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Abstract

Image-to-text generation aims to describe images us-
ing natural language. Recently, zero-shot image caption-
ing based on pre-trained vision-language models (VLMs)
and large language models (LLMs) has made significant
progress. However, we have observed and empirically
demonstrated that these methods are susceptible to modal-
ity bias induced by LLMs and tend to generate descrip-
tions containing objects (entities) that do not actually ex-
ist in the image but frequently appear during training (i.e.,
object hallucination). In this paper, we propose ViECap,
a transferable decoding model that leverages entity-aware
decoding to generate descriptions in both seen and unseen
scenarios. ViECap incorporates entity-aware hard prompts
to guide LLMs’ attention toward the visual entities present
in the image, enabling coherent caption generation across
diverse scenes. With entity-aware hard prompts, ViECap
is capable of maintaining performance when transferring
from in-domain to out-of-domain scenarios. Extensive ex-
periments demonstrate that ViECap sets a new state-of-the-
art cross-domain (transferable) captioning and performs
competitively in-domain captioning compared to previous
VLMs-based zero-shot methods. Our code is available
at: https://github.com/FeiElysia/ViECap

1. Introduction
Large-scale pre-trained vision-language models (VLMs)

like CLIP [37] and ALIGN [22] showcase impressive zero-
shot transferability in various discriminative downstream
tasks (e.g., classification [37], segmentation [26, 49], and
detection [16, 27]). However, effectively adapting these
pre-trained VLMs into zero-shot generative tasks (e.g., text
and image generation) remains an open question that re-
quires further exploration. Recently, some works [43,
42] have leveraged large language models (LLMs), e.g.,
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Figure 1. Decoding paradigm for zero-shot image-to-text genera-
tion. (a) in-domain (ID) image, (b) out-of-domain (OOD) image.
ID refers to objects appearing in the image included in the train-
ing corpus, while OOD indicates that they are not included. ✕

and ✓ refers to the incorrect and correct predictions, respectively.
Late-guidance methods generate descriptions irrelevant to the im-
age, e.g., “jump” and “donut”, while early-guidance models often
tend to hallucinate objects that are not actually present in the OOD
image, e.g., “surfboard”. In contrast, our model utilizes entities as
additional prompts to describe novel objects in the image, leading
to superior transferability in OOD settings, e.g., “sea turtle”.

GPT [38, 5], to achieve CLIP-based zero-shot image-to-text
generation. They follow a late-guidance paradigm where
visual information is injected after completing word predic-
tion. However, the weak visual guidance in this paradigm
often results in modality bias, i.e., the language prior in
LLMs dominates the decoding process and therefore gen-
erates descriptions that are unrelated to the corresponding
images. Fig. 1(a) shows incorrect predictions made by late-
guidance decoding, e.g., even if “jump” and “cobblestone”
are unrelated to the image, they finally appear in the pre-
dictions due to their close association with predicted words
“skateboarder” and “snowy”. Similarly, another example
in Fig. 1(b) shows that “donut” and “rocks” are primarily
generated by language prior instead of visual guidance.

Early-guidance methods [28, 35, 53] provide explicit
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guidance for word generation in LLMs by prefixing visual
prompts to the text tokens. Typically, visual prompts are
projected from the CLIP image embedding using a learn-
able projector. This early-guidance paradigm significantly
alleviates the modality bias and boosts the alignments be-
tween the image and the generated captions. However, the
learnable (soft) visual prompts are prone to overfitting when
trained on a limited corpus, leading to poor performance
in describing a diverse range of objects (visual entities).
This, in turn, may cause object hallucination in the gener-
ated captions. Specifically, when transferring these models
to unseen scenarios beyond the training corpus, novel en-
tities are often misrecognized as similar entities frequently
appearing in the training corpus. As Fig. 1 shows, early-
guidance decoding is capable of understanding in-domain
(ID) images but tends to hallucinate entities that do not ac-
tually exist in out-of-domain (OOD) images (i.e., halluci-
nating “sea turtle” with “surfboard”, where “surfboard”
frequently appears in the training corpus). Consequently,
the transferability of the well-learned CLIP latent space is
degraded into current decoding strategies, significantly lim-
iting their applicability in real-world scenarios. We further
validate the observed modality bias and object hallucina-
tion issues when adapting pre-trained VLMs and LLMs for
image-to-text generation through experiments in Sec. 3.

To address the observed issues, we propose ViECap,
which incorporates entity-aware hard prompts to compen-
sate for the degradation of the CLIP latent space caused by
learning soft prompts on a specific training corpus. This
method is motivated by our observation that the CLIP-based
entity classifier can accurately classify both ID and OOD
images (e.g., “snowboard” and “sea turtle” in Fig. 1).
The entity-aware hard prompts enable transferable language
decoding from the CLIP latent space. Fig. 1 shows that
the proposed entity-aware decoding approach is capable
of describing both seen and unseen entities in diverse im-
ages. Specifically, ViECap builds on early-guidance de-
coding methods, e.g., CapDec [35]. Unlike these models,
which can only describe entities present in the training cor-
pus, our model can generate captions in diverse scenarios.
Following CapDec, we train ViECap only using text data.
The entity-aware hard prompt is the critical design enabling
the transferability of our model to diverse captioning sce-
narios. The hard prompts, constructed by nouns extracted
from texts during training or entities retrieved from images
during inference, can prompt the LLMs to attend training-
agnostic entities based on open vocabulary retrieval through
CLIP. As we find that a naive integration of entities pushes
ViECap to learn a copy-then-paste shortcut (i.e., directly
copying the entities to captions), we introduce a simple
yet efficient entity masking strategy when incorporating the
entity-aware hard prompts into early-guidance decoding.

We extensively evaluate ViECap on four bench-

marks, NoCaps [1], COCO [30, 8], Flickr30k [52], and
FlickrStyle10K [15]. The experimental results demonstrate
that ViECap outperforms all other text-only methods and
sets a new state-of-the-art in the cross-domain (transferable)
setting while remaining competitive with them in the in-
domain setting. In out-of-domain scenarios (NoCaps), we
achieve a margin of 39.2 and 36.3 improvements, respec-
tively, compared to DeCap and CapDec. We even surpass
some supervised methods, indicating our model generalizes
well to novel entities. In the experiment on FlickrStyle10K,
ViECap effectively generates captions in different styles
corresponding to the styles of the training set. Additionally,
the data-efficient experiment shows ViECap’s applicability
in low-data settings, further highlighting its versatility and
effectiveness across various scenarios.

To summarize, our contributions are as follows: 1)
We shed light on the observations and underlying rea-
sons behind the degraded generalizability when adapting
pre-trained VLMs and LLMs into image-to-text genera-
tion, i.e., modality bias and object hallucination, provid-
ing timely and valuable insights for pre-trained large-scale
model adaptation. 2) We introduce entity-aware decod-
ing to improve the transferability of zero-shot captioning.
Specifically, aided by VLMs, we integrate entity-aware hard
prompts with entity masking strategy into the decoding pro-
cess, guiding LLMs to attend both seen and unseen enti-
ties. 3) Extensive experiments show the remarkable zero-
shot transferability of ViECap, even in low-data scenarios.

2. Related Work
Supervision in Image Captioning. We classify image
captioning models into supervised and unsupervised meth-
ods based on whether the image-text alignment informa-
tion is provided during training. Supervised image cap-
tioning methods [50, 23, 21, 4, 11, 45, 7] are trained with
paired (well-aligned) image-text data and typically adopt
the encoder-decoder architecture. Initially, diverse vision
backbones (e.g., CNN [18], ViT [13]) are utilized to extract
visual features, which are then fed into a language decoder
(e.g., LSTM [20], Transformer [44]) to generate coherent
sentences. Various attention mechanisms [50, 21, 51, 7, 31]
are commonly designed to capture vision-language align-
ment cues. However, the high cost associated with collect-
ing paired image-text data limits the applicability of these
models. In contrast, Unsupervised image captioning meth-
ods [25, 14] train the model using unpaired image-text data
and primarily rely on visual concepts as anchor points to
establish pseudo image-text alignment. Our proposed ap-
proach, on the other hand, only requires text data for model
training. Compared to previous methods, our method fur-
ther reduces the data collection cost while exhibiting supe-
rior efficiency by eliminating the need for image encoding
during training.
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Figure 2. Left: Visual guidance with varied m on COCO. Middle: CLIP similarity between image and captions on NoCaps. “Random”
refers to randomly sampling one ground-truth caption to calculate similarity scores with the paired image, and “Average” involves calcu-
lating the similarity scores by averaging the embeddings of all ground-truth captions. Right: Precision of detected entities using CLIP and
captioning models on NoCaps. For both CapDec and ViECap, we evaluate the precision of entity words in the generated captions.

Zero-shot Image Captioning. Zero-shot image captioning
aims to generate image captions without relying on human-
annotated data [28]. Some methods [6, 47] in this area pre-
train the model on large-scale weak image-text pairs and
then evaluate the model on target benchmarks without fur-
ther fine-tuning. Another set of methods [43, 35, 28, 42, 53]
achieves zero-shot image captioning by combining large
VLMs and LLMs. Specifically, VLMs provide vision-
aware language guidance, which guides LLMs to generate
image-related captions. We divide these methods into two
paradigms: 1) late-guidance methods (ZeroCap [43] and
MAGIC [42]) inject visual guidance after word prediction,
and 2) early-guidance methods (SMs [53], CapDec [35],
and DeCap [35]) retain visual information in several to-
kens using VLMs, prompting LLMs to generate image-
aware words. Compared with these methods, we follow
the early-guidance paradigm but integrate additional entity-
aware hard prompts with an entity masking strategy, which
significantly reduces the problem of object hallucination
when describing images containing novel objects.

Novel Object Captioning This task aims to generate de-
scriptions for images containing unseen objects during
training [9, 2, 1, 32, 19, 46]. DCC [19] and NOC [46]
leverage object recognition networks to recognize novel
concepts. Other methods rely on object detectors (e.g.,
Faster R-CNN [41], Mask R-CNN [17]) to recognize un-
seen entities in images [32, 29, 54]. Recently, captioning
models leveraging the CLIP-based entity classifier [40, 10]
have shown even more promising performance in describ-
ing novel concepts in images. Despite their success, these
methods are trained on limited image-text pairs, making
data collection challenging and rendering them susceptible
to overfitting to the text style of the training corpus. Con-
sequently, their capability to generate diverse sentences is
restricted. In this study, we extend novel object captioning

to a more data-efficient setting. Unlike the aforementioned
methods, our model can seamlessly adapt to a new domain
by simply fine-tuning with text-only data, thereby improv-
ing its transferability and diversity.

3. Empirical Observations

This section demonstrates the existence of modality bias
and object hallucination when adapting VLMs and LLMs
for image-to-text generation. It serves as a starting point for
the proposed ViECap, which can address such limitations.

Modality Bias. A good captioning model should strike a
balance between visual guidance and language contexts. To
evaluate the influence of visual guidance, we design a two-
stage decoding strategy: first, we use the captioning model
(e.g., MAGIC [42], CapDec [35]) to generate the first m
words of the caption, then we feed these prefix words into a
pre-trained language model to obtain the subsequent words
based on pure language contexts. The accuracy of generated
captions, measured by CIDEr [45], is denoted as CIDEr(m).
We define the importance of visual guidance Gvis(m) as:

Gvis(m) = 1−Glang(m) = 1− CIDEr(m)

CIDErmodel
(1)

where CIDErmodel is the accuracy of captions generated
without a pure language model (i.e., m equals sentence
length). Glang(m) is the importance of language contexts.

If a captioning model is dominated by language priors,
Gvis(m) will be small as a pure language model can ac-
curately predict captions. As Fig. 2 (left) shows, the late-
guidance method MAGIC gains much lower Gvis(m) com-
pared to early-guidance methods CapDec and our ViECap,
especially when m is small. This observation confirms
modality bias towards language in late-guidance methods.
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Figure 3. The overview of the proposed ViECap framework. During training, with text-only corpus, nouns are extracted from the sentence
by a grammar parser to construct the hard prompt. Then, the soft prompt encodes the overall contexts of the sentence by CLIP text encoder
followed by a learnable projector. Two types of prompts are concatenated together as the input for the language model to predict captions.
During inference, given a test image, we input the CLIP image embedding into the projector to obtain the soft prompt and introduce a
CLIP-based entity classifier to construct the entity-aware hard prompt. With the strong transferability from the training-agnostic hard
prompt, our framework is robust to the shift of image domain, achieving excellent captioning performance in both ID and OOD images.

Object Hallucination. While early-guidance decoding al-
leviates the problem of modality bias effectively, previous
models still show limited generalizability towards OOD im-
ages containing novel concepts. To illustrate the degrada-
tion of transferability in current methods, we calculate the
cosine similarity using CLIP between the image and the
corresponding generated caption. Fig. 2 (middle) shows
that CapDec experiences a gradual performance drop when
transferring from ID to OOD settings, while our ViECap
exhibits a more robust capability in describing images with
different domains.

Object hallucination leads to incorrect entities in the gen-
erated caption. We further analyze the precision of entities
detected by different methods in Fig. 2 (right). While the
CLIP embedding shows remarkable transferability, it is de-
graded in the caption generation process of CapDec. The
accuracy of CapDec drops significantly (60.2 → 43.6) when
transferring from ID to OOD images. By explicitly intro-
ducing visual entities, ViECap demonstrates the capability
to describe both seen and unseen entities in images. Specif-
ically, the accuracy of correctly detecting entities decreases
slightly by 4.3 compared to the accuracy predicted by CLIP,
which is a reduction of 3.

4. ViECap
The proposed ViECap is a transferable captioning frame-

work based on CLIP and trained on a text-only corpus.
Specifically, We train a language decoder to decode the
CLIP text embedding of sentences and incorporate entity-

aware prompts to enable transferable captioning. For zero-
shot inference, we directly feed the CLIP image embedding
of a given image into the trained decoder to generate cap-
tions. Fig. 3 illustrates the overall framework of ViECap.

4.1. Entity-aware Transferable Decoding

Given the text-only data, our goal is to train an entity-
aware language decoder with promising transferability. To
this end, we extract two types of visual-aware guidance
from the ground-truth caption: 1) nouns in the caption,
which serve as anchors for grounding entities in the image.
These nouns (i.e., discrete category names) are capable of
capturing salient and static visual cues, such as humans, an-
imals, and objects. 2) CLIP text embedding of the caption,
which is implicitly aligned with the image embedding, pro-
vides the overall contexts across all images, such as scenes
and interactions between objects. We transform entities and
the text embedding into prompt tokens to guide the lan-
guage model (i.e., GPT-2) in predicting captions. During
training, we freeze the parameters of the CLIP text encoder
to maximize its transferability. We train the projector from
scratch and fine-tune the language model using an auto-
regressive loss (details can be found in the Appendix).

Hard Prompt. We first construct a vocabulary of entities,
denoted as V . Nouns in the caption, regarded as visual en-
tities, are recognized by the NLTK grammar parser and fil-
tered by this vocabulary. The extracted entities are then in-
serted into a prompt template “There are e1, ..., eN in the
image.”, where en refers to the nth entity. The entity-aware
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COCO ⇒ NoCaps val

Methods Pre-trained Model
in-domain near-domain out-of-domain Overall

CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

Paired image-text training, zero-shot inference
OSCARBase [29] ECCV’20 Faster R-CNN + BERTBase 79.6 12.3 66.1 11.5 45.3 9.7 63.8 11.2
ClipCap [34] ArXiv’21 ViT-B/32 + GPT-2Large 84.9 12.1 66.8 10.9 49.1 9.6 65.8 10.9
I-TuningBase [33] ICASSP’23 ViT-B/16 + GPT-2Base 83.9 12.4 70.3 11.7 48.1 9.5 67.8 11.4
SmallCap* [40] CVPR’23 ViT-B/32 + GPT-2Base 83.3 - 77.1 - 65.0 - 75.8 -
Text-only training, zero-shot inference
DeCap* [28] ICLR’22 ViT-B/32 + Transformer 65.2 - 47.8 - 25.8 - 45.9 -
CapDec† [35] EMNLP’22 ViT-B/32 + GPT-2Base 60.1 10.2 50.2 9.3 28.7 6.0 45.9 8.3
ViECap ICCV’23 ViT-B/32 + GPT-2Base 61.1 10.4 64.3 9.9 65.0 8.6 66.2 9.5

Table 1. Cross-domain captioning results on the NoCaps validation set. †represents our re-implemented results. * refers to the use of a
memory bank. Note that SmallCap reports results on the NoCaps test set, while other methods report results on the NoCaps validation set.

Method
COCO ⇒ Flickr30k Flickr30k ⇒ COCO

B@4 M C S B@4 M C S

MAGIC [42] 6.2 12.2 17.5 5.9 5.2 12.5 18.3 5.7
DeCap [28] 16.3 17.9 35.7 11.1 12.1 18.0 44.4 10.9
CapDec [35] 17.3 18.6 35.7 - 9.2 16.3 27.3 -
ViECap 17.4 18.0 38.4 11.2 12.6 19.3 54.2 12.5

Table 2. Cross-domain captioning results on the Flickr30k test set
and COCO test set. All methods in this table use text-only training.

hard prompt is constructed by a training-agnostic module,
enabling strong robustness to the domain shift from ID to
OOD images.

Soft Prompt. We first inject Gaussian noise into the CLIP
text embedding to alleviate the modality gap as indicated
in CapDec [35]. A trainable projector then transforms the
CLIP text embedding to generate the soft prompt. The pro-
jector is implemented as a lightweight transformer with L
learnable queries as in ClipCap [34]. The output features of
L query tokens are considered as the soft prompt.

Entity masking. We observe that naively integrating nouns
to construct hard prompts tends to learn a copy-then-paste
shortcut during training, where all nouns are input together
to generate a caption, i.e., the model simply pastes the input
nouns without making any modification. Consequently, the
captioning prediction task becomes trivial, and the model’s
generalizability is severely impaired, particularly when con-
fronting incorrect entities during inference. To address this
issue, we propose a simple yet effective entity masking
strategy that randomly drops a certain proportion of nouns
with the masking ratio rmask during training. This strat-
egy significantly alleviates the learning collapse and boosts
captioning performance in both ID and OOD settings. The
effectiveness of the masking strategy is verified in Tab. 6.

4.2. Zero-shot Inference

Once the decoder is trained, we can leverage it for zero-
shot captioning inference. Given a test image, we first ex-
tract its visual embedding using the CLIP image encoder.
We then employ the trained projector to convert the visual
embedding into the soft prompt. For the hard prompt, we
again use visual embedding for entity classification. Specif-
ically, we use the manual template “A photo of {entity}” as
the entity description for each category in V . Then we rank
and select the top M entities with the highest similarity
scores between different entity descriptions and the visual
embedding to construct the entity-aware hard prompt. Fi-
nally, the soft prompt and hard prompt are concatenated to-
gether in sequential order and input into the language model
to predict the caption auto-regressively.

It should be noted that there exists a training-inference
gap in the model structure. Two strategies during training
are adopted to address this gap and improve the model per-
formance. Firstly, we use noisy text embedding to bridge
the gap between visual and text embedding. Secondly, we
propose a non-trivial entity masking mechanism to avoid
the copy-then-paste shortcut, meanwhile pushing the model
to recover the missing entities from soft prompts.

Transferability on OOD images. Trained on limited ID
data, the projector may overfit to the ID dataset, leading
to a significant performance degradation of the soft prompt
for OOD inputs. In contrast, the entity-aware hard prompt,
predicted by the frozen CLIP, inherits the powerful trans-
ferability from CLIP embeddings. The GPT could flexibly
combine the soft and entity-aware hard prompts for a better
trade-off between ID and OOD performance.

5. Experiments

We conduct extensive experiments to evaluate the perfor-
mance of ViECap in diverse zero-shot image captioning set-
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tings, including 1) cross-domain captioning, 2) in-domain
captioning, and 3) data-efficient captioning. The experi-
ments are organized as follows: In Sec. 5.1, we assess the
transferability of ViECap through the cross-domain setting.
Here, the model is trained on a corpus from the source do-
main and evaluated on a target domain. In Sec. 5.2, we fo-
cus on the generalizability of ViECap under the in-domain
scenario, where the model is trained and evaluated on the
same dataset. We conduct data-efficient experiments to as-
sess the applicability of our model in low-data scenarios in
Sec. 5.3. In Sec. 5.4, we perform various ablation experi-
ments to assess the effectiveness of entity-aware decoding.
Furthermore, we qualitatively evaluate ViECap in Sec. 5.5.

Implementation Details. We use CLIP-ViT-B/32 as our
backbone. The language model is GPT-2base implemented
by Wolf et al. [48]. The projector comprises an 8-layer
transformer with 8 attention heads and a hidden size of 768.
The length of learnable soft prompts is set to 10. During
training, we freeze the CLIP text encoder and only train
GPT-2 and projector using AdamW [24] optimizer for all
experiments. For caption generation, we use beam search
with a beam size of 5. Details are shown in the Appendix.

Datasets and Metrics. We conduct experiments on
four widely used image captioning benchmarks, i.e.,
NoCaps [1], COCO [30, 8], Flikcr30k [52], and
FlickrStyle10K [15]. For COCO and Flickr30k, we follow
the commonly used Karpathy split [23]. For NoCaps, we
train our model on the COCO training set and report the
results on the validation set, as suggested by OSCAR [29].
As for FlickrStyle10K, we follow MemCap [56], randomly
sampling 6,000 captions as our training set and using the re-
maining image-text pairs for testing. We report results with
common used captioning metrics BLEU@n (B@n) [36],
METEOR (M) [12], CIDEr (C) [45] and SPICE (S) [3]. Re-
fer to the Appendix for details about these datasets.

Methods. We include several captioning methods as fol-
lows: 1) BUTD [4] and OSCAR [29] as classic super-
vised methods, 2) ClipCap [34], I-Tuning [33], and Small-
Cap [40] as lightweight paired captioning methods that uti-
lize GPT-2 for CLIP-based captioning, 3) ZeroCap [43] as a
training-free method, 4) StyleNet [15] and MemCap [56] as
classic methods for style captioning, and 5) MAGIC [42],
CapDec [35], and DeCap [28] as text-only training meth-
ods, which are in line with our work. Specifically, MAGIC
employs late-guidance decoding. CapDec and DeCap adopt
early-guidance decoding, which learns soft prompts for cap-
tion generation. Notably, DeCap leverages an additional
memory bank, and CapDec serves as our baseline.

5.1. Cross-Domain Captioning

In this section, we demonstrate the transferability of
ViECap in cross-domain captioning. We evaluate ViECap’s

In-Domain Captioning

Method
COCO Flickr30k

B@4 M C S B@4 M C S

Paired image-text training
BUTD [4] CVPR’18 36.2 27.0 113.5 20.3 27.3 21.7 56.6 16.0
OSCAR [29] ECCV’20 36.5 30.3 123.7 23.1 - - - -
ClipCap [34] ArXiv’21 33.5 27.5 113.1 21.1 - - - -
I-Tuning [33] ICASSP’23 34.8 28.3 116.7 21.8 25.2 22.8 61.5 16.9
SmallCap* [40] CVPR’23 37.0 27.9 119.7 21.3 - - - -

Text-only training, zero-shot inference
ZeroCap [43] CVPR’22 7.0 15.4 34.5 9.2 5.4 11.8 16.8 6.2
MAGIC [42] ArXiv’22 12.9 17.4 49.3 11.3 6.4 13.1 20.4 7.1
DeCap* [28] ICLR’22 24.7 25.0 91.2 18.7 21.2 21.8 56.7 15.2
CapDec [35] EMNLP’22 26.4 25.1 91.8 - 17.7 20.0 39.1 -
ViECap ICCV’23 27.2 24.8 92.9 18.2 21.4 20.1 47.9 13.6

Table 3. In-domain captioning results on the COCO test set and
Flickr30k test set. * denotes using a memory bank. It should be
noted that the result of ZeroCap is copied from MAGIC, and the
results of OSCAR and I-Tuning are from their base backbone.

Method
Romantic Humorous

B@1 B@3 M C B@1 B@3 M C

StyleNet [15] 13.1 1.5 4.5 7.2 13.4 0.9 4.3 11.3
MemCap [56] 21.2 4.8 8.4 22.4 19.9 4.3 7.4 19.4
CapDec [35] 21.4 5.0 9.6 26.9 24.9 6.0 10.2 34.1
ViECap 25.7 6.5 10.4 33.6 24.3 6.5 10.4 35.0

Table 4. In-domain captioning results on the FlickrStyle10K.

ability to describe novel entities in images by training it on
the COCO training set and testing on the NoCaps valida-
tion set without any additional fine-tuning. As Tab. 1 shows,
ViECap outperforms all other text-only methods by a large
margin and even achieves competitive performance com-
pared to some supervised methods in the out-of-domain and
Overall setting, indicating that incorporating the entities-
aware hard prompt is beneficial for the model to describe
unseen entities. While other methods experience a notable
drop in CIDEr score from the in-domain to out-of-domain
setting in NoCaps, ViECap maintains a minimal fluctua-
tion across different domains, showcasing the remarkable
transferability of our model. In real-world scenarios, the
target domain of images is typically agnostic, making the
evaluation based on the Overall results a better reflection of
the models’ effectiveness in practical applications. Surpris-
ingly, with text-only corpus, ViECap achieves comparable
results to supervised methods, obtaining a CIDEr score of
66.2 compared to 63.8 for OSCAR and 65.8 for ClipCap
on the Overall. Furthermore, ViECap significantly outper-
forms the unpaired methods DeCap and CapDec by a large
margin of 20.3 CIDEr, demonstrating our model can gener-
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Data Method
COCO NoCaps val

Test In Near Out Overall

0.1%
CapDec 24.0 13.2 11.0 6.2 10.4
ViECap 32.3 20.9 27.6 34.9 30.2

1%
CapDec 55.8 29.6 20.5 9.8 18.9
ViECap 63.9 34.6 39.9 39.3 40.4

10%
CapDec 83.6 47.3 39.8 19.1 35.4
ViECap 83.4 45.9 51.8 48.7 53.3

100%
CapDec 92.7 60.1 50.2 28.7 45.9
ViECap 92.9 61.1 64.3 65.0 66.2

Table 5. Data-efficient captioning results.

ate captions with stable quality in diverse domains.
Tab. 2 showcases results in more cross-domain settings,

where ViECap sets a new state-of-the-art performance on
all metrics from Flickr30k to COCO and on most metrics
from COCO to Flickr30k.

Both Tab. 1 and Tab. 2 demonstrate the remarkable zero-
shot transferability of our model. ViECap is capable of
describing images that deviate from the distribution of the
training sets, as well as those that do not, making it highly
useful when applied in real-world scenarios.

5.2. In-Domain Captioning

To further assess the generalizability of ViECap, we con-
duct evaluations on COCO, Flickr30k, and FlickrStyle10K
in the in-domain setting, where the training and testing data
are from the same dataset. As shown in Tab. 3, our pro-
posed model outperforms CapDec, our baseline method, in
most metrics. We attribute this improvement to our entity-
aware hard prompt, which explicitly emphasizes infrequent
object concepts, thereby mitigating the long-tail problem
associated with the existing dataset. It is worth noting that
DeCap utilizes a large memory bank to bridge the modal-
ity gap, which may not be practical in real-world scenar-
ios. In contrast, our approach achieves comparable perfor-
mance with an acceptable memory complexity, highlight-
ing the effectiveness of the proposed ViECap. Tab. 4 shows
that ViECap achieves state-of-the-art performance on Flick-
Style10K. These results demonstrate that ViECap can adapt
well to diverse style text data, showcasing its versatility and
strong generalizability.

5.3. Data-Efficient Captioning

In this section, we explore ViECap’s capability to learn
from low-data scenarios. Specifically, we randomly sample
different scales of data from the COCO training set to train
ViECap. For simplicity, we leverage In, Near, and Out to
denote in-domain, near-domain, and out-of-domain, respec-
tively. As shown in Tab. 5, ViECap outperforms CapDec

Method
COCO NoCaps val

Test In Near Out Overall

Baseline 92.7 60.1 50.2 28.7 45.9
+ Entity 53.2 32.4 40.3 53.1 44.8
+ Entity + Masking (20%) 88.1 54.1 60.5 63.5 62.7
+ Entity + Masking (40%) 92.9 61.1 64.3 65.0 66.2
+ Entity + Masking (60%) 94.6 59.1 64.0 63.9 65.5
+ Entity + Masking (80%) 94.5 57.8 64.3 63.5 65.3

Table 6. Ablation studies of entity masking.

Method
COCO NoCaps val

Test In Near Out Overall

Baseline (Soft-only) 92.7 60.1 50.2 28.7 45.9
Entity-only 61.4 29.9 41.0 49.8 44.4
Entity + Soft 92.5 60.8 63.6 65.1 65.7
Soft + Entity (w/o ensemble) 92.3 57.3 59.5 59.1 61.0
Soft + Entity 92.9 61.1 64.3 65.0 66.2

Table 7. Ablation studies of prompts.

across all data scales. Even with as little as 0.1% of the data,
ViECap can still generate reasonable captions and maintain
transferability (CIDEr: 32.3 on the COCO testing set vs.
30.2 on the Overall of NoCaps validation set), suggesting
ViECap is data-efficient and applicable in low-data settings.

5.4. Ablation Studies

We conduct comprehensive ablation studies to explore
the influence of entities and prompt structures on our model.
Additionally, we evaluate the advantages of using a larger-
scale language model for ViECap. In all these experiments,
we assess the performance of our model on both the COCO
testing set and the NoCaps validation set.

Masking Rate. We begin by investigating the impact of en-
tities on ViECap by randomly masking entities at different
rates. As shown in Tab. 6, incorporating entities enhances
our model’s ability to perceive unseen entities (from 28.7 to
53.1). However, as mentioned before, the model may learn
a shortcut from detected entities, leading to a rapid decline
in ID performance (from 92.7 to 53.2). The CIDEr score
on the COCO testing set gradually increases as the masking
rate increases, indicating that entity masking can prevent
ViECap from relying heavily on entities. For the NoCaps
validation set, the performance of ViECap first increases
and then decreases, showing that a moderate entity mask-
ing rate benefits caption prediction in unseen scenarios. The
results of this experiment demonstrate that the proposed en-
tity masking strategy boosts the captioning performance of
ViECap across diverse scenes.

Prompts. We then explore the impact of different prompt
generation methods on the performance of ViECap. As
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GT: A blue jay sits on a tree 
branch on a sunny day.
CapDec: A blue bird is 
perched on a tree branch.
Ours: A blue jay is perched
on a tree branch.

GT: A centipede is crawling 
around on the ground.
CapDec: A close up of a 
person wearing a suit and tie.
Ours: A centipede is
eating from a tree branch.

GT: A school of dolphins 
swim under blue water.
CapDec: A group of surfers 
riding waves in the ocean.
Ours: A group of dolphins
are swimming in the water.

GT: A raccoon sitting on a 
large rock in front of plants.
CapDec: A brown bear is
sitting on a rock.

Ours: A gray and brown 
raccoon is sitting on a rock.

GT: A white ceiling fan that
is hanging from the roof.
CapDec: A white propeller
plane flying in the sky.

Ours: A white mechanical 
fan hanging from a ceiling.

GT: A pair of sunglasses
on top of a counter top.
CapDec: A close up of a 
pair of scissors on a table.
Ours: A close up of a pair of
sunglasses on a table.

Figure 4. Visualization of generated captions of some images from the out-of-domain setting on the NoCaps validation set, which contain
unseen entities. GT refers to the Ground Truth, CapDec and Ours denote caption generated by CapDec and ViECap, respectively.

Model pt. #para
COCO NoCaps val

Test In Near Out Overall

Tuned language model
GPTBase (4-layer) × 67M 89.8 54.5 54.2 50.2 54.6
GPTBase

√
124M 92.9 61.1 64.3 65.0 66.2

Frozen language model
GPTBase

√
124M 88.0 57.7 60.2 61.4 62.0

GPTLarge
√

774M 91.7 59.4 64.4 68.4 66.9
GPTXL

√
1.5B 94.5 63.4 66.6 68.9 68.9

OPT1.3B
√

1.3B 95.6 64.9 68.7 69.9 70.7
OPT2.7B

√
2.7B 96.9 64.7 70.2 71.9 72.1

Table 8. ViECap with different scales of language models. “pt.”
represents using pre-trained weights.

shown in Tab. 7, learning only soft prompts leads to over-
fitting to in-domain captioning, resulting in poor perfor-
mance when describing novel entities. Incorporating hard
prompts improves captioning performance for unseen im-
ages, but solely modeling entity information leads to re-
duced performance on in-domain captioning. When com-
bining soft and hard prompts, we achieve comparable ID
performance with soft prompts-only methods and superior
performance on OOD scenarios. Additionally, we find that
the order of soft and hard prompts does not affect ViECap’s
performance. To construct hard prompts with visual enti-
ties, we leverage CLIP-based retrieval, where the accuracy
of retrieval benefits from the prompt ensemble 1.

Scaling up ViECap. We assess diverse pre-trained LLMs,
ranging from GPT-2 to OPT [55], to investigate the impact
of scaling up language models on the capability of ViECap
to describe novel entities in images. The results are shown
in Tab. 8. As the model parameters increase, the perfor-
mance of ViECap continues to improve. Notably, we freeze
the language model for more effective training. To our sur-
prise, ViECap can effectively leverage the information from
the language model without the need for further fine-tuning.

1The prompt engineering is released by OpenAI. https://
github.com/openai/CLIP/blob/main/notebooks

5.5. Qualitative Evaluation

Fig. 4 displays ground truth captions and captions gener-
ated by CapDec and ViECap trained on COCO. Images are
from the out-of-domain set in the NoCaps validation set,
which contains unseen entities. In the first image in Fig. 4,
ViECap correctly recognizes the specific entity “jay” while
CapDec mistakenly identifies a generic entity “bird”. Sim-
ilar outcomes can be observed in the other instances shown
in the figure. CapDec exhibits object hallucination in its tex-
tual descriptions, while ViECap demonstrates the ability to
generate high-quality descriptions of entities in novel sce-
narios, illustrating the effectiveness of using hard prompts
to guide LLMs in attending to entities in images. More vi-
sualization results can be found in the Appendix.

6. Conclusion

In this paper, we have comprehensively investigated the
challenges of adapting pre-trained VLMs and LLMs for
image-to-text generation. Our empirical findings demon-
strate the existence of modality bias and object hallucina-
tion, highlighting the limited transferability when adapting
pre-trained models to downstream tasks and providing valu-
able insight for further research in this area. We propose
an entity-aware decoding approach to address the observed
issues. By leveraging the CLIP latent space to prompt
GPT-2 during caption generation, our method, ViECap,
demonstrates remarkable performance in both seen and un-
seen scenarios. Extensive experiments showcase that our
ViECap outperforms existing zero-shot methods in trans-
ferability and achieves competitive performance on zero-
shot in-domain captioning. Moreover, ViECap proves to be
data-efficient in low-data settings on COCO. Experiment on
FlickrStyle10K shows that our model can also generate cap-
tions in different styles based on the training corpus style.
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