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Abstract

Federated Learning (FL) has recently emerged as a

promising distributed machine learning framework to pre-

serve clients’ privacy, by allowing multiple clients to up-

load the gradients calculated from their local data to a cen-

tral server. Recent studies find that the exchanged gradi-

ents also take the risk of privacy leakage, e.g., an attacker

can invert the shared gradients and recover sensitive data

against an FL system by leveraging pre-trained generative

adversarial networks (GAN) as prior knowledge. However,

performing gradient inversion attacks in the latent space of

the GAN model limits their expression ability and general-

izability. To tackle these challenges, we propose Gradient

Inversion over Feature Domains (GIFD), which disassem-

bles the GAN model and searches the feature domains of

the intermediate layers. Instead of optimizing only over

the initial latent code, we progressively change the opti-

mized layer, from the initial latent space to intermediate

layers closer to the output images. In addition, we design

a regularizer to avoid unreal image generation by adding a

small l1 ball constraint to the searching range. We also ex-

tend GIFD to the out-of-distribution (OOD) setting, which

weakens the assumption that the training sets of GANs and

FL tasks obey the same data distribution. Extensive experi-

ments demonstrate that our method can achieve pixel-level

reconstruction and is superior to the existing methods. No-

tably, GIFD also shows great generalizability under differ-

ent defense strategy settings and batch sizes.

1. Introduction

Federated learning [21, 35] is an increasingly popular

distributed machine learning framework, which has been
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Figure 1: The reconstructed results of our proposed GIFD

on ImageNet[6] and FFHQ[17]. The first column contains

the randomly initialized images generated by generators.

The next two columns show the reconstruction samples of

the latent space search and our proposed GIFD,

applied in many privacy-sensitive scenarios [19, 33], such

as financial services, medical analysis, and recommenda-

tion systems.

It allows multiple clients to participate in collaborative

learning under the coordination of the central server. The

central server aggregates the uploaded gradients calculated

from the local data by the end users, rather than the pri-

vate data. This mechanism resolves the data silos problem

and brings privacy benefits to distributed learning. How-

ever, a series of recent studies have shown that even the

gradients uploaded in FL take the risk of privacy leakage.

Zhu et al. [40] first formulate it as an optimization prob-

lem and design an optimization-based algorithm that recon-

structs private data by best matching the dummy gradients

with the real gradients. Zhao et al. [38] further improve the

attack with an extra label restoration step. Geiping et al.

[9] first achieve ImageNet-level recovery through a well-

designed loss function that adds a new regularization and
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uses a different distance metric. In order to improve the

performance on larger batch sizes, Yin et al. [34] propose a

batch-level label extraction method and assume that certain

side-information is available to regularize feature distribu-

tions through batch normalization (BN) prior.

It is widely investigated and acknowledged that a pre-

trained GAN learned from a public dataset generally cap-

tures a wealth of prior knowledge. Recent studies [34, 16,

20] propose to leverage the manifold of GAN as prior infor-

mation, which provides a good approximation of the natu-

ral image space and enhances the attacks significantly. The

aforementioned works achieve impressive results in their

own scenarios, but most of them rely on strong assumptions,

e.g., known labels, BN statistics, and private data distribu-

tion, which are actually impractical in the real FL scenario.

Therefore, it is hard for most existing methods to recover

high-quality private data in a more realistic setting.

In this paper, we advocate a simple and effective solu-

tion, Gradient Inversion over Feature Domain (GIFD), to

address the challenges of expression ability and generaliz-

ability of pre-trained GANs. Recently, it has been shown

that rich semantic information is encoded in the interme-

diate features and the latent space of GANs [2, 30, 26, 5].

Among them, the GAN-based intermediate layer optimiza-

tion in solving compressed sensing problems achieves great

performance [5]. Inspired by these works, We reformulate

the GAN inversion as a novel intermediate layer optimiza-

tion problem by minimizing the gradient matching loss by

searching the intermediate features of the generative model.

Specifically, our first step is to optimize the latent space and

then we optimize the intermediate layers of the generative

model successively. During the feature domain optimiza-

tion stage, we only use part of the generator and the so-

lution space becomes larger, which can easily lead to un-

real image generation. To solve this problem, we iteratively

project the optimizing features to a small l1 ball centered at

the initial vector induced by the previous layer. Finally, we

select output images from the layer with the corresponding

least gradient matching loss as the final results. The visual

comparison in Figure 1 clearly demonstrates the necessity

of optimizing the intermediate feature domains.

Another issue unsolved in GAN-based gradient attacks

is the flexibility of private data generation under more rig-

orous and realistic settings. To relax these assumptions,

we first investigate an out-of-distribution (OOD) gradient

attack scenario, where the private data distribution is signif-

icantly different from that of the GAN’s training set. The

significant result improvement demonstrates the proposed

method has excellent generalizability and achieves great

performance on OOD datasets. Furthermore, we discuss

several common defense strategies in protection form gra-

dient sharing[36], including gradient sparsification [28, 1],

gradient clipping [10], differential privacy [10], and Sote-

ria (i.e., perturbing the data representations) [29]. These

frequently used privacy defense approaches have been con-

firmed to achieve high resilience against existing attacks

by degrading the privacy information carried by the share

gradients. Extensive experiments and ablation studies have

demonstrated the effectiveness of the GIFD attack.

Our main contributions are summarized as follows:

• We propose GIFD for exploiting pre-trained generative

models as data prior to invert gradients by searching

the latent space and the intermediate features of the

generator successively with l1 ball constraint.

• We show that this optimization method can be used

to generate private OOD data with different styles,

demonstrating the impressive generalization ability of

the proposed GIFD under a more practical situation.

• We systematically evaluate our proposed method com-

pared with the state-of-the-art baselines with the gra-

dient transformation technique under four considered

defense strategies.

2. Related Work

2.1. Gradient-based Attack in FL

In federated learning, the early studies investigate mem-

ber inference [27, 22], where a malicious attacker can de-

termine whether a certain data sample has participated in

model training. A similar attack, called property inference

[8], can reveal the attributes of the samples in the training

set. Another powerful attack is model inversion [14], which

works by training a GAN from local images and the shared

gradients to generate samples with the same distribution as

the private data. Wang et al. [31] then improve the model

attack and reconstruct client-level data representatives.

Gradient Inversion Attacks. This is a more threatening

type of attack where an adversary can fully reconstruct the

client’s private data samples. The existing attack methods

can be characterized into two paradigms [36]: recursion and

iteration-based methods.

Recursion-based attacks. Phong et al. [25] first utilized

gradients to successfully recover the input data from a shal-

low perceptron. Fan et al. [7] considered networks with

convolution layers and solved the problem by converting

the convolution layer into a full connection layer. Zhu et al.

[39] combined forward and backward propagation to trans-

form the problem into solving a system of linear equations.

Chen et al. [4] then combined optimization problems un-

der different situations and proposed a systematic frame-

work. The recursion-based methods have the following

limitations: (1) low-resolution images only; (2) the global

model in FL cannot contain pooling layers or shortcut con-

nections; (3) these methods cannot handle mini-batch train-
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ing; and (4) they heavily depend on gradients, i.e., if gradi-

ents are perturbed, most of these methods barely work.

Iteration-based attacks. Zhu et al. [40] first formulated

the attack as an iterative optimization problem. Attackers

restore data samples by minimizing the distance between

the shared gradients and the dummy gradients generated by

a pair of dummy samples. Zhao et al. [38] proposed to ex-

tract the label of a single sample from the gradients and fur-

ther improved the attack. Geiping et al. [9] reconstructed

higher resolution images from ResNet [13] by changing the

distance metric and adding a regularization term. Yin et al.

[34] primarily focused on larger batch sizes recovery. With

strong BN statistics and deep pre-trained ResNet-50 as the

global model (larger model generates more gradient infor-

mation), they successfully revealed some information from

partial images at larger batch sizes. Jeon et al. [16] fine-

tuned the GAN parameter to better utilize image prior and

improved the quality of restored images. Hatamizadeh et

al. [12] extended attacks on Vision Transformers. Consid-

ering defense strategies in FL, Li et al. [20] proposed a new

technique called gradient transformation to deal with the de-

graded gradients and still revealed private information.

Currently, several strong assumptions are made to help

better reconstruct, which are not identical to the realistic FL

setting. By nullifying some of these assumptions [15], the

reconstruction performance drops significantly.

2.2. GAN as prior knowledge

GAN [11] is a deep generative model, which can learn

the probability distribution of the images in the training

set through adversarial training. A well-trained GAN can

generate realistic and high-diversity images. Recent stud-

ies show that GAN can be leveraged to solve inverse prob-

lems [32], e.g. compressed sensing. Yin et al. [34] intro-

duced a method that utilizes a pre-trained generative model

as an image prior. Jeon et al. [16] proposed to search the

latent space and parameter space of the generative model

in turn, which fully exploits GAN’s generation ability to

reconstruct images of outstanding quality. A weakness is

that it requires a specific generator to be trained for each re-

constructed image, which consumes large amounts of GPU

memory and inference time. Li et al. [20] also adopted the

generative model, but only optimized the latent code, which

achieves semantic-level reconstruction. Among the GAN-

based methods, only Jeon et al. [16] really considered the

situation when the training data of the generative model and

the global model obey different probability distributions.

Inspired by the successful application of Intermediate

Layer Optimization (ILO) [5] in compressed sensing, we

decide to search the latent space and feature domains of

the generative model to achieve pixel-level reconstruction.

Meanwhile, we find that our method is superior to the pre-

vious methods for OOD data.

3. Method

In this section, we first introduce the basic paradigm of

gradient inversion attacks. Then, we explain how former

methods leverage GAN to achieve better results. Finally,

we elaborate on our proposed GIFD, which successively

searches the latent space and intermediate feature spaces of

the generative model.

3.1. Problem Formulation

Given a neural network fθ with weights θ for image

classification tasks, and batch-averaged gradients g calcu-

lated from a private batch with images x∗ and labels y∗,

the attacker attempts to invert the gradients to private data

with randomly initialized input tensor x̂ ∈ R
B×H×W×C

and labels ŷ ∈ {0, 1}B×L (B,H,W,C,L being batch size,

height, width, number of channels and class number):

x̂∗, ŷ∗ = argmin
x̂,ŷ

D

(

1

B

B
∑

i=1

∇ℓ(fθ(xi), yi), g

)

, (1)

where x̂ = (x1, . . . , xB), ŷ = (y1, . . . , yB). D(·, ·) is the

measurement of distance, e.g., l2-distance [34, 20], nega-

tive cosine similarity [9, 16], and ℓ(·, ·) is the loss function

for classification. In the workflow of the algorithm, the at-

tacker generates a pair of random noise x̂ and labels ŷ as

parameters, optimized towards the ground truth x∗ and y∗

through minimizing the matching loss between dummy gra-

dients and transmitted gradients.

Since private labels can be inferred directly from the gra-

dients [38, 34], the objective function with regularization

term can be simplified to the following form:

x̂∗ = argmin
x̂

D (F (x̂), g) +Rprior(x̂), (2)

where F (x̂) = 1
B

∑B

i=1∇ℓ(fθ(xi), yi), Rprior(x̂) is prior

knowledge regularization (e.g., BN statistics [34]).

Given a pre-trained generative model Gw(·) learning

from the public dataset, an intuitive method is to transform

the problem into the following form:

z∗ = argmin
z

D (F (Gw(z)), g) +Rprior(z;Gw), (3)

where z ∈ R
B×k is the latent code of the generative model.

By narrowing the search range from R
B×m (m = H×W×

C) to R
B×k (k<<m), one can reduce the uncertainty in

the optimizing process. Based on this, various GAN-based

gradient inversion methods [20, 16] are proposed to ensure

the quality and fidelity of the generated images.

3.2. Gradient Inversion over Feature Domains

First, we formally formulate our optimization objective:

x̂∗ = argmin
x̂

D (T (F (x̂)), g) +Rfidty(x̂), (4)
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Figure 2: Overview of our proposed GIFD attack. The intermediate layer optimizer minimizes the loss computed from the

dummy gradients and the shared gradients from the victim under the image fidelity regularization, to update the latent vector

and the intermediate features successively. Finally, the generative model outputs reconstruction data from the layer with the

corresponding least gradient matching loss.

where x̂ is generated by Gw or part of Gw, F (·) is the

batch-averaged gradient operator, T (·) is the gradient trans-

formation technique we will discuss later. The first term

D (T (F (x̂)), g) denotes the gradient matching loss, and the

second term Rfidty(x̂) is the image fidelity regularization.

To simplify the expression, we solve for the objective func-

tion in the following form:

x̂∗ = argmin
x̂

Lgrad(x̂), (5)

where we denote the loss function in (4) by Lgrad(x̂). An

overview of our method is shown in Figure 2, we next in-

troduce each component in detail.

Intermediate Layer Optimizer. This is the core of our

algorithm. As the pseudocode described in Algorithm 1,

instead of directly optimizing over x̂, we focus on searching

the latent space and the intermediate space of the generator

in turn, to make the most of the GAN prior.

The first step is to optimize over the randomly initialed

latent vector z using gradient descent with an effective

Spherical Optimizer [23]. Once we obtain the optimal z∗,

we dissemble the generator Gw into G0 ◦G1 ◦ · · · ◦GN−1 ◦
GN for intermediate feature optimization. Then, we map

optimal latent vector z∗ into intermediate latent representa-

tions h0
1 using G0, i.e., h0

1 := G0(z
∗). Next, our algorithm

enters the for loop in line 7 of Algorithm 1 and starts to

search the intermediate features.

At the pass of loop i, we perform the following oper-

ations. First, we generate images from intermediate fea-

ture hi only with the rest part of Gw (i.e., Gi ◦ · · · ◦ GN ).

Then, we use the generated images to compute dummy gra-

dients and optimize over hi via minimizing cost function in

(4). Considering the intermediate feature searching might

lead to unreal images generation, we constrain the search-

ing range to lie within an l1 ball of radius r[i] centered at

h0
i , i.e. the term ball

r[i]

h0

i

in the line 9 of Algorithm 1. Af-

ter obtaining the optimal results h∗
i of the present layer, we

generate the initial intermediate representations for the next

layer with Gi, i.e. h0
i+1 := Gi(h

∗
i ).

As shown in line 4, 11, 12, 13, 18 of Algorithm 1, we

hope to utilize the gradient matching loss as valid informa-

tion to guide us to select the output images. More specifi-

cally, we choose the output images from the layer with the

corresponding least gradient matching loss among all the

searched intermediate layers as the final output. Although

less loss doesn’t always mean better image quality, our strat-

egy still outperforms specifying a fixed layer’s output.

With all the efforts above, we encourage the optimizer

to explore the intermediate space with rich information, to

generate more diverse and high-fidelity images, while lim-

iting the solution space within a l1 ball around the manifold

induced by the previous layer in order to avoid overfitting

and guarantee the realism of the generated images. Further-

more, our approach is easy to implement as it is not tied

to any specific GAN architecture and only requires a pre-

trained generative model.

Labels Extraction. Specifically, consider a network pa-

rameterized by W for classification task over n-classes us-

ing cross-entropy loss function, when the training data is

a single image, the ground truth label c can be accurately

inferred [38] through:

c = i, s.t. ∇Wi
FC

⊤ · ∇Wj
FC ≤ 0, ∀ j ̸= i, (6)

where we denote the gradient vector w.r.t. the weights (de-
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Algorithm 1 Pseudocode of our proposed GIFD

Input: Gw: a pre-trained generative model; fθ: the global

model in FL; g: shared gradients; K: the index of the

last intermediate layer to optimize; r[1 . . .K]: radius of

l1 ball in each intermediate layer; B: batch size;

Output: Reconstructed images via GIFD attack;

1: Initial latent code z := (z1, . . . , zB) with random noise

2: // Latent space search

3: z∗ ← argminz Lgrad(Gw(z))
4: Set x̂∗ := Gw(z

∗), lossmin = D (T (F (Gw(z
∗))), g)

5: Dissemble Gw into G0 ◦G1 ◦ · · · ◦GN−1 ◦GN

6: Set h0
1 := G0(z

∗)
7: for i← 1 to K do

8: //Intermediate layers search with

l1-ball constraint

9: h∗
i ← argmin

hi∈ball
r[i]

h0
i

Lgrad(Gi ◦ · · · ◦GN (hi))

10: lossi = D (T (F (Gi ◦ · · · ◦GN (h∗
i ))), g)

11: if lossi < lossmin then

12: x̂∗ := Gi ◦ · · · ◦GN (h∗
i )

13: lossmin = lossi
14: end if

15: // Generate features of the next

intermediate layer as the initial

vector to optimize

16: h0
i+1 := Gi(h

∗
i )

17: end for

18: Return results: x̂∗

noted as Wi
FC) connected to the ith logit in the classifi-

cation layer (i.e., the output layer) by ∇Wi
FC. Hence, we

can identify the ground-truth label via the index of the neg-

ative gradients. [34] further extends to support batch-level

label extraction with high accuracy, while assuming non-

repeating labels in the batch. The inferred labels are used

to compute dummy gradients and as the class conditions for

conditional GANs, which greatly enhances our attack.

Image Fidelity Regularization. Intuitively, it is challeng-

ing to restore data only from the shared gradients, as gra-

dients are only a non-linear mapping form of the original

data. It is therefore worth using some strong priors as an

approximation of natural images:

Rfidty(x̂) = αℓ2Rℓ2(x̂) + αTVRTV (x̂), (7)

where the first term is the l2 norm of the images [34] with

scaling factor αℓ2 , which encourages the algorithm to solve

for a solution that is preferably sparse. Since neighboring

pixels of natural images are likely to have close values, we

add the second term [9] RTV (x̂) to penalize total variation

of x̂ with scaling factor αTV .

Gradient Transformation. In order to mitigate the effects

of defense strategies, we adopt the adaptive attack [20] by
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Figure 3: Comparison of PSNR mean on BigGAN and

StyleGAN2 under different values of hyper-parameter K

(i.e., the last intermediate layer to optimize). Notably, the

figures exclude the results where the corresponding values

are below the starting point of the y-axis.

estimating transformation from received gradients and in-

corporating it into the optimization process, i.e., T (·) in (4).

Specifically, we can infer three defense strategies: (1) Gra-

dient clipping; (2) Gradient sparsification; and (3) Soteria.

4. Experiments

To validate the effectiveness of GIFD in improving at-

tack performance, we conduct experiments on two widely

used GANs in a range of scenarios. We evaluate our

method for the classification task on the validation set of

ImageNet ILSVRC 2012 dataset[6]) and 10-class (using

age as label) FFHQ [17] at 64 × 64 pixels. For the gen-

erative model, we use a pre-trained BigGAN [3] for Im-

ageNet and a pre-trained StyleGAN2 [17] for FFHQ. We

use a randomly initialized ResNet-18 as the FL model, and

choose negative cosine similarity as distance metric D(·).
We use the default B = 1 at one local step. Then we

conduct experiments with larger B and compare the per-

formance of different methods. Our code is available at

https://github.com/ffhibnese/GIFD.

Implementation details. According to its specific struc-

ture, we split BigGAN into G0 to G12 with 12 intermediate

feature domains, and StyleGAN2 into G0 to G7 with 7 in-

termediate feature domains. We ensure that the intermediate

features lie in the l1 ball through Project Gradient Descent

(PGD) [24]. Motivated by the fact that a stepwise optimiza-

tion over the noises in StyleGAN2 yields better reconstruc-

tions [5] for compressed sensing, we gradually allow to op-

timize more noises as we move to deeper intermediate lay-

ers and make them lie inside the l1 ball as well. For more

details about experiments, please refer to the Appendix.

Evaluaion Metrics. We compute the following quanti-

tative metrics to measure the discrepancy between recon-

structed images and ground truth: (1) PSNR (Peak Signal-

to-Noise Ratio), (2) LPIPS [37] (Learned Perceptual Im-

age Patch Similarity), (3) SSIM (Similarity Structural In-

dex Measure), and (4) MSE (Mean Square Error) between

reconstruction and private images.
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Table 1: Comparison of GIFD with state-of-the-art methods on every 1000th image of the ImageNet and FFHQ validation

set. We calculate the average value of metrics on reconstructed images.

Metric
ImageNet FFHQ

IG [9] GI [34] GGL [20] GIAS [16] GIFD IG [9] GI [34] GGL [20] GIAS [16] GIFD

PSNR↑ 17.0756 16.5109 13.3885 17.4923 20.0534 15.3523 14.9485 15.1335 20.1799 21.3368

LPIPS↓ 0.3078 0.3297 0.3678 0.2536 0.1559 0.4172 0.4503 0.2009 0.1266 0.1023

SSIM↑ 0.2908 0.2673 0.1251 0.3381 0.4713 0.2272 0.2044 0.2453 0.5379 0.5768

MSE↓ 0.0223 0.0258 0.0553 0.0236 0.0141 0.0311 0.0343 0.0339 0.0121 0.0098

Original IG [9] GI [34] GGL [20] GIAS [16] GIFD

(a) ImageNet (BigGAN)

Original IG [9] GI [34] GGL [20] GIAS [16] GIFD

(b) FFHQ (StyleGAN2)

Figure 4: Qualitative results of different methods on ImageNet and FFHQ.

4.1. Decide Which Layer to End

In order to further improve the quality of output images,

we need to carefully handle the parameter K in Algorithm

1. Actually, we find that there is a trade-off between under-

fitting and over-fitting about the choice of K. When K is

small, we only search the first few intermediate features of

the generative model and do not fully utilize the rich in-

formation encoded in the intermediate space. As a result,

the quality of the generated images does not meet our ex-

pectations. On the contrary, when K is large, we exces-

sively search the deeper layers and generate images that

have less cost, but a larger discrepancy with the original im-

ages. Therefore, we randomly select images (disjoint from

our main experimental data) from the validation set of Ima-

geNet and FFHQ to study the impact of K and try to select

the best final layer. As shown in Figure 3, when K = 9 and

K = 4 are used for BigGAN and StyleGAN2 respectively,

we obtain results with the largest PSNR. Hence, we use this

configuration for conducting all the experiments.

4.2. Comparison with the State-of-the-art Attacks

Next, we compare our proposed GIFD with existing

methods and provide qualitative and quantitative results.

We consider the following four state-of-the-art baselines:

(1) Inverting Gradients (IG) by Geiping et al. [9]; (2) Grad-

Inversion (GI) by Yin et al. [34]; (3) Gradient Inversion in

Alternative Spaces (GIAS) by Jeon et al. [16]; and (4) Gen-

erative Gradient Leakage (GGL) by Li et al. [20].

In real application scenarios, a vast majority of FL sys-

tems do not transmit the BN statistics computed from pri-

vate data [15]. Based on this fact, all the experiments do

not use the strong BN prior proposed by [34]. Since the

randomly initialized values of vectors will greatly affect the

reconstruction results, we conduct 4 trials for every attack

and select the result with the least gradient matching loss.

The ablation study is conducted in the Appendix.

Experiment Results. By observing the results in Table 1,

we demonstrate that our method consistently achieves great

improvement compared to the competing methods for gra-

dient inversion attacks. Especially in the ImageNet dataset

with BigGAN, our method has nearly 2.5dB and 0.1 im-

provements in average PSNR and LPIPS values respec-

tively. As the visualization comparison shown in Figure 4,

under a more practical setting, most existing methods strug-

gle to recover meaningful and high-quality images even at

B = 1, while our method reveals significant information
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Table 2: Comparision of GIFD with state-of-the-art baselines on OOD data of different styles.

Datset Method
Art Painting Photo Cartoon

PSNR↑ LPIPS↓ SSIM↑ MSE↓ PSNR↑ LPIPS↓ SSIM↑ MSE↓ PSNR↑ LPIPS↓ SSIM↑ MSE↓

ImageNet*

IG [9] 18.3476 0.2286 0.3870 0.0172 15.6647 0.3575 0.2409 0.0325 15.8766 0.3183 0.3970 0.0288

GI [34] 17.4681 0.2625 0.3445 0.0203 15.2700 0.3888 0.2201 0.0346 15.3905 0.3112 0.3926 0.0327

GGL [20] 12.8011 0.3639 0.1356 0.0571 12.9246 0.3159 0.1507 0.0667 11.0315 0.3294 0.2832 0.0895

GIAS [16] 17.2804 0.2774 0.3346 0.0227 20.4539 0.1724 0.4913 0.0111 19.0247 0.1862 0.5740 0.0149

GIFD 19.3311 0.1700 0.4503 0.0151 21.9281 0.1137 0.5765 0.0082 22.8055 0.1030 0.6970 0.0067

FFHQ*

IG [9] 15.9020 0.3856 0.2736 0.0273 17.7422 0.3043 0.3398 0.0174 14.7029 0.3118 0.3213 0.0358

GI [34] 16.2990 0.3537 0.2917 0.0259 18.5540 0.2388 0.3808 0.0147 15.0097 0.3232 0.3201 0.0331

GGL [20] 14.2833 0.2514 0.1982 0.0435 15.5001 0.2309 0.2513 0.0302 12.3590 0.2556 0.2322 0.0624

GIAS [16] 18.4619 0.1912 0.4424 0.0172 19.6763 0.1615 0.4885 0.0123 15.3798 0.2250 0.3837 0.0338

GIFD 19.8847 0.1534 0.4979 0.0120 21.3981 0.1148 0.5446 0.0098 17.4005 0.1634 0.4614 0.0220
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Original IG [9] GI [34] GGL [20] GIAS [16] GIFD

(a) ImageNet* (BigGAN)

Original IG [9] GI [34] GGL [20] GIAS [16] GIFD

(b) FFHQ* (StyleGAN2)

Figure 5: Visual comparison of different methods on ImageNet* and FFHQ*.

about the private data and achieves pixel-level reconstruc-

tion on both two datasets.

The GAN-based methods (i.e. GGL, GIAS, GIFD) gen-

erally achieve better results than the GAN-free methods

(i.e. GI, IG) on the FFHQ dataset. This indicates that the

special data distribution of human-face can be more eas-

ily learned by the generative model so that the gain from

the GAN prior is larger. We also observe that the GAN-

based method GGL, which only optimizes the latent code

and does not fully exploit the GAN prior, yields unsatis-

factory results and performs even worse than the GAN-free

methods [9, 34] on the ImageNet dataset, which again veri-

fies the necessity of searching intermediate layers.

We note that the performance of GIAS with BigGAN is

worse than with StyleGAN2. One reason is that the data of

ImageNet is more diverse. More importantly, with such a

large number of parameters in BigGAN, the solution space

for the GAN parameter search process becomes larger and

presents a great challenge, i.e., GIAS is more susceptible

to the scale of GAN. In contrast, GIFD chooses to opti-

mize the intermediate features and then avoids this problem,

hence achieving faithful reconstruction on both two GANs,

demonstrating the excellent versatility of our method.

4.3. Out of Distribution Data Recovery

We then consider a more practical scenario where the

training sets of the GAN model and the FL task obey dif-

ferent data distributions. Considering the difficulty and fea-

sibility of gradient attack tasks, we define the OOD data

as having the same label space, but quite different feature

distributions. Hereinafter, we denote the OOD data of Ima-

geNet and FFHQ by ImageNet* and FFHQ* respectively.

PAC [18] dataset is a widely used benchmark for domain

generalization with four different styles, i.e., Art Painting,

Cartoon, Photo, and Sketch. In order to achieve our OOD

setting, we manually select data with three different styles

(i.e., Art Painting, Cartoon, Photo) from the validation set

of PACS. For each style in ImageNet*, we select 15 images

of guitar, elephant and horse in total. For FFHQ*, we select

15 images for each style and crop them to obtain the face

images. We present visual comparison and quantitative re-

sults in Figure 5 and Table 2.

Experiment Results. As shown in Table 2, the experi-

ment results demonstrate our significant improvement over

the baseline methods. For instance, our method has nearly

3.8dB improvement in average PSNR upon GIAS for Car-

4973



toon in ImageNet*. Compared with other styles, the GAN-

based methods perform best on Photo, whose domain char-

acteristics are similar to the training sets of GANs. We also

note that for Art in ImageNet*, the GAN-based methods

except GIFD perform even worse than the GAN-free ones,

which implies that here the gain from GAN is minor and

even brings negative effects to them.

Generally, the other GAN-based methods preserve more

pre-trained knowledge from ImageNet or FFHQ, thus strug-

gling to generate images similar to ground truth with differ-

ent styles. In contrast, our method augments the genera-

tive ability of the GAN models and enlarges the diversity of

the output space, hence achieving outstanding performance.

Thus, with our proposed GIFD, we are able to safely relax

the assumption that the datasets of the generative model and

FL have to obey the same feature distribution.

4.4. Attacks under Certain Defense Strategies

Next, we consider attacking a more robust and secure FL

system with defense strategies. In order to make a fair com-

parison, we equip all the baselines with the well-designed

gradient transformation technique mentioned before to mit-

igate the impact of defense.

We consider a relatively strict defense setup as the previ-

ous work [18]: (1) Gaussian Noise with standard deviation

0.1; (2) Gradient Clipping with a clip bound of 4; (3) Gra-

dient Sparsification in a sparsity of 90; and (4) Soteria with

a pruning rate of 80%.

Table 3: PSNR mean of different methods under different

defense strategies.

Method
Defense Strategies

Noise [10] Clipping [10] Sparsification [1] Soteria [29]

IG [9] 11.0654 16.4418 12.0760 9.1941

GI [34] 10.0818 12.5387 12.1691 10.1831

GGL [20] 12.7640 12.7930 12.6810 12.8433

GIAS [16] 12.5397 17.9384 15.1745 16.8151

GIFD 13.2558 18.8983 16.0240 18.3205

(a) ImageNet

Method
Defense Strategies

Noise [10] Clipping [10] Sparsification [1] Soteria [29]

IG [9] 11.2766 18.1382 12.0077 9.8334

GI [34] 10.4968 12.4146 12.1849 10.0843

GGL [20] 14.8982 15.6669 14.9123 15.1798

GIAS [16] 12.1276 20.4726 16.7005 20.4283

GIFD 13.7118 21.2861 17.3253 21.1545

(b) FFHQ

Experiment Results. We present experiment results in Ta-

ble 3 compared to related methods. In general, with the

underlying gradient transformation and the fully exploited

GAN image prior, GIFD is still able to invert a degraded

gradient observation to generate high-quality images or re-

veal private information, especially in cases of clipping and

Soteria. One exception is that GGL takes the lead on FFHQ

when applying additive noise operation. This is because

the gradient information is seriously corrupted by the added

high-variance Gaussian noise and is no more enough for

pixel-level reconstruction. However, GGL only searches

the latent space and with GAN’s powerful generative ca-

pability, it can still produce well-formed images with clear

facial contour, which can give a fair result in the metrics

even though they are quite different from the original ones.

This also indicates that adding Gaussian noise is indeed an

effective defense method against related attacks when the

variance exceeds a certain threshold.

4.5. Performance of Larger Batch Sizes

We then increase the batch size and observe the results

of each algorithm. Notably, we assume that no duplicate

labels in each batch and infer the labels from the received

gradients [34]. We present the results on ImageNet in Table

4, see Appendix for results on FFHQ.

Table 4: PSNR mean of different methods for different

batch sizes on ImageNet.

Method
Batch Size

1 2 4 8 16 32

IG[9] 17.4634 15.2417 14.3744 13.6599 13.1545 12.0795

GI[34] 17.4373 14.7293 14.0947 13.3001 12.7842 11.8767

GGL[20] 12.7511 12.8903 13.1875 12.6001 11.8027 11.0896

GIAS[16] 17.1401 16.1683 15.5894 15.2130 14.4462 13.6080

GIFD 20.6217 16.7542 16.4272 15.4889 14.6500 13.8106

Experiment Results. We find that the proposed GIFD

achieves a steady improvement over previous methods at

any batch size. The numerical results also show that the

performance of all methods generally degrades as the batch

size increases, implying that the reconstruction at large

batch sizes is still a significant challenge.

5. Conclusion

We propose GIFD, a powerful gradient inversion attack

that can generalize well in unseen OOD data scenarios.

We leverage the GAN prior via optimizing the feature do-

main of the generative model to generate stable and high-

fidelity inversion results. Through extensive experiments,

we demonstrate the effectiveness of GIFD with two widely

used pre-trained GANs on two large datasets in a variety of

more practical and challenging scenarios. To alleviate the

proposed threat, one possible defense strategy is utilizing

gradient-based adversarial noise as a novel privacy mecha-

nism to provide confused inversion.

We hope this paper can inspire some new ideas for future

work and make contributions to the gradient attacks under

more realistic scenarios. We also hope that our work can
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shed light on the design of privacy mechanisms, to enhance

the security and robustness of FL systems.
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