat,M
′
cls) and

evaluate it on images with conditions and styles which were

never seen during any of the training stages.

4. PØDA for semantic segmentation

4.1. Implementation details

We use the DeepLabv3+ architecture [6] with the back-

bone Mfeat initialized from the image encoder Eimg of the

pre-trained CLIP-ResNet-50 model1.

Source-only training. The network is trained for 200k

iterations on random 768 × 768 crops with batch size 2.

We use a polynomial learning rate schedule with initial

lr=10−1 for the classifier and lr=10−4 for backbone when

not frozen (see Tab. 1). We optimize with Stochastic Gradi-

ent Descent [4], momentum 0.9 and weight decay 10−4. We

apply standard color jittering and horizontal flip to crops.

Zero-shot feature augmentation. For the feature augmen-

tation step, we use the source feature maps after the first

layer (Layer1): fs ∈ R
192×192×256. The style parameters

µ and σ are 256D real vectors. The CLIP embeddings are

1024D vectors. We adopt the Imagenet templates from [39]

to encode the target descriptions in TrgPrompt.

Classifier fine-tuning. Starting from the source-only pre-

trained model, we fine-tune the classifier Mcls on batches of

8 augmented features fs�t for 2, 000 iterations. Polynomial

schedule is used with the initial lr = 10−2. We always use

the last checkpoint for evaluation.

Datasets. As source, we use Cityscapes [11], composed of

2, 975 training and 500 validation images featuring 19 se-

1https://github.com/openai/CLIP

mantic classes. Though we adapt towards a prompt not a

dataset, we need adhoc datasets to test on. We report main

results using ACDC [44] because it has urban images cap-

tured in adverse conditions. We also study the applicability

of PØDA to the two settings of real�synthetic (Cityscapes

as source, and evaluating on GTA5 [42]) and synthetic�real

(GTA5 as source, and evaluating on Cityscapes). We evalu-

ate on the validation set when provided, and for GTA5 eval-

uation we use a random subset of 1, 000 images.

Evaluation protocol. Mean Intersection over Union

(mIoU%) is used to measure adaptation performance. We

test all models on target images at their original resolutions.

For baselines and PØDA, we always report the mean and

standard deviation over five models trained with different

random seeds.

4.2. Main results

We consider the following adaptation scenarios:

day�night, clear�snow, clear�rain, real�synthetic

and synthetic�real. We report zero-shot adaption results

of PØDA in the addressed set-ups, comparing against two

state-of-the-art baselines: CLIPstyler [24] for zero-shot

style transfer and SM-PPM [54] for one-shot UDA.

Both PØDA and CLIPstyler models see no target images

during training. In this study, we arbitrarily choose a simple

prompt to describe each domain. We show later in Sec. 4.3

more results using other relevant prompts with similar

meanings – showcasing that our adaptation gain is little

sensitive to prompt selection. For SM-PPM, one random

target image from the training set is used.

Comparison to CLIPstyler [24]. CLIPstyler is a style

transfer method that also makes use of the pre-trained CLIP

model but for zero-shot stylizing of source images. We con-

sider CLIPstyler2 as the most comparable zero-shot base-

line for PØDA as both are built upon CLIP, though with

different mechanisms and different objectives. Designed for

style transfer, CLIPstyler produces images that exhibit char-

acteristic styles of the input text prompt. However the styl-

ized images can have multiple artifacts which hinder their

usability in the downstream segmentation task. This is vis-

ible in Fig. 4 which shows stylized examples from CLIP-

styler with PØDA target prompts. Zooming in, we note

that stylization of snow or game added snowy roads or Atari

game on the buildings, respectively.

Starting from source-only model, we fine-tune the clas-

sifier on stylized images, as similarly done in PØDA with

the augmented features. Table 2 compares PØDA against

the source-only model and CLIPstyler. PØDA consistently

outperforms the two baselines. CLIPstyler brings some

improvements over source-only in Cityscapes�Night and

2We use official code https://github.com/cyclomon/

CLIPstyler and follow the recommended configs.
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Source Target eval. Method mIoU[%]

CS

TrgPrompt = “driving at night”

ACDC Night

source-only 18.31±0.00

CLIPstyler 21.38±0.36

PØDA 25.03±0.48

TrgPrompt = “driving in snow”

ACDC Snow

source-only 39.28±0.00

CLIPstyler 41.09±0.17

PØDA 43.90±0.53

TrgPrompt = “driving under rain”

ACDC Rain

source-only 38.20±0.00

CLIPstyler 37.17±0.10

PØDA 42.31±0.55

TrgPrompt = “driving in a game”

GTA5

source-only 39.59±0.00

CLIPstyler 38.73±0.16

PØDA 41.07±0.48

GTA5

TrgPrompt = “driving”

CS

source-only 36.38±0.00

CLIPstyler 31.50±0.21

PØDA 40.08±0.52

Table 2. Zero-shot domain adaptation in semantic segmenta-

tion. Performance (mIoU%) of PØDA compared against CLIP-

styler [24] and source-only baseline. Results are grouped by

source domain and TrgPrompt . CS stands for Cityscapes [11].

The TrgPrompts are simply chosen, not engineered.

Cityscapes night snow rain game

Figure 4. CLIPstyler [24] stylization. A sample Cityscapes im-

age stylized using adhoc target prompts. Translated images exhibit

visible artifacts, potentially harming adaptation, e.g. rain in Tab. 2

input ground truth source-only PØDA
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Figure 5. Qualitative results of zero-shot adaptation. (Columns

1-2) Input images and their ground truths; (Columns 3-4) Segmen-

tation results of source-only and PØDA models.

Cityscapes�Snow. In other scenarios, e.g., rain, CLIPstyler

even performs worse than source-only.

Real�synthetic is an interesting though under-explored

adaptation scenario. One potential application of

Source Target eval. One-shot SM-PPM [54] Zero-shot PØDA

CS

ACDC Night 13.07 / 14.60 (∆=1.53) 18.31 / 25.03 (∆=6.72)

ACDC Snow 32.60 / 35.61 (∆=3.01) 39.28 / 43.90 (∆=4.62)

ACDC Rain 29.78 / 32.23 (∆=2.45) 38.20 / 42.31 (∆=4.11)

GTA5 CS 30.48 / 39.32 (∆=8.84) 36.38 / 40.08 (∆=3.70)

Table 3. Comparison with SM-PPM. Semantic segmentation per-

formance (mIoU%) for source / adapted models, and gain provided

by adaptation (∆ in mIoU). For adaptation, SM-PPM (ResNet-101

DeepLabv2) has access to one target image, while PØDA (ResNet-

50 DeepLabv3+) leverages a target prompt and a text encoder.

real�synthetic is for model validation in the industry, where

some hazardous validations like driving accidents must be

done in the virtual space. Here we test if our zero-shot

mechanism can be also applied to this particular setting.

Similarly, PØDA outperforms both baselines. Also in the

reverse synthetic�real setting, again our method performs

the best. CLIPstyler undergoes almost 5% drops in mIoU

compared to source-only.

We argue on the simplicity of our method that only in-

troduces minimal changes to the feature statistics, yet such

changes are crucial for target adaptation. CLIPstyler, de-

signed for style transfer, involves training an additional

StyleNet with ≈ 615k parameters for synthesizing the styl-

ized images. We base on the simplicity merit of PØDA to

explain why it is more favorable than CLIPstyler for down-

stream tasks like semantic segmentation: the minimal statis-

tics changes help avoiding significant drifts on the feature

manifold which may otherwise result in unwanted errors.

For comparison, it takes us 0.3 seconds to augment one

source feature, while stylizing an image with CLIPstyler

takes 65 seconds (as measured on one RTX 2080TI GPU).

We show in Fig. 5 qualitative examples of predictions

from source-only and PØDA models. We report class-wise

performance in Supplementary Material.

Comparison to one-shot UDA (OSUDA). We also com-

pare PØDA against SM-PPM [54]3, a state-of-the-art

OSUDA method, see Tab. 3. The OSUDA setting allows

the access to a single unlabeled target domain image for

DA. In SM-PPM, this image is considered as an anchor

point for target style mining. Using 5 randomly selected

target images, we trained, with each one, five models with

different random seeds. The reported mIoUs are aver-

aged over the 25 resulting models. We note that the ab-

solute results of the two models are not directly compara-

ble due to the differences in backbone (ResNet-101 in SM-

PPM vs. ResNet-50 in PØDA) and in segmentation frame-

work (DeepLabv2 in SM-PPM vs. DeepLabv3+ in PØDA).

We thus analyze the improvement of each method over

the corresponding naive source-only baseline while taking

into account the source-only performance. We first no-

3We use official code https://github.com/W-zx-Y/SM-PPM
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Method ACDC Night ACDC Snow ACDC Rain GTA5

Source

only
18.31±0.00 39.28±0.00 38.20±0.00 39.59±0.00

Trg “driving at night” “driving in snow” “driving under rain” “driving in a game”

25.03±0.48 43.90±0.53 42.31±0.55 41.07±0.48
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after sunset”

vehicle

“operating a

snowy conditions”

vehicle in

“operating a

wet conditions”

vehicle in

“operating a

a virtual world”

vehicle in

“piloting a

24.38±0.37 44.33±0.36 42.21±0.47 41.25±0.40

hours”

the nighttime

“driving during

roads”

snow-covered

“driving on

roads”

rain-soaked

“driving on

simulation”

in a digital

“controlling a car

25.22±0.64 43.56±0.62 42.51±0.33 41.19±0.14

in darkness”

the roads

“navigating

snowy terrain”

vehicle in

“piloting a

while driving”

through rainfall

“navigating

experience”’

computerized racing

a vehicle in a

“maneuvering

24.73±0.47 44.67±0.18 41.11±0.69 40.34±0.49

conditions”

low-light

“driving in

precipitation”

wintry

“driving in

weather”

inclement

“driving in

environment”

in a video game

a transport

“operating

24.68±0.34 43.11±0.56 40.68±0.37 41.34±0.42

after dusk”

by car

“travelling

a snowstorm”

by car in

“travelling

a downpour”

car during

“travelling by

driving simulation”

a digital

machine through

“navigating a

24.89±0.24 43.83±0.17 42.05±0.35 41.86±0.10

24.82±0.00 43.90±0.00 41.81±0.00 41.18±0.00

“mesmerizing northern lights display”

20.05±0.77 40.07±0.66 38.43±0.82 37.98±0.31

“playful dolphins in the ocean”

20.11±0.31 39.87±0.26 38.56±0.58 37.05±0.31

“breathtaking view from mountaintop”

20.65±0.33 42.08±0.28 40.05±0.52 40.09±0.23

“cheerful sunflower field in bloom”

21.10±0.50 39.85±0.68 40.09±0.41 37.93±0.55

“dramatic cliff overlooking the ocean”

20.09±0.98 38.20±0.54 38.48±0.37 37.57±0.46

“majestic eagle in flight over mountains”

20.70±0.38 39.60±0.27 40.38±0.86 38.52±0.21

20.45±0.00 39.95±0.00 39.33±0.00 38.19±0.00

Table 4. Effect of prompts on PØDA. We show result for our

TrgPrompt (top) as well as ChatGPT-generated relevant prompt

(middle) and irrelevant prompt (bottom). Please refer to Sec. 4.3

for details. Best results (bold) are always obtained with relevant

prompts for which mean mIoU (italic) also proves to be better.

tice that our source-only (CLIP ResNet) performs better

than SM-PPM source-only (ImageNet pretrained ResNet),

demonstrating the overall robustness of the frozen CLIP-

based model. In Cityscapes�ACDC, both absolute and rel-

ative improvements of PØDA over source-only are greater

than the ones of SM-PPM. Overall, PØDA exhibits on par

or greater improvements over SM-PPM, despite the fact that

our method is purely zero-shot.

Qualitative results on uncommon conditions. Figure 6

shows some qualitative results, training on Cityscapes, and

adapting to uncommon conditions never found in datasets

because they are either rare (sandstorm), dangerous (fire),

or not labeled (old movie). For all, PØDA improves over

source-only, which demonstrates its true benefit.

Input Source-only PØDA

TrgPrompt = “driving through fire”

TrgPrompt = “driving in sandstorm”

TrgPrompt = “driving in old movie”

Figure 6. PØDA on uncommon conditions. Qualitative results

here all use Cityscapes as source and PØDA uses TrgPrompt .

4.3. Ablation studies

TrgPrompt selection. Using any meaningful descriptions

of the target domain, one should obtain similar adaptation

gain with PØDA. To verify this, we generate other relevant

prompts by querying ChatGPT4 with Give me 5 prompts

that have the same exact meaning as [PROMPT]

using same prompts as in Tab. 2. Results in Tab. 4 show

that adaptation gains are rather independent of the textual

expression. Inversely, we query irrelevant prompts with

Give me 6 random prompts of length from 3 to

6 words describing a random photo, which could

result in negative transfer (See Tab. 4). By chance, small

gains could occur; however we conjecture that such gains

may originate from generalization by randomization rather

than adaptation.

Choice of features to augment. DeepLabV3+ segmenter

takes as inputs both low-level features from Layer1 and

high-level features from Layer4. In PØDA, we only aug-

ment the Layer1 features and forward them through remain-

ing layers 2-4 to obtain the Layer4 features. The input to the

classifier is the concatenation of both. We study in Tab. 5 if

one should augment other features in addition to the ones in

4OpenAI’s chatbot https://chat.openai.com/
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Layer1 Layer2 Layer3 Layer4 ACDC Night

✓ ✗ ✗ ✗ 25.03±0.48

✓ ✓ ✗ ✗ 23.43±0.51

✓ ✗ ✓ ✗ 22.93±0.53

✓ ✗ ✗ ✓ 21.05±0.55

Table 5. Impact of selected layers for augmentation. Perfor-

mance (mIoU) of PØDA’s day�night adaptation for different

choices of ResNet layers for feature augmentation. In addition to

augmenting features of Layer1 (Row 1), one can augment Layer2

or Layer3 features (Rows 2-3), or of Layer4 directly (Row 4).

Method Night Snow Rain GTA5

src-only* 18.31±0.00 39.28±0.00 38.20±0.00 39.59±0.00

PØDA* 25.03±0.48 43.90±0.53 42.31±0.55 41.07±0.48

src-only (Layer1 ) 9.60±0.00 30.99±0.00 30.89±0,00 29.38±0.00

PØDA (Layer1 ) 19.43±0.69 37.80±2.65 40.71±1.06 39.09±1.23

Table 6. PØDA when freezing ( ) only Layer1. Both models with *,
reported in Tab. 2, freeze the whole backbone Layer1-4.

Layer1: we observe the best performance with only Layer1

augmentation. We conjecture that it is important to preserve

the consistency between the two inputs to the classifier, i.e.,

Layer4 features should be derived from the augmented one

from Layer1.

Number of mined styles. Our experiments use always

|Ss�t| = |Ds| but we study the effect of changing the

number |Ss�t| of styles on the target domain performance.

By performing ablation on CS�Night with |Ss�t| = 1,

10, 100, 1000, 2975 (i.e., |Ds|), we obtain 16.00±5.01,

22.04±1.24, 23.90±0.96, 24.27±0.70, 25.03±0.48 respectively.

For |Ss�t| < |Ds|, the styles are sampled randomly from

Ds and results are reported in average on 5 different sam-

plings. Interestingly, we observe that the variance decreases

with the increase of |Ss�t|. Results also suggest that only

few styles (e.g. |Ss�t| = 10) could be sufficient for fea-

ture translation, similarly to few-shot image-to-image trans-

lation [38], though at the cost of higher variance.

Partial unfreezing of the backbone. While our exper-

iments use a frozen backbone due to the observed good

out-of-distribution performance (Tab. 1), we highlight that

during training only Layer1 must be frozen to preserve its

activation space where augmentations are done; the remain-

ing three layers could be optionally fine-tuned. Results in

Tab. 6 show that freezing the whole backbone (i.e., Layer1-

4) achieves the best results. In all cases, PØDA consistently

improves the performance over source-only.

4.4. Further discussion

Generalization with PØDA. Inspired by the observation

that some unrelated prompts improve performance on target

domains (see Tab. 4), we study how PØDA can benefit from

Method Night Snow Rain GTA5

Source-only 18.31±0.00 39.28±0.00 38.20±0.00 39.59±0.00

Source-only-G 21.07±0.00 42.84±0.00 42.38±0.00 41.54±0.00

PØDA-G 24.86±0.70 44.34±0.36 43.17±0.63 41.73±0.39

PØDA-G+style-mix 24.18±0.23 44.46±0.34 43.56±0.46 42.98±0.12

Table 7. Generalization with PØDA. Source-only-G model

is enhanced with a domain generalization technique. Train-

ing PØDA from Source-only-G (‘PØDA-G’) brings improve-

ments. ‘style-mix’: style mixing as in [54].

general style augmentation. First, we coin “Source-only-G”

the generalized source-only model where we augment fea-

tures by shifting the per-channel (µ,σ) with Gaussian

noises sampled for each batch of features, such that the sig-

nal to noise ratio is 20 dB. This source-only variant takes

inspiration from [14] where simple perturbations of feature

channel statistics could help achieve SOTA generalization

performance in object detection. Tab. 7 shows that Source-

only-G always improves over Source-only, demonstrating

a generalization capability. When applying our zero-shot

adaptation on Source-only-G (denoted “PØDA-G”), target

performance again improves – always performing best on

the desired target. Performance is further boosted by the

style mixing strategy used in [54], i.e. source and aug-

mented features statistics being linearly mixed.

Effect of priors. We now discuss existing techniques that

approach zero-shot DA with different priors, revealing the

potential combinations of different orthogonal methods. In

Tab. 8, we report zero-shot results of CIConv [25] using

physics priors, compared against CLIPstyler and PØDA,

which use textual priors, i.e., prompts. We also include the

one-shot SM-PPM [54] model as the single target sample

it requires can be considered as a prior. CIConv, a dedi-

cated physics-inspired layer, is proven effective in enhanc-

ing backbone robustness on night scenes. The layer could

be straightforwardly included in the CLIP image encoder to

achieve the same effect. Albeit interesting, this combina-

tion would however require extremely high computational

resources to re-train a CLIP variant equipped with CIConv.

We leave open such a combination, as well as others like (i)

combining image-level (CLIPstyler) and feature-level aug-

mentation (PØDA) or (ii) additionally using style informa-

tion from one target sample (like in SM-PPM) to help in

guiding better the feature augmentation.

Other architectures. We show in Tab. 9 consistent gains

brought by PØDA using new backbone (RN101 [17]) and

segmenter (semantic FPN [23]).

5. PØDA for other tasks

PØDA operates at the features level, which makes it task-

agnostic. We show in the following the effectiveness of our
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Method Prior ACDC Night

CIConv* [25] physics 30.60 / 34.50 (∆=3.90)

SM-PPM [54] 1 target image 13.07 / 14.60 (∆=1.53)

CLIPstyler [24] 1 prompt 18.31 / 21.38 (∆=3.07)

PØDA 1 prompt 18.31 / 25.03 (∆=6.72)

* Results of CIConv are on DarkZurich, a subset of ACDC Night [44].

Table 8. Effect of different priors for zero-shot/one-shot adap-

tation. We report mIoU% for source-only / adapted models, and

gain brought by adaptation (∆ in mIoU). Note that [25, 54] use a

deeper backbone making results not directly comparable.

Backbone Method Night Snow Rain GTA5

Sem. FPN
src-only 18.10±0.00 35.75±0.00 36.07±0.00 40.67±0.00

PØDA 21.48±0.15 39.55±0.13 38.34±0.29 41.59±0.24

DLv3+
src-only 22.17±0.00 44.53±0.00 42.53±0.00 40.49±0.00

PØDA 26.54±0.12 46.71±0.43 46.36±0.20 43.17±0.13

Table 9. PØDA with different architectures. Backbones

are RN50 for Semantic FPN (‘Sem. FPN’) and RN101 for

DeepLabV3+ (‘DLv3+’).

method for object detection and image classification.

PØDA for Object Detection. We report in Tab. 10 some

results when straightforwardly applying PØDA to object

detection. Our Faster-RCNN [40] models, initialized with

two backbones, are trained on two source datasets, ei-

ther Cityscapes or the Day-Clear split in Diverse Weather

Dataset (DWD) [53]. We report adaptation results on

Cityscapes-Foggy [43] and four other conditions in DWD.

For zero-shot feature augmentation in PØDA, we use sim-

ple prompts and take the default optimization parameters

in previous experiments. PØDA obtains on par or bet-

ter results than UDA methods [8, 41] (which use target

images) and domain generalization methods [14, 47, 53].

We also experimented with YOLOF [7] for object detec-

tion in CS�Foggy; PØDA reaches 35.4%, improving 1.5%
from the source-only model. These results open up poten-

tial combinations of PØDA with generalization techniques

like [14] and [47] for object detection.

PØDA for Image Classification. We show that PØDA

can be also applied for image classification. We use the

same augmentation strategy to adapt a linear probe on top

of CLIP-RN50 features. In a first experiment we train a lin-

ear classifier on the features of CUB-200 dataset [49] of 200

real bird species; we then perform zero-shot adaptation to

classify bird paintings of CUB-200-Paintings dataset [51]

using the single prompt “Painting of a bird”. In our sec-

ond experiment, we address the color bias in Colored

MNIST [1]; while for training, even and odd digits are

colored red and blue respectively, the test digits are ran-

domly colored. We augment training digit features using

the “Blue digit” and “Red digit” prompts for even and odd

CS� CS

Foggy

DWD-Day Clear �

Method Target
Night

Clear

Dusk

Rainy

Night

Rainy

Day

Foggy

DA-Faster [8] ✓ 32.0 - - - -

ViSGA [41] ✓ 43.3 - - - -

NP+ [14] ✗ 46.3 - - - -

S-DGOD [53] ✗ - 36.6 28.2 16.6 33.5

CLIP The Gap [47] ✗ - 36.9 32.3 18.7 38.5

PØDA ✗ 47.3 43.4 40.2 20.5 44.4

Table 10. PØDA for object detection (mAP%). For

Cityscapes�Cityscapes-Foggy adaptation, the backbone is

ResNet-50, while it is ResNet-101 for adaption from DWD-Day-

Clear to other conditions in DWD.

Method
CUB-200

paintings

Colored

MNIST

src-only 28.90±0.00 55.83 ±0.00

PØDA 30.91±0.69 64.16±0.41

Table 11. PØDA for image classification (acc%). The backbone

is ResNet-50, and a linear classifier is fit on top of the features.

The source domains are CUB-200 (real bird images) and colored

MNIST with color bias, in second and third columns respectively.

digits respectively, and create a separate set for each one

to prevent styles from leaking, i.e. to avoid trivially using

“red” styles coming from even digits to augment odd digits

features and vice versa. Results in Tab. 11 show that PØDA

significantly improves over the source-only models.

6. Conclusion

In this work, we leverage the powerful zero-shot abil-

ity of the CLIP model to make possible a new challeng-

ing task of domain adaptation using prompts. We propose

a cost-effective feature augmentation mechanism that ad-

justs the style-specific statistics of source features to syn-

thesize augmented features in the target domain, guided by

domain prompts in natural language. Extensive experiments

have proven the effectiveness of our framework for seman-

tic segmentation in particular. They also show its applica-

bility to other tasks and various backbones. Our line of re-

search aligns with the collective efforts of the community

to leverage large-scale pre-trained models (so-called “foun-

dation models” [3]) for data- and label-efficient training of

perception models for real-world applications.
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