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Abstract

Point cloud analysis (such as 3D segmentation and detec-
tion) is a challenging task, because of not only the irregular
geometries of many millions of unordered points, but also the
great variations caused by depth, viewpoint, occlusion, etc.
Current studies put much focus on the adaption of neural
networks to the complex geometries of point clouds, but are
blind to a fundamental question: how to learn an appropriate
point embedding space that is aware of both discriminative
semantics and challenging variations? As a response, we
propose a clustering based supervised learning scheme for
point cloud analysis. Unlike current de-facto, scene-wise
training paradigm, our algorithm conducts within-class clus-
tering on the point embedding space for automatically dis-
covering subclass patterns which are latent yet representative
across scenes. The mined patterns are, in turn, used to re-
paint the embedding space, so as to respect the underlying
distribution of the entire training dataset and improve the
robustness to the variations. Our algorithm is principled
and readily pluggable to modern point cloud segmentation
networks during training, without extra overhead during test-
ing. With various 3D network architectures (i.e., voxel-based,
point-based, Transformer-based, automatically searched),
our algorithm shows notable improvements on famous point
cloud segmentation datasets (i.e., 2.0-2.6% on single-scan and
2.0-2.2% multi-scan of SemanticKITTI, 1.8-1.9% on S3DIS,
in terms of mIoU). Our algorithm also demonstrates utility in
3D detection, showing 2.0-3.4% mAP gains on KITTI.

1. Introduction

During the last few years, point cloud analysis, such as

3D segmentation, has attracted increasing research effort,

due to the wide applications in autonomous driving, intel-

ligent robotics, airborne laser scanning, and virtual reality.

In particular, the advances in deep learning significantly

pushed forward the state-of-the-art in this field. Applying

standard neural networks which are specialized for grid-like

1Corresponding author: Yi Yang.

data, such as natural images, to point clouds is nontrivial,

as point data are unorganized and irregular. To adapt neural

networks to the geometries of point data, considerable effort

has been made and representative achievements include: i)

projection-/voxel-based networks [1–11] that project irreg-

ular point clouds to regular representations, so that mature

2D/3D convolution can be applied for segmentation; and ii)

point-based networks [12–16] that ingest raw point clouds

directly, by using permutation-invariant operator [17–21],

graph convolution [22], customized convolution [23–25], or

self-attention (Transformer) based architecture [26–28].

Nevertheless, the challenges in point cloud analysis stem

not only from the intrinsic non-Euclidean nature of point data,

but also from the large intra-class variations caused by depth,

occlusion, viewpoint, shape, etc. Despite various fancy point

structure-aware network designs and their encouraging re-

sults, a fundamental issue was long ignored: how to learn
a good point embedding space that is discriminative for
semantic categorization yet robust for point data variations?

Mitigating this issue demands a powerful learning regime

that is aware of latent variation modes (or representative fine-

grained patterns) – comprehensively describing the potential

structure of point data. However, in practice, it is infeasible to

precisely annotate, or even roughly identify, the underlying

data patterns in point clouds. This may be the reason behind

the common choice that point cloud segmentation is learned

as point-wise classification; any fine-grained patterns that the

point data may possess are left to be ‘mysteriously’ learned

through the supervision from high-level semantic tags.

These novel insights motivate us to devise a clustering

analysis based training scheme for point cloud segmentation.

It complements the standard supervised learning of point-

wise classification with unsupervised clustering and regular-

ization of the feature space. Specifically, clustering is con-

ducted inside each labeled semantic class to automatically

discover informative yet hidden subclass patterns without

explicit annotation. The discovered subclass patterns es-

sentially capture the underlying fine-grained distribution of

the whole training dataset. They are then used to reshape

the point embedding space, achieved by explicitly inspiring

inter-subclass/-cluster discriminativeness, and reducing intra-
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subclass/-cluster variation. Such regularized representation

space in turn facilitates the discovery of typical within-class

variation modes, and benefits point recognition eventually.

Our learning algorithm enjoys several appealing advan-

tanges: First, it raises a dataset-level context-aware training

strategy. Unlike the current de-facto, scene-wise training pa-

radigm, our algorithm groups point features across training

scenes, and conducts clustering based representation learn-

ing. By probing the global data distribution, our algorithm

encourages the highly flexible feature space to be discretized

into a few distinct subcluster centers, easing the difficulty of

the final semantic classification. Second, it is efficient for

large-scale point cloud training. To avoid time-consuming

clustering of massive point data, we opt the Sinkhorn-Knopp

algorithm [29, 30] that solves cluster assignment using fast

matrix-vector algebra [31]. Moreover, to follow closely the

drifting representation during network training, a momentum

update strategy is adopted for online approximation of the

subcluster centers. Third, it is principled enough to be seam-

lessly incorporated into the training process of any modern

point cloud segmentation networks, without bringing extra

computation burden or model parameters during inference.

For thorough evaluation, we approach our training algori-

thm on four remarkable point cloud segmentation models,

i.e., Cylinder3D [16] (voxel-based), KPConv [25] (point-
based), PTV1 [26] (Transformer-based), SPVNAS [32]

(neural architecture search (NAS) based), and conduct experi-

ments on 3D point cloud segmentation for urban scenes (i.e.,

SemanticKITTI [33] single-scan) and indoor environments

(i.e., S3DIS [34]) as well as 4D segmentation of point cloud

sequences (i.e., SemanticKITTI [33] multi-scan). Results

show that our algorithm owns 2.2-2.6%, 1.9-2.2%, 1.8%,

and 2.0% mIoU gains over Cylinder3D, KPConv, PTV1, and

SPVNAS, respectively. Our algorithm even promotes 3D de-

tectors Second [35] and PointPillar [36] by 2.7-3.4% and

2.0-2.2% mAP on KITTI [37], verifying its high generality.

2. Related Work
Deep Learning for Static Point Cloud Segmentation. In

general, existing algorithms for single-scan point cloud seg-

mentation can be categorized into two schools, depending on

the underlying data representation: i) Projection-based meth-

ods first transform unstructured point sets to regular 2D grid

[2, 5, 7, 8, 10, 38–40], or 3D voxel [3, 4, 9, 16, 41–46],

to enable the usage of vanilla 2D/3D convolution opera-

tion. However, 2D projection based methods are likely

to discard critical geometric cues and require expensive

2D-3D back-projection after 2D segmentation, yet voxel-

based architectures typically suffer from significant compu-

tation and memory usage. ii) Point-based methods, pioneered

by PointNet [17, 18], directly learn point-wise features

from raw point clouds, usually through 1) local feature

pooling [14, 15, 21, 47–54], 2) graph convolution [22, 51, 55–

62], 3) kernel-based convolution [13, 19, 25, 63–67], and 4)

attention-based aggregation [20, 26–28, 68]. Compared with

projection-based approaches, point-based methods tend to

be computationally efficient and are capable of preserving

point-wise semantics as well as local geometries. Unfortu-

nately, their performance in large-scale, urban scenarios is

still not desirable [69].

Deep Learning for Dynamic Point Cloud Segmentation.
4D semantic segmentation is rather difficult as point cloud

sequences are spatially irregular yet temporally ordered. Ex-

isting approaches for dynamic point cloud segmentation

can be broadly classified into two groups, in terms of the

spatial-temporal information fusion strategy: i) Early fusion
based methods [6, 70] directly process point cloud sequences

via adapting the standard convolution to the heterogeneous

characteristics of point clouds in spatial and temporal do-

mains. In this way, they allow spatial-temporal information

fusion throughout the networks. ii) Late fusion based meth-

ods [28, 71–74] are typically built upon existing single-scan

point cloud processing models for spatial information ex-

traction, and devoted to leveraging temporal information to

enrich static features and hence to boost segmentation.

Despite their dazzling network designs, existing static/dy-

namic point cloud segmentation models generally follow a

scene-wise training protocol, which treats each point data as

an individual training sample and accumulates all the point

classification errors within each scene for network parame-

ter optimization. As a result, they ignore the rich relations

between points across different scenes, and fail to regularize

the feature embedding space from a holistic view. In contrast,

through automatic, class-wise data clustering, our training

algorithm grasps the latent structure of the whole training

dataset, which draws on a key insight that meaningful, la-

tent data structure, like subclass semantics, fine-grained pat-

terns, and intra-class variation modes, are common and sta-

ble across scenes. As we will show, representation learned in

such a way is desirable for detailed analysis of point clouds.

Self-supervised Representation Learning and Clustering.
Our algorithm relies on automated discovery of unknown

subclasses, achieved by clustering point data with only coarse-

grained class labels. Thus it bears some resemblance to self-

supervised learning techniques which learn meaningful rep-

resentations from massive unlabeled data. A spectrum of

recent unsupervised representation learning methods [75–79]

build upon the instance discrimination task that considers

each data instance of the dataset as its own class [80, 81].

They conduct noise contrastive estimation [82], a special form

of contrastive learning [83, 84], to compare instances, and

also show promise in dense 2D/3D representation learning

[58, 85–93]. Another line of methods [31, 81, 94–103] dis-

criminates between groups of images with similar features

instead of individual images, by jointly performing unsuper-

vised representation learning and clustering.
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Figure 1: Overview of our clustering based supervised learning algorithm for point cloud segmentation.

In this work, we resort to clustering to probe the under-

lying structure of large-scale point sets and discover fine-

grained patterns within manually-labeled, high-level seman-

tic classes. We reinforce the standard supervised training

paradigm of point recognition with clustering analysis based

point representation learning, which regularizes the feature

space by respecting the inherent structure of point data. This

represents the first effort, as far as we know, that explores

automatic, fine-grained pattern mining in the context of fully

supervised learning of point cloud segmentation.

3. Proposed Algorithm
3.1. Problem Statement and Algorithm Overview

In the context of fully supervised learning of point cloud

segmentation, current common practice is to learn a point re-

cognition network from a training dataset {Pk,Lk}k. Here

Pk = {pkn ∈ R
3+x}Nn=1 is the k-th point cloud containing

N points with 3D position and other auxiliary information

(e.g., color, intensity); Lk= {lkn ∈ C}Nn=1 contains semantic

labels for the points inPk, where C is the label list, e.g., C=
{car, road, · · · }. The segmentation network is achieved as

h◦ϕ:P �→L, where ϕ : RN×(3+x) �→R
N×d is a feature extrac-

tor ( in Fig.1) that embeds points inP into a d-dimensional

feature space, and h :RN×d �→R
N×|C| is a segmentation head

( ) usually consisting of a small MLP, mapping point fea-

tures into the discriminative semantic space for point-wise,

|C|-way classification. Thus the whole network is typically

learned by minimizing the point-wise cross-entropy loss1:

JCE(pn)=− logP (ln|pn)=− log
exp(yn,ln)∑
c∈Cexp(yn,c)

, (1)

where yn=[yn,c]c∈R
|C| is the vector of categorical scores

(logits) for point pn, i.e., yn = h(pn), and pn∈ R
d is the

feature of pn obtained from ϕ. For the feature extractor ϕ,

there already have many candidates (e.g., voxel-/point-based

3D networks) elaborately designed to capture the specific geo-

1In practice, some other losses (e.g., lovász loss [104]) can be used as

complementary, but this does not affect our conclusion.

metries of point data. However, point clouds yield rich and

diverse patterns, e.g., fine-grained semantics, intra-class varia-

tions, etc. These patterns reflect underlying data structures;

they are informative yet challenging for semantic understand-

ing, and even hard to be identified. Thus it is usually the case

that simply learning the segmentation network h◦ϕ from the

supervision of easily-acquired high-level semantic tags (i.e.,

Eq. 1), without considering the underlying data structures.

We instead devise a clustering analysis based supervised

learning framework (Fig. 1). Our algorithm not only learns

point recognition with pre-given semantic tags, but more es-

sentially, it automatically discovers and encodes latent struc-

tures of point data into the feature space ϕ. Features learned

in such strategy are expected to be more discriminative for

(fine-grained) semantics and robust for intra-class variations,

hence facilitating final dense recognition of point clouds.

At each training iteration, our algorithm has two phases.

In phase 1, we perform online clustering over massive points

inside of each labeled classes. The purpose is to search for

subclass patterns which are hard to be labeled yet signifi-

cant across scenes. In phase 2, in addition to optimizing

the whole segmentation network h◦ϕ with the point-wise

classification loss LCE as usual, we leverage deterministic

cluster assignments as an auxiliary constraint to shape the

feature space ϕ. The improved features, in turn, enable more

reliable within-class clustering, and eventually boost point

recognition. Independent of a certain point segmentation

network, our training scheme is powerful and general.

3.2. Online Clustering based Subclass Pattern Mining

Our algorithm is built upon an intuitive insight: capturing

underlying data structures can facilitate point representation

learning and semantic recognition. Thus the first major ques-

tion arises: how to automatically and efficiently discover un-
derlying data structures, which cannot be explicitly labeled,
from massive training points? This motivates us to conduct

unsupervised clustering inside each labeled class c∈C so as to

automatically mine representative yet latent subclass patterns.

8285



To scale our algorithm to millions of point data, we formu-

late such within-class clustering as optimal transport, which

can be efficiently solved using Sinkhorn Iteration [30]. In ad-

dition, to overcome the computational expensive process of

cluster center computation, which requires a full epoch over

the entire dataset after every update of the representation,

we adopt a momentum update strategy for proceeding online

clustering simultaneously with network batch training.

For each class c∈ C, we assume it contains M latent, fine-

grained patterns. Hence there are a total of M×|C| unobserv-

able patterns are desired to be discovered from the training

dataset {Pk,Lk}k. To do so, we perform within-class cluster-

ing on the point embedding space ϕ. As a result, the training

points belonging to class c, i.e., Pc={pn|ln=c}, are parti-

tioned intoM subclasses, and theM patterns of class c can be

intuitively represented as the corresponding cluster centers.

LetQc=[qc
1,· · ·,qc

M ]∈R
d×Mdenote theM cluster centers of

class c (e.g., in Fig. 1), and P c=[pc
1, · · ·,pc

Nc ]∈R
d×Nc

all the features2 of points belonging to class c (e.g., ),

where pc∈Pc andN c= |Pc|. The cluster assignment can be

represented as a binary matrix, Ac∈{0, 1}M×Nc

, where the

(m, i)-th element of Ac indicates whether assigning the i-th
point of Pc to the m-th cluster center, i.e., the m-th subclass,

of c. The clustering inside class c can be achieved as the

optimization of the assignment matrix Ac, i.e., maximizing

the similarity between the point features and cluster centers:

min
Ac∈Ac

〈Ac�,− logSc〉,

Ac={Ac∈{0, 1}M×Nc |Ac�1M =1Nc ,Ac1Nc =
Nc

M
1M}

(2)

where Sc=softmax(Qc�P c) refers to the similarity matrix

between cluster centers and points, 〈·〉 is the Frobenius dot-

product, log is applied element-wise, and 1M denotes the

vector of ones in dimension M . For the solution space Ac,

the former constraint enforces that each point is assigned to

exactly one subclass, and the later imposes an equipartition

constraint [31, 81] to inspire the N c points to be grouped

into M subclasses of equal size. The equipartition constraint

helps avoid the degenerate solution where all the point sam-

ples are partitioned to a single cluster [88, 96]. By relaxing

Ac to be an element of transportation polytope [30], i.e.,

A′c = {Ac∈ R
M×Nc

+ |Ac�1M = 1
Nc1Nc ,Ac1Nc = 1

M 1M},

the label assignment task can be viewed as an instance of the

optimal transport problem, which can be efficiently solved

by a fast version of the Sinkhorn-Knopp algorithm [30]:

min
Ac∈A′c〈A

c�,− logSc〉+ 1

λ
KL(Ac|| 1

MNc
1M1�

Nc), (3)

where KL is the Kullback-Leibler divergence, and λ is the

strength of the regularization. The solution of Prob. (3) over

2Point feature has been projected to the unit sphere: p=p/||p||2; p is

reused without causing ambiguity.

the set A′c can be written as:

Ac∗ = diag(u)(Sc)λdiag(v), (4)

where exponentiation is meant element-wise. u∈R
M and

v ∈ R
Nc

are two vectors of scaling coefficients, obtained

using a small number of matrix-vector multiplications via

iterative Sinkhorn-Knopp algorithm [30]. Due to the drift of

the point representation caused by iterative network train-

ing, after each training batch of point clouds, re-computing

the cluster assignment would cost a pass over the full data.

To circumvent such computationally expensive procedure

of offline cluster assignment, we restrict the transportation

polytope to the minibatch, through approximating the cluster

centers Qc with momentum. As in [88], at each training

iteration, each cluster center qc
m of class c is updated as:

qc
m ← μqc

m + (1− μ)p̄c
m, (5)

where μ ∈ [0, 1] is the momentum coefficient, and p̄c
m in-

dicates mean feature vector of the points that are assigned

to cluster center qc
m in the current batch. The cluster cen-

ters are initialized randomly and gradually updated every

batch, following smoothly the changing of the representation

ϕ. These designs lead to scalable and online clustering, al-

lowing to automatically mine latent subclass patterns from

massive point data. The clustering is very efficient on GPU;

in practice, assigning 50K points into 40 clusters takes only

60 ms. We visualize clustering results (M=2) of five classes

in Fig.2, where subclasses under the same class are associ-

ated with similar colors. As seen, points with similar patterns

are grouped together, thus the underlying data distribution

of each class can be comprehensively captured.

3.3. Clustering Analysis based Point Cloud Repre-
sentation Learning

Through within-class clustering, we search for latent struc-

tures in point clouds, and detect locally discriminative pat-

terns, i.e., the cluster centers {qc
m}m,c. The next question is:

how to leverage these fine-grained patterns to aid point cloud
representation learning? To answer this, we complement the

supervised point-wise classification loss JCE (Eq. (1)) with a

clustering analysis based contrastive learning strategy, which

poses structured and direct supervision for point representa-

tion. In particular, with the deterministic cluster assignments

in §3.2, we conduct contrastive representation learning over

both point-point and point-center pairs. This allows us to

fully exploit relations between any two points and local data

structures, and directly optimize the point feature space ϕ.

Point-Point Contrastive Learning. Our point-point contras-

tive learning is achieved by comparing pairs of points to push

away point representations from different subclasses while

pulling together those from the same subclass. The corres-
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Figure 2: (a) Our clustering results for five classes, i.e., sidewalk, vegetation, road, car, and building. (b-c) t-SNE visualization

of point features {P c}c learned with JCE (Eq. (5)) and J (Eq. (8)). We set M=2 here, see supplementary for analysis.

ponding training objective for each point pn is defined as:

JPPC(pn)=
1

|Opn|
∑

p+∈Opn

−log
exp(pn·p+/τ)

exp(pn·p+/τ)+
∑

p−∈Npn

exp(pn·p−/τ)
, (6)

where τ > 0 is a scalar temperature parameter, Opnand Npn

denote collections of positive and negative samples, respec-

tively, for pn. Training points belonging to the same cluster

of pn are positive samples, while being assigned to other

clusters are negative. Note that the positive (negative) sam-

ples are not limited to a same training point cloud. To fur-

ther boost our point-point contrastive learning, we follow

the common practice in unsupervised representation learn-

ing [75, 78, 105] to build a memory bank per cluster, lead-

ing to M×|C| memory banks totally. The memory banks

gather point features of corresponding clusters from pre-

vious training batches, hence increasing the quantity and

diversity of positive and negative samples. These designs

deliver a cross-scene training scheme, rather than the current

de facto scene-wise training paradigm that ignores the rich

correspondences among points across different scenes. Mini-

mizing Eq. (6) leads to a well-structured embedding space ϕ,

where points with similar patterns are grouped close to each

other while points with dissimilar patterns are separated.

Point-Center Contrastive Learning. With a similar spirit

of point-point contrastive learning, i.e., inspiring intra-cluster

compactness and inter-cluster separation, our point-center

contrastive learning strategy contrasts the similarities be-

tween points and cluster centers on the embedding space ϕ:

JPCC(pn)=−log
exp(pn ·q+/τ)

∑
c,mexp(pn ·qc

m/τ)
, (7)

where q+ refers to the cluster center of point pn. Eq. (7)

lets pn find out the assigned cluster center q+ from all the

centers {qc
m}c,m, so as to decrease the distance between pn

and q+, while increasing the distance between pn and other

cluster centers. Since cluster centers are representative of the

dataset, Eq. (7) provides a cheaper and more direct way to

impose dataset-level context, or underlying data structures,

on feature space optimization, compared with the point-point

contrastive learning (Eq. (6)). In practice, we find combining

the two cluster-analysis based contrastive learning strategies

yields the best performance (see detailed experiments in

§4.5). One may also view point-center contrastive learn-

ing from an information bottleneck perspective [97, 106],

wherein the deterministic clustering imposes a natural bottle-

neck and discretizes the embedding space ϕ as a finite set of

cluster centers, i.e., {qc
m}c,m, through minimizing Eq. (7),

as opposed to learning ϕ as a continuous vector space.

Overall Training Objective. The standard cross-entropy

loss JCE in Eq. (1) is essentially a unary training objective

that is only aware of point-wise semantic discrimination,

without accounting for any underlying data structure and

pairwise relations between training points. The clustering

analysis based contrastive losses, i.e., JPPC in Eq. (6) and

JPCC in Eq. (7), are pairwise training objectives that exploit

locally representative patterns for structure-aware, distance

based point representation learning. Thus we assemble these

two complementary training targets as our overall learning

objective:
J = JCE + α(JPPC + JPCC). (8)

Our training algorithm alternately performs within-class clus-

tering over the point embedding space ϕ, and optimizes the

whole segmentation network h◦ϕ with the semantic labels

{Lk}k and cluster assignments {Ac}c. As such, meaningful

clusters capture fine-grained data structures and become in-

formative supervisory signals for point representation learn-

ing; in turn, discriminative representations help obtain mean-

ingful clusters and eventually ease point recognition. In

Fig. 2 (b-c), we provide visualization of point embeddings

learned by JCE and J . As seen, after additionally consid-

ering clustering analysis based training targets, the point

embedding space becomes more structured.

3.4. Algorithm Details
Online Clustering (§3.2). We group point samples of each

class intoM subclasses for exploiting latent structures of the

entire dataset. We empirically set M =40 and the momen-

tum coefficient in Eq.(5) μ=0.9999 (related experiments can
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be found in §4.5). Following [31], we set λ=25 in Eq.(3).

Clustering Analysis based Training (§3.3). Our clustering

analysis based training strategy enforces the point feature

space to better respect the discovered data structures. Fol-

lowing the common practice in contrastive learning [76, 99],

we set the scalar temperature τ in Eqs. (6-7) as 0.1. For the

cluster-wise memory bank, we sample 10 point features per-

cluster from each scene and store all the sampled features of

all the training point clouds {Pk}k. For the training loss J
(Eq. (8)), the coefficient is set as α=1 (we empirically find

our algorithm is insensitive to α when α∈ [0, 1]).
Point Cloud Segmentation Network h◦ϕ. Our algorithm

is a general supervised learning scheme for point cloud seg-

mentation. In principle, it can be applied to any segmentation

networks that can learn point-wise features. In our experi-

ments, we approach our algorithm on four typical segmenta-

tion networks, including voxel-based [16], point-based [25],

Transformer-based [26], and NAS-based [32].

Inference. Our training algorithm does not cause extra

inference cost or network architectural modification during

model deployment. The M×|C| cluster centers and M×|C|
memory banks are directly discarded after network training.

4. Experiment
We first report our 3D segmentation results on static point

clouds of urban scenes and indoor environments in §4.1 and

§4.2, respectively. Then we assess our performance on 4D

segmentation of outdoor point cloud sequences in §4.3. For

thorough evaluation, in §4.4, we extend our algorithm to

3D object detection setting and conduct experiments. The

hyperparameters mentioned in §3.4 are used for all the above

experiments. Finally, in §4.5, we provide ablative analyses

on the core components of our training algorithm.

Base Segmentation Networks. For thorough examination, we

applyour trainingalgorithmtoCylinder3D[16] (voxel-based),

KPConv [25] (point-based), PTV1 [26] (Transformer-based),

and SPVNAS [32] (NAS-based), which are representative for

current mainstream network architectures in point cloud seg-

mentation and with publicly accessible implementations. For

fair comparison, we adopt their default implementation set-

tings, including hyper-parameters and augmentation recipes.

4.1. 3D Segmentation on Static Urban Point Clouds
Dataset. SemanticKITTI [33] is a large-scale driving-scene

dataset for point cloud segmentation. It has 43,000 scans with

point-wise annotation, collected from 22 sequences. Accor-

ding to the official setting, we use sequences 00 to 10 for

train (but 08 is left for val), and 11 to 21 for test. In

single-scan challenge for static segmentation, 19 classes are

used and mean intersection-over-union (mIoU) is reported.

Quantitative Result. Table 1 reports comparison results

on SemanticKITTI single-scan challenge test. As seen,

our algorithm improves the performance of the base seg-

Table 1: Quantitative 3D segmentation results on Se-

manticKITTI [33] single-scan challenge test (§4.1). For

clarity, IoUs on 6 of 19 classes are given (c1: sidewalk, c2:

parking, c3: building, c4: truck, c5: bicycle, c6: motorcyclist).
Method mIoU(%) c1(%) c2(%) c3(%) c4(%) c5(%) c6(%)

PointASNL [CVPR20] [52] 46.8 74.3 24.3 83.1 39.0 0.0 0.0

PolarNet [CVPR20] [9] 54.3 74.4 61.7 90.0 22.9 40.3 5.6

RandLA-Net [CVPR20] [21] 55.9 74.0 61.8 89.7 43.9 29.8 9.4

SqueezeSegV3 [ECCV20] [8] 55.9 74.8 63.4 89.0 29.6 38.7 20.1

SalsaNext [ISVC20] [10] 59.5 75.8 63.7 90.2 38.9 48.3 19.4

FusionNet [ECCV20] [46] 61.3 77.1 68.8 92.5 41.8 47.5 11.9

JS3C-Net [AAAI21] [107] 66.0 72.1 61.9 92.5 54.3 59.3 39.9

AF2S3Net [CVPR21] [108] 69.7 72.5 68.8 87.9 39.2 65.4 74.3

RPVNet [ICCV21] [109] 70.3 80.7 70.3 93.5 44.2 68.4 43.4

PVKD [CVPR22] [110] 71.4 77.5 70.9 92.4 53.5 67.9 50.5

KPConv [ICCV19] [25] 58.8 72.7 61.3 90.5 33.4 30.2 11.8

KPConv + Ours 61.0 ↑2.2 75.0 63.4 91.4 49.0 45.0 36.4

SPVNAS10.8M [ECCV20] [32] 62.3 73.8 63.2 90.9 50.9 40.6 21.8

SPVNAS10.8M + Ours 64.3 ↑2.0 73.9 64.0 91.4 48.0 48.9 23.2

Cylinder3D [CVPR21] [16] 67.8 75.5 65.1 91.0 50.8 67.6 36.0

Cylinder3D + Ours 70.4 ↑2.6 77.2 66.1 92.3 51.9 68.4 54.6

Table 2: Quantitative 3D segmentation results on S3DIS

[34] Area-5 (§4.2). For clarity, IoUs on 5 of 13 classes are

given (c1: wall, c2: column, c3: window, c4: door, c5: board).
Method mIoU(%) mAcc(%) c1(%) c2(%) c3(%) c4(%) c5(%)

HPEIN [ICCV19] [51] 61.9 68.3 81.4 23.3 65.3 40.0 65.6

PAT [CVPR19] [20] 60.1 70.8 72.3 41.5 85.1 38.2 61.3

PointWeb [CVPR19] [14] 60.3 66.6 79.4 21.1 59.7 34.8 64.9

MinkowskiNet [CVPR19] [6] 65.4 71.7 86.2 34.1 48.9 62.4 74.4

SCF-Net [CVPR21] [53] 63.8 - - - - - -

BAAF-Net [CVPR21] [111] 65.4 73.1 - - - - -

CGA-Net [CVPR21] [112] 68.6 - 83.0 25.3 59.6 71.0 69.5

PTV1+CBL [CVPR22] [113] 71.6 77.9 - - - - -

Stratified Trans. [CVPR22] [114] 72.0 78.1 - - - - -

PTV2 [NeurIPS22] [115] 72.6 78.0 - - - - -

KPConv [ICCV19] [25] 67.1 72.8 82.4 23.9 58.0 69.0 66.7

KPConv+ Ours 69.0 ↑1.9 76.2 ↑3.4 84.0 30.7 66.7 77.6 63.0

PTV1 [ICCV21] [26] 70.4 76.5 86.3 38.0 63.4 74.3 76.0

PTV1+ Ours 72.2 ↑1.8 79.6 ↑3.1 88.1 49.3 65.3 79.4 81.0

mentation networks by solid margins. Concretely, it yields

2.2%, 2.6%, and 2.0% mIoU gains over point-based KP-

Conv[25], voxel-based Cylinder3D[16], and SPVNAS [32],

respectively. Our algorithm also obtains consistent perfor-

mance improvements across most classes. These results

illusrate the wide potential benefit of our algorithm. More-

over, “Cylinder3D +Ours” reaches comparable results with

published competitors. This is particularly impressive con-

sidering the fact that the improvement is solely achieved

by our training scheme, without any network architectural

modification and inference speed delay.

Qualitative Result. As shown in the top row of Fig. 3,

our method can reduce errors over both small nature objects

(such as trunk) and widely distributed classes (like sidewalk).

4.2. 3D Segmentation on Static Indoor Point Clouds

Dataset. S3DIS [34] is a famous 3D indoor parsing dataset.

It contains 273M points collected from six areas and labeled

with 13 classes. Following [1, 25], we use Area-5 as test

scene to better test the generalization ability. We report two
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Figure 3: Error maps on SemanticKITTI [33] single-scan challenge val (top), and S3DIS [34] Area-5 (bottom). The

differences are illustrated by arrows.

Table 3: Quantitative 4D segmentation results on Se-

manticKITTI [33] multi-scan challenge test (§4.3). IoUs

on 6 of 25 classes are reported (c1: sidewalk, c2: moving car, c3:

moving truck, c4: bicycle, c5: motorcyclist, c6: traffic-sign).

Method mIoU(%) c1(%) c2(%) c3(%) c4(%) c5(%) c6(%)

TangentConv [CVPR18] [38] 34.1 64.0 40.3 1.1 2.0 0.0 31.2

DarkNet53 [ICCV19] [33] 41.6 75.3 61.5 14.1 30.4 0.0 31.2

TemporalLidarSeg [3DV20] [71] 47.0 75.8 68.2 2.1 47.7 0.0 60.4

SpSeqnet [CVPR20] [72] 43.1 73.9 53.2 41.2 24.0 0.0 48.7

KPConv [ICCV19] [25] 51.2 70.5 69.4 5.8 44.9 0.0 53.9

KPConv+ Ours 53.2 ↑2.0 75.2 75.2 4.1 67.2 9.9 64.6

Cylinder3D [CVPR21] [16] 52.5 74.5 74.9 0.0 67.6 0.2 61.4

Cylinder3D+ Ours 54.7 ↑2.2 76.9 81.7 11.9 55.9 3.0 68.0

metrics: mIoU and mean of class-wise accuracy (mAcc).

Quantitative Result. Table 2 summarizes the comparison

results on S3DIS, showing our training algorithm also works

well on large-scale challenging indoor point clouds. In par-

ticular, our algorithm brings impressive gains over KPConv,

i.e., 67.1%→69.0% and 72.8%→76.2%, in terms of mIoU

and mAcc. Notably, with PTV1 as the backbone, our ap-

proach attains mIoU/mAcc of 72.2%/79.6%, outperforming

PTV1+CBL (71.6%/77.9%).

Qualitative Result. As shown in the bottom row of Fig.3,

our method significantly reduces the errors of PTV1 [26] in

an indoor environment of S3DIS [34] Area-5.

4.3. 4D Segmentation on Urban Point Sequences
Dataset. SemanticKITTI [33] multi-scan challenge is devoted

to 4D point cloud segmentation. It involves six more classes

to distinguish between moving objects and stationary ones

for car, trunk, bicyclist, other-vehicle, person, and motor-
cyclist categories. mIoU is adopted as the evaluation metric.

Quantitative Result. Table 3 reports our comparison results

on SemanticKITTI [33] multi-scan challenge test. Our

algorithm, again, leads to improvements over backbones, i.e.,

2.0% and 2.2% mIoU gain compared with KPConv [25] and

Cylinder3D [16], respectively. This confirms our algorithm

Table 4: Quantitative 3D detection results on KITTI [37]

challenge val (§4.4).

Difficulty Method mAP(%) Car(%) Pedestrian(%) Cyclist(%)

Easy

Second [SENSORS18] [35] 75.25 88.61 56.55 80.59

Second + Ours 78.60 ↑3.35 89.13 58.50 88.16

PointPillar [CVPR19] [116] 74.76 86.46 57.75 80.06

PointPillar + Ours 76.82 ↑2.06 88.34 58.19 83.92

Moderate

Second [SENSORS18] [35] 66.25 78.62 52.98 67.16

Second + Ours 69.67 ↑3.42 82.97 55.64 70.39

PointPillar [CVPR19] [116] 64.08 77.28 52.29 62.68

PointPillar + Ours 66.07 ↑1.99 78.43 53.31 66.47

Hard

Second [SENSORS18] [35] 62.69 77.22 47.73 63.11

Second + Ours 65.36 ↑2.67 78.55 50.91 66.61

PointPillar [CVPR19] [116] 60.76 74.65 47.91 59.71

PointPillar + Ours 62.96 ↑2.20 77.14 49.15 62.61

is also applicable in point cloud sequences. Our algorithm

also obtains superior performance for vehicle categories

with moving patterns, such as moving car, moving truck,

moving other-vehicle, etc. We attribute this to our capacity of

capturing complex patterns and variations, which improves

the robustness in dynamic scenes.

4.4. 3D Detection on Static Urban Point Clouds

To fully reveal the power of our idea, we conduct addi-

tional experiments on 3D object detection.

Algorithmic Modification. To apply our algorithm to the 3D

object detection task and minimize the modification effort,

we view the bounding box annotations as a form of coarse

segmentation labels. For each labeled bounding box with

semantic class c∈ C, we simply treat all the points within

the bounding box as data examples of class c, which are

used in our clustering analysis based representation learning

(cf. Eqs.6-7). Note that there is no change to the base 3D

detection network, including the detection head.

Dataset. KITTI [37] is a standard benchmark for 3D object

detection. We split 3712 scans for train and 3769 scans

for val, with 3D bounding box annotations of vehicles,

pedestrians and cyclists. Detection outcomes are evaluated
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Table 5: Study of proposed training strategy on S3DIS [34] Area-5 and SemanticKITTI [33] multi-scanval set(§4.5).

JPPC (Eq.(6)) JPCC (Eq.(7)) S3DIS mIoU(%) S-KITTI mIoU(%) Training Speed (sec/epoch)

Baseline (w/o clustering analysis) 67.1 53.3 281.46

Point-Point Contrast � 68.0 54.4 310.20

Point-Center Contrast � 68.4 54.7 310.28

Point-Point + Point-Center Contrast � � 69.0 55.7 311.71

Table 6: Curve of CE Loss on Semantic-

KITTI [33] single-scan challengetrain
(left) andval (right).

0 200 6004000 200 600400
epoch

800 800
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C
E 
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Table 7: Parameter studies on S3DIS [34] Area-5 and SemanticKITTI [33]

(S-KITTI) multi-scanval set (§4.5). (mIoU(%) is reported.)

# Cluster S3DIS S-KITTI

M = 1 67.5 53.7

M = 10 68.0 54.5

M = 20 68.5 55.2

M = 40 69.0 55.7

M = 60 68.9 55.2

M = 80 68.7 55.5

Memory Capacity S3DIS S-KITTI

Mini-Batch

(w/o memory)
68.0 54.4

5 × #scene 68.6 55.0

10 × #scene 69.0 55.7

15 × #scene 68.8 55.7

20 × #scene 68.7 55.6

Coefficient μ S3DIS S-KITTI

μ = 0 67.7 53.6

μ = 0.9 68.0 54.0

μ = 0.99 68.5 54.7

μ = 0.999 68.6 55.3

μ = 0.9999 69.0 55.7

μ = 0.99999 68.8 55.5

(a) Per-class cluster Num (b) Per-cluster memory (c) Momentum coefficient

under three regimes: easy, moderate, hard, defined accord-

ing to occlusion and truncation levels of objects. Average

precisions are reported with IoU thresholds of 0.7, 0.5, and

0.5, respectively for car, pedestrian, and cyclist classes.

Base Detection Networks. We apply our algorithm to two

famous 3D detectors, i.e., Second [35] and PointPillar [36].

Quantitative Result. Table 4 reports the experimental re-

sults on KITTI val. We can observe that, for both Second

and PointPillar, our training algorithm brings notable per-

formance gains, across different classes and under different

regimes. This proves the high versatility of our algorithm.

4.5. Diagnostic Experiment
To test the efficacy of our core algorithm designs, we con-

duct a series of ablative studies on S3DIS[34] Area-5 and

SemanticKITTI [33] multi-scan challenge val. We adopt

KPConv[25]asourbase segmentationnetwork.The results are

reported without post-processing or test-time augmentation.

Clustering Analysis based Network Training. We first test

the efficacy of our core idea of clustering analysis based

point representation learning. As shown in Table5, the base-

line model, trained in the standard strategy, gains 67.1% and

53.3% mIoU, on S3DIS and SemanticKITTI, respectively.

Additionally considering point-point contrast JPPC (Eq.(6))

or point-center contrast JPCC (Eq.(7)) can lead to better per-

formance. However, combining these two training objectives

yields the best results, i.e., 69.0% and 55.7%. These results

verify that mining latent data structures can benefit detailed

analysis of point cloud. Table 5 also gives comparisons for

training speed. Our algorithm only brings negligible delay

(∼30 s for each epoch), confirming its high efficiency.

Per-Class Cluster Number M . We next investigate the im-

pact of the cluster number M of each class. The results are

summarized in Table7a. M=1 means that directly treating

each class as a single cluster. This baseline obtains 67.5%

and 53.7% mIoU, on S3DIS and SemanticKITTI, respec-

tively. After clustering based fine-grained pattern mining,

we observe consistent improvements, e.g., 67.5%→69.0%

on S3DIS when M =40. This verifies that i) there indeed

exist some latent patterns in point clouds, and ii) these latent

patterns are valuable for point cloud parsing. When M>40,

further increasing M gives marginal performance gains even

worse results. We speculate this is because the model is

distracted by some trivial patterns due to over-clustering.

Memory Bank. Then we study the influence of our memory

bank in Table 7b. “Mini-Batch (w/o memory)” means that

only computing contrast within each mini-batch, without the

memory; it earns 68.0% and 54.4% mIoU, on S3DIS and

SemanticKITTI, respectively. We then provision this base-

line with class-wise memory bank with different capacities.

When storing 10 point features per scene for each cluster,

the best performance is achieved, i.e., 69.0% and 55.7%.

Momentum Coefficient μ. Table 7c gives the performance

with regard to the momentum coefficientμ (cf. Eq. 5), which

controls the evolution speed of cluster centers. The model

performs better with a relatively large coefficient (i.e., μ=
0.9999), showing that slow update is more favored. More-

over, at the extreme case of μ=0, the performance drops con-

siderably, evidencing that simply approximating the cluster

centers with per-batch cluster means is not a sound solution.

5. Conclusion and Discussion
We devise a clustering based supervised training scheme

for point cloud analysis, which discovers and respects la-

tent data structures during point representation learning.

Rather than simply minimizing the point recognition error,

we iterativelyperform1)unsupervised,within-classclustering

based subclass pattern mining, and 2) clustering assignment

based point embedding space optimization. Our algorithm is

general and shows outstanding performance over various

tasks and datasets. It also brings some new challenges, inc-

luding the extension in instance-aware segmentation setting,

and automatic estimation of the cluster number.
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