
Tracing the Origin of Adversarial Attack for Forensic Investigation and
Deterrence

Han Fang1 Jiyi Zhang1 Yupeng Qiu1 Jiayang Liu1

Ke Xu2 Chengfang Fang2 Ee-Chien Chang1,*

1National University of Singapore 2Huawei International
{fanghan, ljyljy}@nus.edu.sg {jiyizhang, qiu yupeng}@u.nus.edu
{xuke64, fang.chengfang}@huawei.com changec@comp.nus.edu.sg

Abstract

Deep neural networks are vulnerable to adversarial at-
tacks. In this paper, we take the role of investigators who
want to trace the attack and identify the source, that is, the
particular model which the adversarial examples are gener-
ated from. Techniques derived would aid forensic investiga-
tion of attack incidents and serve as deterrence to potential
attacks. We consider the buyers-seller setting where a ma-
chine learning model is to be distributed to various buyers
and each buyer receives a slightly different copy with the
same functionality. A malicious buyer generates adversar-
ial examples from a particular copy Mi and uses them to
attack other copies. From these adversarial examples, the
investigator wants to identify the source Mi. To address
this problem, we propose a two-stage separate-and-trace
framework. The model separation stage generates multiple
copies of a model for the same classification task. This pro-
cess injects unique features into each copy so that adversar-
ial examples generated have distinct and traceable features.
We give a parallel structure which pairs a unique tracer
with the original classification model in each copy and a
variational autoencoder (VAE)-based training method to
achieve this goal. The tracing stage takes in adversarial ex-
amples and a few candidate models, and identifies the likely
source. Based on the unique features induced by the tracer,
we could effectively trace the potential adversarial copy by
considering the output logits from each tracer. Empirical
results show that it is possible to trace the origin of the ad-
versarial example and the mechanism can be applied to a
wide range of architectures and datasets.

1. Introduction
Deep learning models are vulnerable to adversarial at-

tacks. By introducing specific perturbations on input sam-

*Corresponding author.

Figure 1: Buyers-seller setting. The seller has multiple
models Mi, i ∈ [1,m] that are to be distributed to differ-
ent buyers. A malicious buyer batt attempts to attack the
victim buyers bvics by generating the adversarial examples
with his own model Matt.

ples, the network model could be misled to give wrong
predictions even when the perturbed sample looks visually
close to the clean image [4,8,21,27]. There are many exist-
ing works on defending against such attacks [9, 12, 16, 20].
Unfortunately, although current defenses could mitigate the
attack to some extent, the threat is still far from being com-
pletely eliminated. In this paper, we look into the foren-
sic aspect: from the adversarial examples, can we deter-
mine which model the adversarial examples were generated
from? Techniques derived could aid forensic investigation
of attack incidents and provide deterrence to future attacks.

We consider a buyers-seller setting [28], which is sim-
ilar to the buyers-seller setting in digital copyright protec-
tion [19].

Buyers-seller Setting. Under this setting, the seller S dis-
tributes m classification models Mi, i ∈ [1,m] to different
buyers bi’s as shown in Fig. 1. These models are trained for
a same classification task using a same training dataset. The
models are made accessible to the buyer as black boxes, for
instance, the models could be embedded in hardware such
as FPGA and ASIC, or are provided in a Machine Learn-
ing as a Service (MLaaS) platform. Hence, the buyer only
has black-box access, which means that he can only query
the model for the hard label. In addition, we assume that
the buyers do not know the training datasets. The seller has

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4335



full knowledge and thus has white-box access to all the dis-
tributed models.

Attack and Traceability. A malicious buyer wants to at-
tack other victim buyers. The malicious buyer does not
have direct access to other models and thus generates the
examples from his own model and then deploys the found
examples. For example, the malicious buyer might gen-
erate an adversarial example of a road sign using its self-
driving vehicle, and then physically defaces the road sign to
trick passing vehicles. Now, as forensic investigators who
have obtained the defaced road sign, we want to understand
where the adversarial example is generated from and trace
the model used in generating the example.

Proposed Framework. There are two stages in our so-
lution: model separation and origin tracing. During the
model separation stage, given a classification task, we want
to generate multiple models that have high accuracy on the
classification task and yet are sufficiently different for trac-
ing. In other words, we want to proactively enhance differ-
ences among the models in order to facilitate tracing. To
achieve that, we propose a parallel network structure that
pairs a unique tracer with the original classification model.
The role of the tracer is to modify the output, so as to induce
the attacker to generate adversarial examples with unique
features. We give a variational autoencoder (VAE)-based
training method for training the tracer.

During the tracing stage, given m different classification
models Mi, i ∈ [1,m] and the found adversarial example,
we want to determine which model is most likely used in
generating the adversarial example. This is achieved by ex-
ploiting the different tracers that are earlier embedded into
the parallel models. Our proposed method compares the
output logits of those tracers to identify the source.

In a certain sense, traceability is similar to neural net-
work watermarking and can be viewed as a stronger form of
watermarking. Neural network watermarking schemes [2]
attempt to generate multiple models so that an investigator
can trace the source of a modified copy. In traceability, the
investigator can trace the source based on the generated ad-
versarial examples.

Contributions.

1. We point out a new aspect in defending against adver-
sarial attacks, that is, tracing the origin of adversarial
samples among multiple classifiers. Techniques derived
would aid forensic investigation of attack incidents and
provide deterrence to future attacks.

2. We propose a framework to achieve traceability in the
buyers-seller setting. The framework consists of two

stages: a model separation stage, and a tracing stage.
The model separation stage generates multiple “well-
separated” models and this is achieved by a parallel
network structure that pairs a tracer with the classifier.
The tracing mechanism exploits the characteristics of the
paired tracers to decide the origin of the given adversar-
ial examples.

3. We investigate the effectiveness of the separation and the
subsequent tracing. Experimental studies show that the
proposed mechanism can effectively trace to the source.
For example, the tracing accuracy achieves more than
97% when applying to “ResNet18-CIFAR10” task for 5
distributed models. We also observe a clear separation
of the source tracer’s logits distribution, from the non-
source’s logits distribution (e.g. Fig. 4a).

2. Related Work
In this paper, we adopt black-box settings where the ad-

versary can only query the model and get the hard label (fi-
nal decision) of the output. Many existing attacks assume
white-box settings. Attacks such as FGSM [8], PGD [16],
JSMA [23], DeepFool [21], CW [4] and EAD [6] usually
directly rely on the gradient information provided by the
victim model. As the detailed information of the model
is hidden in black-box settings, black-box attacks are often
considered more difficult and there are fewer works. Chen
et. al. introduced a black-box attack called Zeroth Order
Optimization (ZOO) [7]. ZOO can approximate the gradi-
ents of the objective function with finite-difference numeri-
cal estimates by only querying the network model. Thus the
approximated gradient is utilized to generate the adversar-
ial examples. Guo et. al. proposed a simple black-box ad-
versarial attack called “SimBA” [10] to generate adversarial
examples with a set of orthogonal vectors. By testing the
output logits with the added chosen vector, the optimization
direction can be effectively found.

Brendel et. al. developed a decision-based adversarial
attack which is known as “Boundary attack” [3], it worked
by iteratively perturbing another initial image that belongs
to a different label toward the decision boundaries between
the original label and the adjacent label. By querying the
model with enough perturbed images, the boundary, as well
as the perturbation, can be found thus generating adver-
sarial examples. Chen et. al. proposed another decision-
based attack named hop-skip-jump attack (HSJA) [5] re-
cently. By only utilizing the binary information at the de-
cision boundary and the Monte-Carlo estimation, the gra-
dient direction of the network can be found so as to re-
alize the adversarial examples generation. Based on [5],
Li et. al. [17] proposed a query-efficient boundary-based
black-box attack named QEBA which estimate the gradi-
ent of the boundary in several transformed space and ef-

4336



Figure 2: The framework of the proposed method. The left part of the framework indicates the separation process of the
seller’s distributed models Mi, i ∈ [1,m]. The right part of the framework illustrates the origin tracing process.

fectively reduce the query numbers in generating the adver-
sarial examples. Maho et. al. [18] proposed a surrogate-
free black-box attack which does not estimate the gradient
but searches the boundary based on polar coordinates, com-
pared with [5] and [17], [18] achieves less distortion with
fewer query numbers.

3. Proposed Framework
3.1. Main Idea

Considering that black-box adversarial attacks are per-
formed by estimating and attacking across the boundary of
the model, for the purpose of tracing, each distributed model
should maintain different boundaries, besides, a unique fea-
ture of the source boundary should be carried on the gener-
ated adversarial example.

To achieve this goal, two essential questions should be
addressed: Q1. How to generate multiple models with dif-
ferent boundaries while remaining highly accurate on the
classification task? Q2. How to inject the unique features
of the source boundary during the black-box adversarial at-
tack process?

Tackling these two questions at the same time is not a
trivial task, especially for Q2, where the black-box adver-
sarial attack method is unknown to us (the defender). In
this paper, we designed a parallel-network-based method to
meet the requirements, where the basic component of the
model is a paralleled structure that pairs a unique network
named tracer with the original classifier. The tracer could
effectively fluctuate the boundary and inject unique features
during the attack. Such features could be further reflected
by the output logits of the tracer.

The proposed framework contains two main stages: the
model separation stage and the origin tracing stage, as illus-
trated in Fig.2. During the model separation stage, we want
to generate multiple models which are sufficiently different
under adversarial attack while remaining highly accurate
on the classification task. As for origin tracing, we exploit
unique features of different tracers in the parallel structure,
which can be observed in the tracers’ logits. Hence, our
tracing process is conducted by feeding the adversarial ex-
amples into the tracers and analyzing their output.

3.2. Model Separation

One goal of model separation is to generate m distributed
models Mi, i ∈ [1,m] with similar classification functions
but different boundaries. To achieve this goal, we design
a parallel network structure, which contains a tracer model
Ti, i ∈ [1,m] and a main model C, as shown in Fig. 2.
C is the network trained for the original task. Each Ti is
used for fluctuating the boundaries of C. The final results
are determined by both C and each Ti with a weight param-
eter α. The specific workflow of each specific Mi can be
described as: For input image x, Ti and C both receive the
same x and output two different vectors Ti(x) and C(x) re-
spectively. Ti(x) and C(x) have the same size and will be
further added in a weighted way to generate the final outputs
Mi(x), as shown in Eq. 1.

Mi(x) = C(x) + α× Ti(x) (1)

where α is the weight parameter that controls the weight of
Ti in the final results. The output value of each Ti ranges
from [-1,1] and the output value of C(x) is normalized into

4337



[0,1]. In each Mi, C is fixed and only Ti is different. For
the main classification task, C only has to be trained once. C
and Ti’s are trained separately. Training of Ti’s has access
to some data with similar domain of C.

In addition to the goal of fluctuating the boundaries, Ti
also takes the responsibility of injecting unique features dur-
ing attacks, where the source tracer Ts should give unique
responses on the adversarial examples.

3.2.1 T0 generation

We can treat each Ti as a classifier of K classes where K is
the number of classes of C.

Requirements: The goals of Ti are to induce different
boundaries among the Mi’s. Intuitively, the tracers should
meet the following requirements:

1. Each Ti is easier to be attacked than C.

2. The Ti’s have a similar feature space as C.

3. The classes in each Ti do not overlap with classes in C.

Recap that the adversarial attack perturbs the clean input so
as to cross boundaries of Mi. Both Ti and C would con-
tribute to the perturbation. If Ti is easier to be attacked,
Ti would contribute more to the perturbation and thus in-
duce tracer’s features to the adversarial example. Hence,
we have the first requirement, which lurks the adversarial
attack toward the features of the tracer. The second require-
ment ensures the same feature space of each Ti and C, such
that the feature-based attack of C can also work on Ti. The
last requirement requires the boundaries of Ti and C are not
overlapped, which makes sure the perturbations of Ti and C
will not significantly interfere each other.

Method: There are many ways of designing Ti’s, in this
paper, we propose a simple but effective method, which
first obtains a T0 by a variational autoencoder (VAE)-based
training method, then uses a perturbation-based method to
separate each Ti with the well-trained T0. Specifically, as
shown in Fig. 3, T0 is the encoder part of a VAE V , which
is linearly cascaded with one “SingleConv” block (Conv-
BN-ReLU), two “Res-block” [11], one “Conv” block, one
full connection block and one “Tanh” activation layer. For
the decoder part of the VAE, it consists of three “Double-
Conv” block (2-“SingleConv”), two “up-conv” (UpSample-
Conv-BN-ReLU) one “Conv” block and one full connection
block. The training process of T0 can be described as:

1) Given V and the image x ∈ RB×C×H×W from the
training dataset of C, we first initialize V with random pa-
rameters.

2) For each training epoch, we add random noise ξ
1 on the input images x to generate the noised image

1ξ follows a uniform distribution over [0, 0.01)

Figure 3: The architecture of VAE V and tracer T0.

xξ ∈ RB×C×H×W , where B indicates the batch size and
C ×H ×W represents the size of the image.

3) Then we concatenate x and xξ in batch-dimension
(denoted as X ∈ R2Ḃ×C×H×W ) and feed them into V
to get the outputs V(X) ∈ R2Ḃ×C×H×W and T0(X) ∈
R2Ḃ×K , where K is the number of classes. T0(X) can
be split in the batch-dimension to T0(x) ∈ RB×K and
T0(xξ) ∈ RB×K . Besides, same as the traditional VAE
training, T0(X) also should be divided into two parts in an-
other dimension µ ∈ R2Ḃ×K/2 and σ ∈ R2Ḃ×K/2, aiming
for providing the mean and the variance for sampling the
latent variables Z ∈ R2Ḃ×K/2, which is the input of the
decoder.

The whole loss function of V can be written as:

L = λLV AE + LTrap (2)

where

LV AE = Lcon + LKL

= ∥V(X)−X∥2 +KL(N(µ, σ2)∥N(0, 1))
(3)

and

LTrap =
T0(x)⊗ T0(xξ)

∥T0(x)∥2∥T0(xξ)∥2
− cos(θ) (4)

∥∥ indicates the mean square error loss and KL indi-
cates the Kullback-Leibler divergence. ⊗ represents the
Hadamard product. λ is the parameter to control the weight
of LV AE , which is set as 0.001. θ is the parameter that
controls the cosine similarity of T0(x) and T0(xξ). The se-
lection and influence of θ will be discussed in Section 5.1.

3.2.2 Ti Separation

From T0, we want to generation Ti, i ∈ [1,m]. In order
to realize tracing, each distributed Ti for different buyers
should maintain different boundaries so that the adversarial
perturbation of the ith copy will not produce the same out-
put logits on the jth copy. So we proposed a permutation-
based method:

Ti(x) = πi(T0(x)) (5)

4338



where πi indicates the ith permutation, x indicates the input
images. π should satisfy: No two permutations “overlap”
more than u elements, where u is a pre-defined constant.
That is, for any two permutations, say πi and πj ,∣∣{k|πi(k) = πj(k)}Kk=1

∣∣ ≤ u

where K indicates the number of classes. When u is small,
the accuracy of tracing would improve, but trade-off with
smaller possible copy numbers. In our experiment, we
choose u=1. To illustrate the permutation, we give an ex-
ample: assume T0 is a four-class classifier, a possible per-
mutation could be πi = (1, 2, 3, 4) → (2, 3, 4, 1), and
πj = (1, 2, 3, 4) → (3, 4, 1, 2).
Discussion: To say how our training method meets the
requirement, we give the following analysis. For the first
requirement, it is satisfied by the trap loss LTrap. Through
Eq. 4 we can see when θ = 90◦, T0(x) and T0(xξ) will be
orthogonal, which means T0(x) will be significantly differ-
ent from T0(xξ). Hence by setting appropriate θ, we could
guarantee that the output of T0 is easy to be changed by
small noise, such that T0 is easy to be attacked to cross
the boundary. Training T0(X) with the same distribution
of training dataset of C satisfies the second requirement. As
for the third requirement, it is satisfied by the loss function
of Eq. 3. Through training, T0 could effectively squeeze the
feature of a single image into a K-dimension vector, where
each dimension can be regarded as a class, and such classi-
fication criterion is not based on the original classification
task but on the VAE reconstruction task. So the classes in T0
do not overlap with classes in C. Besides, the permutation-
based method will not influence the properties of T0, so each
Ti will satisfy these three requirements.

3.3. Tracing the Origin

Given an adversarial example xadv , which is obtained
by attacking one of m copies, we want to trace/determine
which copy it is derived from. w.l.o.g., let us assume
that the m copies are M1,M2, ...,Mm. By earlier argu-
ment in section 3.2.1, the adversarial perturbations would
be contributed more by the tracer compared to the classi-
fier. Hence, we propose the following logits-based tracing
mechanism:

1) Given an appeared adversarial example denoted
as xadv , we feed xadv into all Mi, i ∈ [1,m]
and obtain the output logits of Mi and Ti, noted as
Mi(xadv), Ti(xadv), i ∈ [1,m].

2) Then we sort Mi(xadv) and take out the index corre-
sponding to the first sort noted as att and second sort noted
as cln, att indicates the potential attack label and cln indi-
cates the potential clean label.

3) We obtain the outputs of Ti(xadv) corresponded
to the label att and cln, denoted as Ti(xadv)[att] and
Ti(xadv)[cln].

4) The source model can be determined by:

s = argmax
i,i∈[1,m]

(Ti(xadv)[att]− Ti(xadv)[cln]) (6)

To simplify the description, we denote the difference of
output logits (Ti(xadv)[att] − Ti(xadv)[cln]) as DOL. The
tracer corresponding to the largest DOL is identified as the
source model.

4. Experimental Results
4.1. Implementation Details

In order to show the effectiveness of the proposed frame-
work, we perform the experiments on two network archi-
tectures (ResNet18 [11] and VGG16 [25]) with two small
image datasets (CIFAR10 [15] of 10 classes and GTSRB
[13] of 43 classes) and two deeper network architecture
(ResNet50 and VGG19) with one big image dataset (mini-
ImageNet [24] of 100 classes). The main classifier C in ex-
periments is trained for 200 epochs. All the model training
is implemented by PyTorch and executed on NVIDIA RTX
2080ti. For gradient descent, Adam [14] with learning rate
of 1e-4 is applied as the optimization method.

4.2. The Classification Accuracy of The Proposed
Architecture

The most influenced parameter for the classification ac-
curacy is the weight parameter α. α determines the partic-
ipation ratio of Ti in final outputs. To investigate the influ-
ence of α, we change the value of α from 0 (baseline) to
0.2 and record the corresponding classification accuracy of
each task, the results are shown in Table 1.

α
CIFAR10 GTSRB Mini-ImageNet

ResNet18 VGG16 ResNet18 VGG16 ResNet50 VGG19

0 94.30% 93.68% 96.19% 97.59% 81.81% 75.81%

0.05 94.24% 93.64% 96.14% 97.52% 81.73% 75.80%

0.1 94.24% 93.63% 96.07% 97.36% 81.56% 75.75%

0.15 94.07% 93.63% 95.72% 96.84% 81.52% 75.73%

0.2 93.95% 93.57% 95.09% 95.52% 81.38% 75.70%

Table 1: The classification accuracy with different α.

It can be seen from Table 1 that for all the classification
tasks, the growth of α will seldom decrease the accuracy of
the classification task. Compared with the baseline (α = 0),
when α is in the range of 0.05 to 0.15, the reduction in clas-
sification accuracy will not exceed 1%. But when α = 0.2,
the accuracy decrease of the dataset “GTSRB” is more than
1%. We intended the influence of α on classification accu-
racy to be as small as possible, so the subsequent experi-
ments are completed with α = {0.05, 0.1, 0.15}.

4339



4.3. Traceability of different black-box attack

Setup and Code. To verify the traceability of the pro-
posed mechanism, we conduct experiments on 5 distributed
models Mi, i ∈ [1, 5]. All the tracers of Mi are generated
with the permutation-based method with a well-trained T0,
and T0 is trained with θ = 75◦ for 400 epochs. We set
one model as the source model Ms to perform the adver-
sarial attack and set the other models as the victim mod-
els Mvi , i ∈ [1, 5]\s, where the tracer of Ms and Mvi

are denoted as Ts and Tvi . The goal is to test whether
the proposed scheme can effectively trace the source model
from the generated adversarial examples. The black-box at-
tack we choose is Boundary [3], HSJA [5], QEBA [17] and
SurFree [18]. For Boundary [3] and HSJA [5], we use Ad-
versarial Robustness Toolbox (ART) [22] platform to con-
duct the experiments. For QEBA [17] and SurFree [18], we
pull implementations from their respective GitHub reposi-
tories 2 3 with default parameters. For each α, each net-
work architecture, each dataset and each attack, we gen-
erate 1000 successfully attacked adversarial examples of
Ms and conduct the tracing experiment.

Evaluation Metrics. Traceability is evaluated by the
successful tracing accuracy, which is calculated by:

Acc =
Ncorrect

NAll
(7)

where Ncorrect indicates the number of correct-tracing sam-
ples and NAll indicates the total number of samples, which
is set as 1000 in the experiments. The tracing performance
of different attacks with different settings is shown in Table
2.

The influence of α. We can see from Table 2 that the
tracing accuracy increases with the increase of α. We con-
clude the reason as: α determines the participation rate of
tracer Ti in final output logits, the larger α will make the
final decision boundary rely more on Ti. Therefore, when α
gets larger, the DOL of Ti is more likely to be pushed larger,
thus leading to better tracing performance.

The influence of network architecture. The tracing
results vary with different networks and different datasets.
With the same dataset, the tracing accuracy of ResNet18
will be higher than that of VGG16. We attribute the rea-
son to the complexity of the model architecture. According
to [26], compared with ResNet, the structure of VGG is less
robust, so VGG-based C might be easier to be adversarially
attacked. Therefore, once C is attacked, there is a certain
probability that Ti is not attacked as we expected, so the
DOL of Ti will not produce the expected features for trac-
ing. Fortunately, the network architecture can be designed
by us, so in practice, choosing a robust architecture of C
would be better for tracing.

2QEBA:https://github.com/AI-secure/QEBA
3SurFree:https://github.com/t-maho/SurFree

The influence of classification task. In our experi-
ments, we test the classification task with the different num-
bers of classes. It can be seen that with the increase in
classification task complexity, traceability performance de-
creases slightly. But when α = 0.15, the traceability ability
can still reach more than 94% in most cases.

The influence of black-box attack. The mechanism
of the black-box attack greatly influences the tracing per-
formance. For Boundary attack [3], HSJA [5] and QEBA
[17], the tracing accuracy shows similar results, but for
SurFree [18], the tracing accuracy will be worse than that
of the other attacks. The reason is that Boundary attack,
HSJA, QEBA are gradient-estimation-based attacks, which
try to use random noise to estimate the gradient of the net-
work and further attack along the gradient. Since the gra-
dient is highly related to Ti, such attacks are more likely
to be trapped by Ti. But SurFree [18] is attacking based
on geometric characteristics of the boundary, which may
ignore the trap of Ti especially when α is small. So com-
pared with Boundary attack, HSJA and QEBA, the proposed
mechanism may get slightly worse performance when fac-
ing SurFree attack.

4.4. The influence of distributed copy numbers

It can be expected that as the number of distributed
copies increases, the differences between different bound-
aries will become less and less, making it more difficult to
complete the tracing. In this section, we mainly discuss how
traceability will evolve with the number of copies.

Since we ensure that each Ti maintains different bound-
aries, when feeding the adversarial examples, we have the
following assumption: the DOL of Ts and that of Tvi should
follow different distributions, and the DOL of each Tvi
should follow a similar distribution.

Distribution: In order to verify the correctness of the as-
sumption, we perform the following experiments. We use
“ResNet” as the backbone and QEBA [17] as the attack
method. The datasets we test are CIFAR10, GTSRB and
MiniImageNet. α is fixed as 0.15. For each task, We first
generate 10 different Ti according to the permutation-based
method, then randomly choose one as the source model
Ms to generate the adversarial examples. Then we feed
the adversarial examples on each Ti and record the distri-
bution of the resulting DOL of the source tracer and victim
tracers (denoted as Ds and Dvi , i ∈ [1, 9]). We perform
the Kolmogorov-Smirnov test between every two possible
Dvi ,Dvj

i, j ∈ [1, 9], i ̸= j and between Ds and Dvi . Then
we record Kolmogorov’s D statistic (larger values indicate
larger differences) to measure the similarity of these distri-
butions. Results are shown in Table 3.
{Ds,Dvi} indicates the Kolmogorov’s D statistic (KD)
value between Ds and Dvi where {Dvi ,Dvj

} indicates the
mean KD value between Dvi and Dvj

. It can be seen that

4340



Attack Boundary HSJA QEBA SurFree

alpha 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

CIFAR10 ResNet18 97.3% 97.4% 98.0% 95.2% 97.3% 97.5% 94.4% 97.1% 98.0% 83.3%. 92.3% 95.9 %
VGG16 85.7% 96.1% 97.8% 87.3% 88.9% 90.2% 73.1% 90.5% 92.8% 70.0% 87.8% 94.2%

GTSRB ResNet18 87.3% 94.2% 95.7% 87.3% 92.5% 96.4% 84.7% 95.3% 96.7% 77.8% 92.1% 94.7%
VGG16 89.3% 93.9% 95.6% 88.9% 92.7% 95.2% 81.0% 91.8% 95.6% 81.4% 92.8% 94.0%

mini-ImageNet ResNet50 89.9% 93.4% 94.5% 89.4% 93.7% 94.2% 89.0% 94.4% 96.4% 85.1% 92.5% 93.3%
VGG19 80.6 % 91.0 % 93.4% 81.7 % 89.3 % 90.7% 80.6% 88.6% 92.7 % 85.7% 90.7% 93.3%

Table 2: The trace accuracy of different attacks.

KD CIFAR10 GTSRB Mini-ImageNet
ResNet18 VGG16 ResNet18 VGG16 ResNet50 VGG19

{Ds,Dvi
} 0.925 0.818 0.850 0.807 0.873 0.821

{Dvi ,Dvj} 0.040 0.047 0.034 0.051 0.063 0.092

Table 3: The Kolmogorov’s D statistic of Ds and Dvi .

(a) The distribution of DOL with task
“ResNet-CIFAR10”.

(b) The tracing results of multiple mod-
els with dataset “CIFAR10”.

Figure 4: The distribution of DOL and tracing performance
of multiple branches.

for all the tasks, the KD value between Ds and Dvi is large,
which indicates that Ds and Dvi follows the different distri-
bution. Meanwhile, the KD value between different Dvi is
small, which means that each Dvi follows the same distri-
bution. Besides, we also visually show Ds and two random
selected Dvi and Dvj with “ResNet-CIFAR10” task in Fig.
4a for better illustration.

Tracing Rate Estimation: Since Ds and Dvi follows the
different distribution and Dvi and Dvj

follows the same dis-
tribution, we could effectively estimate the tracing perfor-
mance of m distributed copies by Monte-Carlo sampling
based on Ds and one random selected Dvi . We have con-
ducted experiments to evaluate the performance of such es-
timation on n, n ∈ [2, 10] copies. Specifically, for n tracers,
we take one sample Ss from Ds and n − 1 samples Sn−1

v

from Dvi . Such sampling is repeated 1000 times. For each
sampling, if Ss > max(Sn−1

v ), we consider it as a success-
ful tracing sample. We record the total number of success-
ful tracing samples Nn

C in 1000 samplings. The final tracing
accuracy of n models can be calculated with Nn

C /1000.
The results are shown in Fig. 4b. It can be seen that

with the increasing number of distributed copies, the trac-

ing accuracy gradually decreases. But with 10 branches,
it can still maintain more than 96% accuracy for “ResNet-
CIFAR10”. Besides, the estimated tracing performance is
almost the same as the actual experiment results, which in-
dicates the correctness of our analysis. Therefore, the trac-
ing performance of a large number of copies could be effec-
tively estimated by Ds and Dvi . The results of GTSRB and
mini-ImageNet are shown in the supplementary material.

Besides, since the valid copy numbers with the
permutation-based method are K × (K − 1) when u = 1,
which is limited when K is small, we also provide a possi-
ble way to enlarge the number by scrambling the input of Ti,
such a method is illustrated in the supplementary material.

5. Discussion

5.1. The influence of θ

In this section, we will introduce the influence of param-
eter θ on tracing accuracy. As shown in Eq. 4, θ controls the
cosine similarity between T0(x) and T0(xξ). A larger θ will
lead to larger output changes of T0 when facing a certain ξ,
which may make T0 to be more vulnerable to attack. But θ
should not be as large as possible too, because training with
larger θ may on the other hand make T0 change too heavily
with ξ, which is also not conducive to inducing adversarial
attacks to find the best perturbations of T0. To illustrate the
influence of θ, we conduct the following experiments.

We use the task of “ResNet-CIFAR10”, the attack of
QEBA [17], and train T0 with different θ to show the spe-
cific tracing results on 5 copies. α is set as 0.15. θ is chosen
from 15◦ to 90◦ with an interval 15◦. The results are shown
in Table 4. It can be seen that when θ ranges from 15◦ to

θ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Acc 31.8% 80.0% 94.5% 95.1% 98.0% 95.0%

Table 4: The trace accuracy of different θ.

75◦, the tracing accuracy increases as the θ increases, but
for θ = 90◦, the tracing accuracy is lower than θ = 75◦,
which justify our analysis. Finding the best θ for training
could be an interesting problem, but in this paper, we focus

4341



more on evaluating the possibility of tracing, so we utilize
θ = 75◦ as the experimental parameters.

5.2. Non-transferability and traceability

The concept of traceability is related to but not equiv-
alent to non-transferability. A non-transferable adversar-
ial example works only on the model it is generated from.
Therefore, tracing such an example may be a straightfor-
ward task. On the other hand, a transferable sample may be
generic enough to work on many copies/models. The task
of tracing becomes more meaningful in this scenario. Our
traceability towards the transferable example demonstrates
that the process of adversarial attack introduces distinct and
unique traceable features to the source model. In this sense,
traceability can serve as a fail-safe property in defending
against adversarial attacks. There are many defense meth-
ods that can satisfy non-transferability, but once the defense
fails, the model will not be effectively protected. But our
experimental results show that for the proposed method,
even if the defense fails, we still have a certain probabil-
ity to trace the attacked model, as shown in Table 5. We use
“ResNet-CIFAR10” task with HSJA [5] and QEBA [17] as
examples to show the specific tracing results on 5 copies.

Attack α NTr NTr(+) Tr Tr(+) Tr Rate Total Rate

HSJA
0.05 314 314 686 638 93.00% 95.20%
0.1 746 746 254 229 90.16% 97.50%

0.15 892 892 108 81 75.00% 97.30%

QEBA
0.05 692 692 308 252 81.82% 94.40%
0.1 682 682 318 289 90.88% 97.10%

0.15 658 658 342 322 94.15% 98.00%

Table 5: Results of transferable/non-transferable samples.

In Table 5, NTr and Tr indicate the number of non-
transferrable samples and transferrable samples respec-
tively. NTr(+) and Tr(+) indicate the number of success-
ful tracing samples of NTr and Tr. We can see that for
QEBA with α = 0.1 and 0.15, the traceability to trans-
ferrable samples is all keep at a high level which is greater
than 90%. As for HSJA, when α = 0.05, 686 samples can
be transferred, and the traceability of transferrable examples
achieves 93.00%. Although the traceability of transferrable
examples decreases to 75.00% when α = 0.15, only 108
samples are transferrable, which is much less compared to
QEBA. So the total tracing rate is still at a high level of
97.30%. In general, the proposed method shows superior
overall traceability and especially great tracing performance
on transferrable samples.

5.3. Adaptive attacks & defense

In the buyers-seller setting, we assume only one buyer
is a potential attacker, so the adversarial attack can only be
conducted with 1 distributed model. However, if multiple

buyers are the attackers, they could use multiple models to
conduct the adaptive collusion attack.

Collusion attack: Assume the attacker can access mul-
tiple models, e.g. two models M1 and M2, he can gen-
erate the adversarial examples by iteratively attacking M1

and M2, and ensure the adversarial example works both on
these two models. Such a combined model may offset the
trap of T1 and T2 and make the attack focus more on the
boundary of C. Therefore, the generated adversarial exam-
ples will not carry much expected features of T1 and T2 thus
causing troubles in tracing.

Adaptive Defense: One way to mitigate such attacks is
making C in each Mi slightly different. For example, we
could make each Ci maintain a different gradient direction
by setting gradient-orthogonal loss [1]. Therefore, each Ci
maintains different boundaries, so the boundary of the com-
bined model (e.g. C1 and C2) will not same as the boundary
of other models Ci, i ̸= 1, 2. Thus the attack may work on
M1 and M2 but fail on Mi, i ̸= 1, 2, which ensures the
non-transferability and traceability.

We have conducted the corresponding experiments to
show the possible influence of the collusion attack and the
performance of the adaptive defense. The task we use is
“ResNet18-CIFAR10” and the attack method is Boundary
attack [3]. We randomly select two models M1 and M2 as
the attack model and test the tracing performance on other
4 models Mi, i ∈ [3, 6] with the collusion attack. Mean-
while, we also use the adaptive defense method to train 6
different Ci and conduct the same attack and tracing proce-
dure. The specific results are shown in Table 6.

Model M1 M1 +M2 M′
1 +M′

2

Acc 98.0% 50.0% 97.5%

Table 6: The trace accuracy of adaptive attack and defense.

M1 indicates the traceability of the attack on the single
model, M1+M2 indicates the traceability of the attack on
the combined model. M′

1+M′
2 indicates the traceability of

the attack on the adaptive defense model. It can be seen that
when suffering a collusion attack, the tracing accuracy will
decrease from 98.0% to 50.0%. But with the adaptive de-
fense model, the tracing accuracy can return back to 97.5%,
which indicates the effectiveness of the adaptive defense.

6. Conclusion
This paper researches a new aspect of defending against

adversarial attacks that is the traceability of adversarial at-
tacks. The techniques derived could aid forensic investiga-
tion of known attacks, and provide deterrence to future at-
tacks in the buyers-seller setting. As for the mechanism, we
design a framework which contains two related components
(model separation and origin tracing) to realize traceability.

4342



For model separation, we propose a parallel network struc-
ture which pairs a unique tracer with the original classifier
and a VAE-based training method. The tracer model can ef-
fectively injects the unique features and ensures the differ-
ences between distributed models. As for origin tracing, we
design a logits-based tracing mechanism based on the tracer
model which could sufficiently tracing the origin. The ex-
periment of multi-dataset, multi-network model and multi-
black-box attacks shows the effectiveness of the method in
achieving traceability through the adversarial examples.

Acknowledgement. This research/project is supported by
the National Research Foundation, Singapore under its
Strategic Capability Research Centres Funding Initiative
and Huawei International. Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of Na-
tional Research Foundation, Singapore.

References
[1] Huanyu Bian, Dongdong Chen, Kui Zhang, Hang Zhou,

Xiaoyi Dong, Wenbo Zhou, Weiming Zhang, and Nenghai
Yu. Adversarial defense via self-orthogonal randomization
super-network. Neurocomputing, 452:147–158, 2021.

[2] Franziska Boenisch. A survey on model watermarking neu-
ral networks. arXiv preprint arXiv:2009.12153, 2020.

[3] Wieland Brendel, Jonas Rauber, and Matthias Bethge.
Decision-based adversarial attacks: Reliable attacks against
black-box machine learning models. In International Con-
ference on Learning Representations, ICLR 2018, 2018.

[4] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (S&P), pages 39–57. IEEE, 2017.

[5] Jianbo Chen, Michael I Jordan, and Martin J Wainwright.
Hopskipjumpattack: A query-efficient decision-based attack.
In 2020 IEEE Symposium on Security and Privacy (S&P),
pages 1277–1294. IEEE, 2020.

[6] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and
Cho-Jui Hsieh. Ead: elastic-net attacks to deep neural net-
works via adversarial examples. In Thirty-second AAAI con-
ference on artificial intelligence, 2018.

[7] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and
Cho-Jui Hsieh. Zoo: Zeroth order optimization based black-
box attacks to deep neural networks without training substi-
tute models. In Proceedings of the 10th ACM workshop on
Artificial Intelligence and Security, pages 15–26, 2017.

[8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

[9] Shixiang Gu and Luca Rigazio. Towards deep neural net-
work architectures robust to adversarial examples. arXiv
preprint arXiv:1412.5068, 2014.

[10] Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon
Wilson, and Kilian Weinberger. Simple black-box adversar-
ial attacks. In International Conference on Machine Learn-
ing, pages 2484–2493. PMLR, 2019.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[13] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc
Schlipsing, and Christian Igel. Detection of traffic signs in
real-world images: The german traffic sign detection bench-
mark. In The 2013 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. Ieee, 2013.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, 2015.

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

[17] Huichen Li, Xiaojun Xu, Xiaolu Zhang, Shuang Yang, and
Bo Li. Qeba: Query-efficient boundary-based blackbox at-
tack. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 1221–1230,
2020.

[18] Thibault Maho, Teddy Furon, and Erwan Le Merrer. Surfree:
a fast surrogate-free black-box attack. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10430–10439, 2021.

[19] Nasir Memon and Ping Wah Wong. A buyer-seller water-
marking protocol. IEEE Transactions on image processing,
10(4):643–649, 2001.

[20] Dongyu Meng and Hao Chen. Magnet: a two-pronged de-
fense against adversarial examples. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 135–147, 2017.

[21] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard. Deepfool: a simple and accurate method to
fool deep neural networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2574–2582, 2016.

[22] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat
Buesser, Ambrish Rawat, Martin Wistuba, Valentina Zant-
edeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig,
et al. Adversarial robustness toolbox v1. 0.0. arXiv preprint
arXiv:1807.01069, 2018.

[23] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In 2016
IEEE European Symposium on Security and Privacy (Eu-
roS&P), pages 372–387. IEEE, 2016.

[24] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. 2016.

[25] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

4343



[26] Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu
Chen, and Yupeng Gao. Is robustness the cost of accuracy?–
a comprehensive study on the robustness of 18 deep image
classification models. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 631–648, 2018.

[27] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In 2nd International
Conference on Learning Representations, ICLR 2014, 2014.

[28] Jiyi Zhang, Wesley Joon-Wie Tann, and Ee-Chien Chang.
Mitigating adversarial attacks by distributing different copies
to different users. arXiv preprint arXiv:2111.15160, 2021.

4344


