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Abstract

We investigate semi-supervised semantic segmentation
with self-training, where a teacher model generates pseudo
masks to exploit the benefits of a large amount of unlabeled
images. We notice that the noisy label from the generated
pseudo masks is the major obstacle to achieving good per-
formance. Previous works all treat the noise in pixel level
and ignore the contextual information of the noise. This
work shows that locating the patch-wise noisy region is a
better way to deal with noise. To be specific, our method,
named Uncertainty-aware Patch CutMix (UPC), first es-
timates the uncertainty of per-pixel prediction for pseudo
masks of unlabeled images. Then UPC splits the uncer-
tainty map into patches and calculates patch-wise uncer-
tainty. UPC selects top-k most uncertain patches to gen-
erate the uncertain regions. Finally, uncertain regions are
replaced with reliable ones from labeled images. We con-
duct extensive experiments using standard semi-supervised
settings on Pascal VOC and Cityscapes. Experiment results
show that UPC can significantly boost the performance of
the state-of-the-art methods. In addition, we further demon-
strate that our UPC is robust to out-of-distribution unla-
beled images, e.g., MSCOCO.

1. Introduction

Past decades have witnessed significant progress in se-
mantic segmentation thanks to the rapid growth of deep
learning [20, 6, 9, 8, 30] and large-scale datasets [29, 10, 13]
with accurate pixel-level annotations. However, annotat-
ing a massive number of training images is expensive and
time-consuming, which limits the ability to scale to vari-
ous segmentation tasks or scenarios. To reduce the anno-
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Figure 1. (a) Illustrations of the difference between the Pixel Eras-
ing method and our UPC. The Pixel Erasing method directly re-
moves highly uncertain pixels in pseudo masks. (b) Comparison
with other popular data augmentation methods, based on ST++.

tation cost, semi-supervised semantic segmentation algo-
rithms [33, 31, 15] emerged by exploiting a small number
of labeled data and a large amount of unlabeled data.

State-of-the-art semi-supervised semantic segmentation
can be categorized into two groups: consistency regular-
ization and entropy minimization. Particularly, consistency
regularization-based approaches [15, 33, 7] enforce similar
predictions of the same image under different transforma-
tions, and a representative work is the Mean-Teacher [38].
However, consistency regularization usually has complex
training pipelines to achieve good performance, e.g., con-
trastive learning [27] or class-balanced strategies [21, 3, 14].
In contrast, entropy minimization [17] often follows a self-
training [14] pipeline by retraining the model with pseudo
masks on unlabeled images, which leads to a simpler
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pipeline. Nevertheless, models with self-training tend to
over-fit noisy pseudo masks, leading to a degradation in
performance compared to consistency regularization. Thus,
how to reduce the impact of noise becomes the key to im-
proving the performance of self-training methods.

Previous works try a variety of ways to moderate the ef-
fect of noise in pseudo labels. [15, 23, 33] employ a strict
threshold to filter out low-confidence pixels. [21] proposes
dynamic re-weighting to increase the contribution of reli-
able pixels. [39] stores unreliable pixels into a category-
wise memory bank to serve as negative samples. Although
these approaches have achieved significant progress, they
all ignore a critical point: contextual information of the
noisy pixel. As shown in Fig. 1 (a), the contextual infor-
mation includes two folds: (1) Noisy pixels do not appear
alone. The pixels around the noisy pixel tend to be noise
even if they have high confidence. (2) noisy pixels always
lie on the object edge, and ignoring them will corrupt the
learning of object shape and structure. Thus, we ask the
question: Can we locate the uncertain region instead of pix-
els?

To address the question, we introduce a straightfor-
ward data augmentation technique called Uncertainty-
aware Patch CutMix (UPC). UPC leverages uncertainty as
a guide and identifies noisy regions in a patch-wise man-
ner rather than a pixel-wise approach. Specifically, we
first train a segmentation model with labeled images, and
then use this model to create pseudo masks and uncertainty
maps on unlabeled images. We then feed these uncertainty
maps into UPC to pinpoint the uncertain regions. UPC be-
gins by dividing the uncertainty map into patches of size
N × N . The uncertainty of each patch is calculated by
summing the uncertainty of all pixels within it. UPC then
selects the top-k unreliable patches as uncertain regions.
Once identified, UPC replaces these uncertain regions us-
ing Patch CutMix with reliable regions from another labeled
image. To ensure the denoising function is both robust and
stable, UPC employs a redundant augmentation strategy,
which generates multiple transferred pairs for each unla-
beled image using different values of k and labeled images.
There are several notable advantages to our UPC method.
Firstly, the patch-wise identification of uncertain regions
preserves contextual information and facilitates subsequent
CutMix operations. Secondly, UPC is model-structure and
training-procedure agnostic, making it easy to combine with
other semi-supervised methods. Thirdly, UPC is simple and
straightforward to implement, requiring minimal effort to
incorporate into existing workflows.

We conduct extensive experiments on Pascal VOC [13]
and Cityscapes [10] datasets using standard settings to eval-
uate the effectiveness of our UPC method. Our UPC yields
outstanding performance on both datasets when combined
with previous competitive approaches. Specifically, on Pas-

cal VOC and Cityscapes, our UPC improves the competitive
method U2PL by 3.33% and 5.01%, respectively. Addition-
ally, our UPC outperforms other data augmentation meth-
ods on the competitive method ST++, as shown in Fig. 1
(b). Furthermore, the spirit of semi-supervised learning is
to fully utilize knowledge from unlabeled images, regard-
less of their distribution. However, most previous prac-
tices use unlabeled images with similar distributions as la-
beled images, which is impractical and contradicts the semi-
supervised learning spirit. In this study, we examine the
ability of our UPC by taking MSCOCO [29] as out-of-
distribution (o.o.d) unlabeled data and Pascal VOC as la-
beled data. The results demonstrate excellent generaliza-
tion capabilities of our UPC, regardless of the distribution
of unlabeled images.

Overall, our contributions can be concluded as below:

1. We propose the Uncertainty-aware Patch CutMix
(UPC) method from an accurate denoising perspective.
Through patch-wise locating mechanism, our method
effectively reduces the impact of noisy pseudo masks
in semi-supervised semantic segmentation.

2. Without introducing any extra hyper-parameters or re-
training stages, our method boosts semi-supervised se-
mantic segmentation by a large margin. Importantly,
our method is a plug-and-play method that can be eas-
ily combined with other semi-supervised works.

2. Related Work

2.1. Semi-supervised Learning

Consistency regularization [15, 33, 34] and entropy min-
imization [17, 28] are two primary approaches to semi-
supervised learning. Consistency regularization [1] aims
to enforce the model to generate stable and consistent pre-
dictions under various perturbations, which can be cat-
egorized into input perturbations and network perturba-
tions. Recent works have explored data augmentation as
input perturbation [15] or used different initialized net-
works as network perturbation [33]. On the other hand,
entropy minimization originally introduced by Grandvalet
and Bengio [17], has gained popularity through self-training
schemes [4, 5, 49, 14, 22]. This approach adopts an ex-
plicit bootstrapping technique, where unlabeled data is as-
signed pseudo-labels for iterative retraining. Recent studies
have further advanced the self-training paradigm by incor-
porating additional retraining stages [4] and employing data
augmentation strategies [42, 41], building upon the funda-
mental insight of entropy minimization. MixMatch [2] is
different from prior works by harvesting the advantages of
both methods and proposing a hybrid framework to exploit
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Figure 2. A brief overview of the UPC pipeline. We use fθT and fθS to represent the teacher model and student model respectively. First,
UPC estimates the uncertainty of pseudo masks, producing uncertainty maps. In this illustration, the light-colored areas in the uncertainty
map always correspond to noisy regions. Using this uncertainty guidance, UPC replaces these noisy regions with substitutes from different
labeled pairs in a patch-wise manner, resulting in multiple denoised results for training.

unlabeled data from weak and strong augmentation. Fix-
Match [35] inherits the spirit of MixMatch [2] with simpli-
fied mechanisms and has a significant impact on subsequent
works. FlexMatch [44], utilizes curriculum learning to filter
low-confidence labels with class-wise thresholds.

2.2. Semi-supervised Semantic Segmentation

In semi-supervised semantic segmentation, preliminary
works [37, 31, 22] utilize GANs [16] to generate super-
vision signals for unlabeled data but face difficulties due
to mode collapse. Inspired by consistency regularization
in semi-supervised learning, subsequent methods use sim-
pler mechanisms to enforce similar predictions under mul-
tiple perturbed embeddings [33], contextual crops [27], and
dual initialized models [24]. PseudoSeg [52] extends the
weak-to-strong consistency of FixMatch [35] to segmen-
tation and adds a module to refine pseudo masks. Re-
cent works introduce more supervision, such as contrastive
learning [39]. It is worth noting that recent studies have
directed their attention to enhancing the category capacity
of models through incremental learning [45, 46] and open-
vocabulary [18] techniques. These approaches have the po-
tential to complement semi-supervised methods. Despite
dedicated mechanisms, we propose that simple data aug-
mentation is effective enough to improve semi-supervised
segmentation.

2.3. Self Training

The technique of self-training via pseudo labeling, ini-
tially proposed approximately a decade ago [28], has gained
renewed interest across various domains. It has recently
garnered attention in fully-supervised image recognition [5,
50], semi-supervised learning [4, 42, 36, 40], and domain
adaptation [26, 51]. This classical method has experi-
enced a resurgence and is now being explored in diverse
research areas. Especially, it has been revisited in several

semi-supervised tasks, including image classification, ob-
ject detection [36], and semantic segmentation [4, 42, 41].
Among them, the most related ones are Naive Student [4],
ST++ [41]. Nevertheless, our work is fundamentally differ-
ent from these works in that we propose an effective denois-
ing method on pseudo masks, which is extremely beneficial
to semi-supervised semantic segmentation.

2.4. Strong Data Augmentation

Strong data augmentation (SDA) [11, 43, 32, 12] is
widely used as one input perturbation in different tasks. Pre-
vious works [42, 15] have proved SDA is effective to semi-
supervised semantic segmentation. The former one [42]
uses different data augmentations together on unlabeled im-
ages. And the latter one [15] tries several commonly used
data augmentation and proposes a semi-supervised baseline
using augmentation [43] as a perturbation. Differently, SDA
used in our method is different from the above two works,
we design data augmentation from a pseudo mask denois-
ing perspective other than input perturbation. We use the
proposed UPC in the plainest self-training semi-supervised
baseline, producing excellent performance.

3. Method
We first introduce the formulation of semi-supervised se-

mantic segmentation task and an overview of our proposed
Uncertainty-aware Patch CutMix (UPC) in Sec.3.1. The de-
tails of UPC will be introduced in Sec.3.2.

3.1. Overview

Semi-supervised semantic segmentation utilizes a train-
ing set consisting of labeled set Dl = {(xl

i, y
l
i) |

i = 1, ..., L} and unlabeled set Du = {(xu
j ) | j = 1, ..., U},

where U ≫ L in ideal cases. Labeled images xl
i are anno-

tated with human-annotations yli for C classes as supervi-
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sion, while unlabeled images xu
j use their pseudo masks ŷuj

generated by the teacher model fθT as supervision. The
teacher model fθT and student model fθS are two models
used in self-training methods, one for generating pseudo la-
bels and the other for final usage. To simplify the expres-
sion, we use P = (x, y) to represent an image with its mask,
and superscript l, u to indicate the labeled or unlabeled pair.
In this representation, a mini-batch used in training can be
denoted as B = (Bl, Bu), where Bl = {P l

0, P
l
1, ..., P

l
|Bl|}

and Bu = {Pu
0 , P

u
1 , ..., P

u
|Bu|}.

Fig. 2 illustrates the whole pipeline of our proposed
method. First, labeled images with their annotations are
fed to the teacher model fθT . The trained fθT then gen-
erates predictions on unlabeled images. These predictions
are processed into the pseudo masks and corresponding un-
certainty maps. The calculation of uncertainty map H is
formulated as following:

Hi,j = −
C∑

c=1

pci,j logpci,j , (1)

where pci,j is the classification probability of pixel (i, j) on
the class c, and C is the number of classes. Using the un-
certainty map, our UPC mixes the unlabeled images and
labeled images into several transferred images, which con-
tain less noise and richer context. The student model fθS is
trained on those transferred images and labeled images with
the optimization target as follows:

L = Ll + λLu, (2)

where Ll and Lu denote loss on labeled images and loss
on unlabeled images respectively. Additionally, λ is the
trade-off between Ll and Lu. Both Ll and Lu can be im-
plemented based on cross-entropy loss.

3.2. Uncertainty-aware Patch CutMix

The simple self-training is easy to degrade on semi-
supervised semantic segmentation because noise in pseudo
labels tend to accumulate and considerably affect model
performance, summarized as overfitting and coupling prob-
lems. To effectively reduce the noise in pseudo masks, the
key problem is how to accurately find the noise and replace
them in a proper way.

3.2.1 Patch Split

In previous works [21, 39], using the uncertainty to lo-
cate the noise has been proven effective. However, existing
works all deal with the noise at the pixel level and ignore
the fact that the noisy pixel has rich context information.
The context information has two aspects: (1) noisy pixels
appear in group. The pixels around the noisy pixel are more
likely to be misclassified compared with other pixels. (2)

noisy pixels often lie on the object boundary, and have no
regular shape. Ignoring the noisy pixels will reshape the ob-
ject during training, hindering the learning of object shape
and structure. To make full use of the context information,
we propose Patch Split to locate uncertain regions instead
of uncertain pixels.

In Fig. 3, the UPC method locates the uncertain regions
in a patch-wise manner. The uncertainty map is split into
N×N patches, and the uncertainty of each patch G is com-
puted by summing the uncertainty of all the pixels in it:

HG =
∑

(i,j)∈G

Hi,j . (3)

The k patches with the top-k highest uncertainty are se-
lected as uncertain regions Gk, and a binary mask Mk is
generated to represent these regions. Formally, Mk can be
calculated as follows:

Mk(x, y) =

{
1, (x, y) ∈ Gk

0, (x, y) /∈ Gk.
(4)

This method enables UPC to locate uncertain regions more
accurately and provides better guidance for the patch-wise
CutMix operation.

We make statistical analysis on the patch uncertainty
and noise area. The statistical result proves that regions
with high uncertainty always correspond to the noise area
of pseudo masks. The details are provided in the supple-
mentary material.

3.2.2 Patch CutMix

After acquiring the uncertain regions, we have two ways to
deal with them: erasing or replacing them with reliable re-
gions. Obviously, replacing uncertain regions with reliable
ones is a better way, which achieves reducing noise and in-
troducing reliable supervision signals simultaneously.

For the replacing technique, we choose the CutMix [43],
which is widely used in image recognition and semi-
supervised semantic segmentation tasks [15, 7]. The most
obvious feature of CutMix is using extra images to perform
the fusion transformation. Here we introduce CutMix in the
semi-supervised task as follows:

f(zu, zl,M) = zl ×M + zu × (1−M), (5)

where z can be images or masks with the same input size
(H,W ). zl represents labeled data, zu represents unlabeled
data, and M indicates a binary matrix with the same size
(H,W ). CutMix randomly generates one bounding box
with its binary mask M according to the pre-set scale and
aspect ratio. Then the binary mask M and its supplementary
1 −M are used to combine two images in linear combina-
tion manner.
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Figure 3. Illustration of detailed data processing procedure of
UPC. UPC fuses pixel-wise uncertainty into patches and uses la-
beled pairs to replace patches in unlabeled pairs. In the uncertainty
map, the darker color represents the more reliable region with low
uncertainty. The region surrounded by the red box is the crop of
labeled images and their corresponding annotation. Further, UPC
generates three different denoised pairs with top-2, top-3, and top-
5 uncertainty patches.

As shown in Fig.3, UPC performs the above-mentioned
CutMix in a patch-wise manner. Given an unlabeled pair
Pu
j = (xu

j , ŷ
u
j ), a labeled pair P l

i = (xl
i, y

l
i) and a binary

mask Mk, UPC conducts transformation as follows: For the
unlabeled image xu

j with size (H,W ), UPC first splits it
into N ×N patches and generate the guidance binary mask
Mk in the same way as Patch Split. Then UPC merges P l

i

and Pu
j using the binary mask Mk to produce a transformed

pair P t
j , formulated as,

P t
j (k) = (xj , ŷj) = (f(xu

j , x
l
i,Mk), f(ŷ

u
j , y

l
i,Mk)). (6)

After the aforementioned transformation, mini-batches
are comprised of labeled training pairs and denoised unla-
beled training pairs. These denoised unlabeled pairs and la-
beled pairs form a new mini-batch Bnew = (Bl, Bt), Bt =
{P t

0 , P
t
1 , ..., P

t
|Bt|} that is used as the training input and su-

pervision for the student model fθS . The loss functions Ll

and Lu are calculated on the labeled batch Bl and denoised
unlabeled pairs Bt, respectively. Based on Patch Split and
Patch CutMix, the noisy regions are replaced with reliable
ones, thereby enabling robust semi-supervised retraining.

3.2.3 Redundant Augmentation Strategy

Although Patch CutMix can effectively locate and replace
uncertain regions, it is unsuitable to set the same hyper-

parameter (i.e. k) for all unlabeled pairs. Moreover,
the pseudo masks and uncertainty maps produced by the
teacher model fθT can not be completely accurate, intro-
ducing some unreliable factors into training. To enhance
the robustness of model training and fully utilize unlabeled
images, we propose the Redundant Augmentation Strategy
(RAS) to generate multiple denoised pairs with different
top-k values and labeled pairs. Specifically, let xu

j be the
unlabled pair, k1, k2, and k3 be different top-k values, P l

i1
,

P l
i2

, and P l
i3

indicate different labeled pairs. The trans-
formed pairs P t

j (k1), P
t
j (k2), and P t

j (k3) can be formulated
as,

P t
j (k1) = (f(xu

j , x
l
i1 ,Mk1

), f(ŷuj , y
l
i1 ,Mk1

)),

P t
j (k2) = (f(xu

j , x
l
i2 ,Mk2

), f(ŷuj , y
l
i2 ,Mk2

)),

P t
j (k3) = (f(xu

j , x
l
i3 ,Mk3

), f(ŷuj , y
l
i3 ,Mk3

)).

(7)

As shown in Fig. 3, UPC produces three transferred samples
by selecting different top-k uncertainty regions and reliable
contexts, further improving the effect of denoising.

4. Experiment
4.1. Setup

Dataset. The Pascal VOC 2012 [13] is composed of
1464 images for training and 1449 images for validation
originally. Following previous works, we use SBD [19] as
the augmented set with 9118 additional training images, to-
tal 10582 training images. Due to coarse annotations of
SBD, PseudoSeg [52] takes only the standard 1, 464 im-
ages as the whole labeled set, while other methods take
all 10, 582 images as candidate labeled data. Following
U2PL [39], we evaluate our method on both the classic
set (1, 464 candidate labeled images) and the blender set
(10, 582 candidate labeled images). It needs to mention that
all protocols of classic set use remaining images from a to-
tal 10582 images as unlabeled images. The Cityscapes [10]
contains 2975 images with fine-grained masks for training
and 500 images for validation. For each dataset, we com-
pare with each competitors under commonly used semi-
supervised scenarios, which refer to 1/2, 1/4, 1/8, and
1/16 partition protocols. Additionally, the “Full” setting
used in classic set refers to using all 1464 labeled images
from classic set with the remaining training images as unla-
beled images.

Except for commonly used semi-supervised dataset set-
ting, we use MSCOCO [29] as a large-scale unlabeled
dataset complementary to Pascal VOC training set. To be
specific, we use all 10582 images from Pascal VOC train-
ing set as labeled images, and images from the MSCOCO
training set as unlabeled images.

Network Architecture. We use ResNet-101 [20] pre-
trained on ImageNet as the backbone and the deeplab
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Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)

MT[NIPS2017] [38] 51.72 58.93 63.86 69.51 70.96
CutMix-Seg[BMCV2017] [15] 52.16 63.47 69.46 73.73 76.54
PseudoSeg[ICLR2021] [52] 57.60 65.50 69.14 72.41 73.23
PC2Seg[ICCV2021] [47] 57.00 66.28 69.78 73.05 74.15

CPS[CVPR2021] [7] 64.10 67.40 71.70 75.90 -
w/ UPC 69.50↑5.40 72.35↑4.95 74.94↑3.24 77.46↑1.56 -

ST++[CVPR2022] [41] 65.20 71.00 74.60 77.30 79.10
w/ UPC 69.19↑3.99 74.16↑3.16 76.72↑2.12 79.08↑1.78 80.65↑1.55

U2PL[CVPR2022] [39] 67.98 69.15 73.66 76.16 79.49
w/ UPC 71.31↑3.33 73.53↑4.37 76.07↑2.41 77.96↑1.80 80.22↑0.73

Mask2Former[CVPR2022] [8] 64.85 67.53 71.39 74.23 78.71
w/ UPC 69.25↑4.40 75.52↑7.99 78.91↑7.52 81.06↑6.83 83.31↑4.60

Table 1. Comparison with state-of-the-art methods on classic PASCAL VOC 2012 val set under different partition protocols. The labeled
images are selected from the original VOC train set, which consists of 1, 464 samples in total. The fractions denote the percentage of
labeled data used for training, followed by the actual number of images. The results with UPC are emphasized with bold font, and the red
upper arrow means improvement.

Method 1/16(662) 1/8(1323) 1/4(2646) 1/2 (5291)

MT[NIPS2017] [38] 70.51 71.53 73.02 76.58
CutMix-Seg[BMCV2019] [15] 71.66 75.51 77.33 78.21
CCT[ECCV2020] [23] 71.86 73.68 76.51 77.40
GCT[CVPR2020] [33] 70.90 73.29 76.66 77.98
AEL[NIPS2021] [21] 77.20 77.57 78.06 80.29

CPS[CVPR2021] [7] 74.48 76.44 77.68 78.64
w/ UPC 76.61↑2.13 77.80↑1.36 78.53↑0.85 79.35↑0.71

ST++[CVPR2022] [41] 74.50 76.30 76.60 -
w/ UPC 77.65↑3.15 78.62↑2.32 79.47↑2.87 -

U2PL[CVPR2022] [39] 77.21 79.01 79.30 80.50
w/ UPC 78.53↑1.32 79.92↑0.81 80.36↑0.94 81.05↑0.55

Mask2Former[CVPR2022] [8] 73.26 74.51 77.32 78.62
w/ UPC 78.35↑5.09 80.57↑6.06 82.07↑4.75 82.53↑3.91

Table 2. Comparison with state-of-the-art methods on blender PASCAL VOC 2012 val set under different partition protocols. All labeled
images are selected from the augmented VOC train set, which consists of 10, 582 samples in total.

v3+ [6] as the decoder, same as previous works. Main re-
sults reported in our paper are implemented based on pre-
vious representative semi-supervised segmentation works,
CPS [7], ST++ [41] and U2PL [39]. Our UPC serves as
data augmentation method to rectify and enhance pseudo
masks during training, without changing their original ar-
chitecture and training procedures. Besides, we also ap-
ply UPC on Mask2Former [8] which has a strong ability to
deal with the global context, to prove its generability.

Implementation Details. For the training on the blender
and classic PASCAL VOC 2012 dataset on CPS, ST++ and
U2PL, we add UPC into data and pseudo label processing

without changing network architecture and training hyper-
parameters, just keeping the same as the original. When us-
ing Mask2Former, we use AdamW optimizer [25] with ini-
tial learning rate 0.0001, weight decay as 0.0001, crop size
as 512× 512, batch size as 16. We train Mask2Former with
UPC in the self-training paradigm. We trained labeled data
and the combination set for 30000 and 60000 steps respec-
tively. Moreover, the semi-supervised training schedule is
120000 steps when using MSCOCO as unlabeled images.

For the training on the Cityscapes dataset, we keep the
same setting but apply UPC on our candidate baselines.
But for Mask2Former, we use AdamW optimizer with ini-
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Method 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)

SupOnly 65.74 72.53 74.43 77.83

ST++ - 72.70 73.80 -
w/ UPC - 75.36↑2.66 77.10↑3.30 -

U2PL 70.30 74.37 76.47 79.05
w/ UPC 75.31↑5.01 77.35↑2.98 79.03↑2.56 79.62↑0.57

Table 3. Comparison with state-of-the-art methods on Cityscapes
val set under different partition protocols. All labeled images are
selected from the Cityscapes train set, which consists of 2, 975
samples in total.“SupOnly” stands for supervised training without
using any unlabeled data.

tial learning rate 0.0001, weight decay as 0.0005, crop size
as 1024 × 1024, batch size as 16 and training steps as
90000, slightly different from [8]. On both Pascal VOC
and Cityscapes, UPC splits the unlabeled images into 4× 4
patches and use k = 2, 3, 5 in RAS.

4.2. Comparison with state-of-the-art methods

We compare our method with recent semi-supervised
semantic segmentation methods as the following, Mean
Teacher (MT) [38], CCT [33], GCT [23], PseudoSeg [52],
CutMix-Seg [15], CPS [7], PC2Seg [47], AEL [21],
U2PL [39] and ST++ [41]. Specifically, we validate our
UPC on CPS, ST++ and U2PL and compare with their orig-
inal performance, all using deeplab v3+ with resnet-101
backbone. When applying UPC on Mask2Former, we com-
pare UPC with the original supervised Mask2Former to val-
idate its effectiveness. Compared with different baseline
methods, we provide detailed results on Pascal VOC 2012
and Cityscapes datasets.

Results on PASCAL VOC 2012 Dataset. We exhibit
the comparision results between our method and the state-
of-the-art methods on classic PASCAL VOC 2012 Dataset
as Table 1. On three different competitive methods, our
UPC improves them by a large margin on all protocols. Sur-
prisingly, UPC improves CPS, ST++ and U2PL by the most
5.40%, 3.99% and 4.37% respectively. Besides, the addi-
tional results on Mask2Former further show its great poten-
tial, improving at least 4.40% under all protocols.

Table 2 shows the comparison results on blender Pas-
cal VOC datasets. Our proposed UPC improves four candi-
date baselines under all protocols obviously. Especially, our
UPC improves ST++ by at least 2.32% under all protocols.
The results further prove the effectiveness and generality of
our UPC under various semi-supervised settings.

Results on Cityscapes Dataset. Table 3 shows the
comparison results on the cityscapes. We apply our UPC
on two recently published works, ST++ and U2PL. On
these two baselines, our method achieves consistent perfor-
mance gains over all partition protocols. The improvement
demonstrates the effectiveness and generalization of UPC

Method SupOnly +MSCOCO
w/o label w / label

PseudoSeg 76.96 78.20↑1.24 79.28↑2.32

UPC 81.43↑4.47 82.41↑5.45

UPC† 81.72 84.93↑3.21 85.21↑3.49

Table 4. Semi-supervised results using all Pascal VOC training set
as labeled images while MSCOCO training set as unlabeled im-
ages. “SupOnly” stands for supervised training without using any
unlabeled data. w/ label represents using image-level label for un-
labeled images. “†” means implementation on Mask2Former.

Method 1/8 (1323) 1/4 (2646)

w/o 76.30 76.60
w/ Random Erasing 77.06 77.19
w/ Copy-Paste 77.73 78.06
w/ CutMix 77.55 77.82
w/ UPC (ours) 78.62↑2.32 79.47↑2.87

Table 5. The effectiveness of different denoising methods. Ran-
dom Erasing,Copy-Paste and Cutmix are three competitors.

CutMix Patch CutMix RAS mIoU

76.60
✓ 77.82

✓ 78.73
✓ ✓ 79.47↑2.87

Table 6. Ablation study on different components of our UPC, in-
cluding Patch CutMix and RAS.

in a more challenging dataset containing complicated im-
age contexts.

Results using o.o.d unlabeled data. Table 4 provides
comparison results with o.o.d unlabeled MSCOCO. Un-
der this setting, we use the whole Pascal VOC training
set as labeled images and the whole MSCOCO training
setting as unlabeled images. Due to the lack of works
trying this setting, we can only compare our UPC with
PseudoSeg. We establish the simplest baseline on deeplab
v3+ and Mask2Former respectively. On deeplab v3+ de-
coder, our method surpasses PseudoSeg by a large margin
whether using image-level labels for unlabeled images or
not. And UPC achieves 84.93% without image-level labels
on Mask2Former. Those results demonstrate that UPC has
robust generalization on o.o.d unlabeled images.

4.3. Ablations

To prove our core insight, i.e., UPC is simple but effec-
tive to promote semi-supervised semantic segmentation as
data augmentation, we conduct experiments about analyz-
ing the effect of similar data augmentations, the effect of
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Figure 4. Qualitative results on Pascal VOC val set. col.(b) are human-annotated masks. The models of col.(c) and col.(d) are trained
on 1464 labeled images. col.(c) is our supervised-only baseline, and col.(d) is semi-supervised baseline corresponding to “Full” protocol
on classic Pascal VOC dataset. Additionally, we also provide results of our UPC trained on o.o.d MSCOCO, shown as col.(e) “UPC (w/
o.o.d)”. Areas surrounded by orange boxes represent the improvement of UPC.

k 1 2 3 5

Random 76.66 76.90 77.53 77.85
UPC 77.41 77.95 78.47 78.73

Oracle 77.71 78.45 78.82 79.24

Table 7. Ablation study on the uncertainty guidance and k value.
k refers to replacing k patches. Random means random selecting
k patches and Oracle means using ground truth as guidance.

N
k

1 2 3 5 7 9 11

3 77.73 78.12 78.24 78.42 78.04 - -
4 77.41 77.95 78.47 78.73 77.81 77.35 76.83
5 76.96 77.37 77.86 78.02 78.61 78.76 78.13

Table 8. Ablation study on the effect of parameters N and k.

our proposed Patch CutMix and RAS. The following abla-
tions are conducted under “1/4 (2646)” protocol on blender
Pascal VOC dataset with ST++. The other settings keep un-
changed if without claim.

Effectiveness of Denoising Methods. Table 5 shows
the effectiveness and limitations of some random denoising
methods on ST++. We compare multiple methods including
Random Erasing [48], CopyPaste [36], and CutMix [43].
Random Erasing randomly removes a region on an unla-
beled image and its pseudo mask. Meanwhile, CutMix and
CopyPaste prefer to erase one region and replace it with one
from labeled images. Note that baseline work ST++ already
introduced noise-aware loss in their work, but using CutMix

directly on ST++ cannot bring obvious improvement. Com-
pared with competitors, UPC achieves highest improvement
due to its accurate denoising function in a patch-wise way.

Effectiveness of Patch CutMix and RAS. Table 6
shows results comparison between results with CutMix and
Patch CutMix as row 1 and row 2. Compared to simple Cut-
Mix, Patch CutMix brings more improvement. It is obvious
that uncertain region guidance helps UPC a lot to realize ac-
curate denoising. Moreover, we ablate our proposed strat-
egy RAS which generates more than one transferred image.
In Table 6, it can be witnessed that RAS brings further im-
provement over single Patch CutMix.

Effectiveness of Uncertainty Guidance and Ablation
Study on Hyper-parameters. Table 7 answers the ques-
tion. One is the benefit of uncertainty guidance is not clear,
another is what k value makes Patch CutMix the best. For
the first question, we design two control groups, Random
and Oracle, selecting substitute patches by random and IoU
with ground truth respectively. Uncertainty surpasses the
Random with large margin and has a small gap to the Or-
acle under different k value. For another question, when
k = 5 setting, the UPC (Uncertainty) performs the best.
Finally, we use multiple k value 2, 3, 5 in RAS to further
improve UPC, resulting in higher performance.

Ablations on N and k of Patch CutMix. We further
ablate the influence of parameters N and k on UPC. Table
8 presents the results obtained by varying the values of k
and N in the ”Patch CutMix” approach. Specifically, we
explore the impact of k by considering values ranging from
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1 to 11, and the effect of N by varying it between 3 and
5. The results show larger k does not result in a sustained
improvement. We find that k should be increased with a
larger N and UPC will not get sustained improvement with
a larger k and N . Based on our experiments, the default
setting of N = 4 and k = 5 achieves nearly the best per-
formance. Furthermore, Table 8 shows the top-2, top-3, and
top-5 perform well under N = 4 settings.

4.4. Qualitative visualization

Fig. 4 shows the results of different methods on Pascal
VOC val set. Compared with the supervised-only method,
UPC generates better predictions with correct class predic-
tion results and smooth boundaries. Besides the “Full” pro-
tocol setting, the results from the model trained using o.o.d
unlabeled MSCOCO also demonstrate these features.

5. Conclusion

In this paper, we propose a simple yet effective data
augmentation mechanism, named Uncertainty-aware Patch
CutMix (UPC), to advance semi-supervised semantic seg-
mentation. For unlabeled images, we predict the uncer-
tainty map by segmentation model. To accurately locate
the uncertain region and maintain context information, we
use Patch Split to estimate the regional uncertainty. Those
regions with high uncertainty scores are then replaced with
certain ones cut out from labeled data. With UPC, the train-
ing process of semi-supervised segmentation algorithm be-
comes more robust to the noise from pseudo masks, ob-
taining competitive results over other methods under vari-
ous partition protocols accordingly. More importantly, our
UPC shows a strong generalization ability to the unlabeled
out-of-distribution data. We hope our UPC can serve as
a solid training strategy and help ease future research on
semi-supervised semantic segmentation.
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