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Abstract

Federated learning (FL) is a distributed learning
paradigm that enables multiple clients to learn a powerful
global model by aggregating local training. However, the
performance of the global model is often hampered by non-
i.i.d. distribution among the clients, requiring extensive
efforts to mitigate inter-client data heterogeneity. Going
beyond inter-client data heterogeneity, we note that intra-
client heterogeneity can also be observed on complex real-
world data and seriously deteriorate FL performance. In
this paper, we present a novel FL algorithm, i.e., FedIns, to
handle intra-client data heterogeneity by enabling instance-
adaptive inference in the FL framework. Instead of huge
instance-adaptive models, we resort to a parameter-efficient
fine-tuning method, i.e., scale and shift deep features (SSF),
upon a pre-trained model. Specifically, we first train an
SSF pool for each client, and aggregate these SSF pools
on the server side, thus still maintaining a low communica-
tion cost. To enable instance-adaptive inference, for a given
instance, we dynamically find the best-matched SSF subsets
from the pool and aggregate them to generate an adaptive
SSF specified for the instance, thereby reducing the intra-
client as well as the inter-client heterogeneity. Extensive
experiments show that our FedIns outperforms state-of-the-
art FL algorithms, e.g., a 6.64% improvement against the
top-performing method with less than 15% communication
cost on Tiny-ImageNet.

1. Introduction
The availability of large-scale data dramatically pro-

motes the development of deep learning models. How-
ever, as these abundant data tend to be distributed across
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Figure 1: Illustration of inter- and intra-client data heterogeneity
with t-SNE visualizations (see (a) and (b)) on DomainNet and their
effect on accuracy of different FL algorithms (see (c) and (d)).
Please refer to the Suppl. for details on the settings to increase
data heterogeneity. One can see that both inter- and intra-client
data heterogeneity degrades FL performance. While FedBN [27]
is able to alleviate the effect of inter-client data heterogeneity, both
FedAvg [30] and FedBN [27] are limited in handling intra-client
data heterogeneity.

many devices due to logistical and privacy concerns, de-
centralized training is often required to train the deep
neural network [1]. As a promising distributed learning
paradigm, federated learning (FL) can train global mod-
els in a distributed manner without sharing local private
data [25, 30, 29]. During this process, each client first trains
a local model on their private data and then sends the model
parameters to the server for aggregation and distribution
back to the client [30].

However, each client collects the local data in its own
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manner (e.g., different devices, different ways). Conse-
quently, the data distribution among different clients is het-
erogeneous (see Fig. 1 (a)), resulting in serious perfor-
mance degradation of conventional algorithms [4] (e.g., Fe-
dAvg [30]). Many FL algorithms have been suggested to
solve the problem of inter-client data heterogeneity for mak-
ing them more robust in the non-i.i.d. setting [25, 16, 27, 24,
9] (see Fig. 1 (c)).

Actually, even for an individual client, the data may be
collected by different devices [7], under different environ-
mental conditions, etc. Therefore, intra-client data hetero-
geneity can also be observed on complex real-world data [3]
(see Fig. 1 (b)), and give rise to serious degradation of
FL performance (see Fig. 1 (d)). A naive solution is to
build a specific model for each instance [42]. However,
such a scheme results in significant challenges in the train-
ing, storage and communication of the instance-adaptive
models. Instead, we resort to the parameter-efficient fine-
tuning, e.g., prompt tuning [14], of pre-trained models. As
for prompt tuning, we can simply freeze the backbone of
pretrained models, only learn and communicate a small
number of learnable prompts between the server and the
client [6, 36, 35, 14]. Nonetheless, instance-wise model-
ing remains an unstudied issue for parameter-efficient fine-
tuning. Additionally, in comparison to the original pre-
trained model, prompt tuning also introduces additional pa-
rameters and increases the computation cost in the inference
stage [28].

To handle the intra-client data heterogeneity, instead of
instance-adaptive models, this paper resorts to instance-
adaptive inference, and presents a novel FL algorithm,
i.e., FedIns, built upon pre-trained models. For parameter-
effective fine-tuning, following [28], we scale and shift the
deep features (SSF) to fine-tune the pre-trained model in the
local training phase and merge them into the original pre-
trained model weights by reparameterization in the infer-
ence phase. To enable instance-adaptive inference, we train
a SSF pool for each client and aggregate them on the server,
and thus low storage and communication costs can still be
maintained. For example, compared with FedAvg [30],
FedIns only has less than 15% communication costs. Our
federated SSF pool is aggregated from multiple groups of
local SSF, which implicitly add client-relevant knowledge
to the federated SSF pool and dynamically guide the client
to handle the corresponding response in an instance-wise
fashion. During inference, for a given instance, we dynam-
ically find the best-matched SSF subsets from the pool and
aggregate them to generate an adaptive SSF specified for
the instance. As such, the model can reduce both inter- and
intra-client heterogeneity, achieving a 6.64% gain against
FedAvg on CIFAR-100.

In a nutshell, our contributions are three-fold:

• A novel FL algorithm, i.e., FedIns, is presented to han-

dle intra-client data heterogeneity, which has been over-
looked by the existing FL literature.

• Federated SSF is proposed and extended by allowing each
client to have an SSF pool, and instance-adaptive infer-
ence is fulfilled by dynamically finding and aggregating
the best matched SSF subsets for each test instance.

• Extensive experimental results show FL performance can
be effectively improved by alleviating the intra- and inter-
client data heterogeneity.

2. Related Work
Data Heterogeneity in FL. Generally, federated learning
algorithm aims to obtain an aggregated model that mini-
mizes training losses for all clients. The classic FL algo-
rithm, FedAvg [30] simply sends the local model to the
server for aggregation to learn a global model. However, as
each device generates its own local data, data heterogeneity
across different clients occurs, making FedAvg becomes a
sub-optimal solution for FL [26, 40, 20, 8].

Existing FL methods usually alleviate this problem in
two aspects. One is to improve local training. For exam-
ple, FedProx adds a proximal term to the objective func-
tion of the local model to tackle heterogeneity [25]. Karim-
ireddy et al. used control variates to correct the client-drift
caused by data heterogeneity [16]. Li et al. kept all the
batch normalization in the local to alleviate the heterogene-
ity of local data across clients [27]. Inspired by contrastive
learning, Li et al. [24] corrected the local clients by com-
puting similarity between model representations to handle
the heterogeneity issue. Gao et al. used an auxiliary local
drift variable to bridge the gap between the local and the
global model parameters, thereby alleviating the data het-
erogeneity [9]. Mendieta et al. alleviated data heterogeneity
by promoting local learning generality rather than proximal
restriction [31]. The non-i.i.d. problem caused by data het-
erogeneity can also be alleviated by addressing catastrophic
forgetting from the server to the client, where each local and
global communication is regarded as a new task [39, 19].

Besides improving local training, another is to improve
the server aggregation process for alleviating data hetero-
geneity. For example, Yurochkin et al. replaced classi-
cal aggregation schemes by matching neuron aggregation
in local models based on a Bayesian non-parametric ap-
proach [41]. Analogously, Wang et al. created a normal-
ized averaging method as an alternative to the average up-
date mechanism [38]. To sum up, to handle the data het-
erogeneity across clients, existing methods either limit the
impact of local updates on the server (e.g., by regularizing
and personalizing the design of clients to correct the update
direction of locals [25, 16, 27, 24, 9, 31]), or modify the
aggregation scheme [41, 38].

However, in many real-world applications, local data in
each client may be collected by different devices and from
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different environments. Consequently, there may be multi-
ple mixed unknown sub-domains within one client [3], i.e.,
intra-client data heterogeneity. As discussed in Sec. 1, both
intra-client and inter-client data heterogeneity will lead to
the performance degradation of FL. Nonetheless, existing
methods mainly focus on inter-client data heterogeneity,
leaving intra-client heterogeneity remain an uninvestigated
issue. Given this, this work presents a novel FedIns algo-
rithm to handle intra-client data heterogeneity, which can
also be readily deployed to alleviate inter-client data het-
erogeneity.
Parameter-efficient Fine-tuning. In the recent few years,
we have witnessed the promising performance of pre-
training models in many downstream tasks. Accordingly,
in the field of FL [32, 2], pre-trained models can also serve
as a strong baseline. However, the number of parameters of
pre-trained models is usually very large [37, 11], and sim-
ply fine-tuning the full model undoubtedly yields a huge
amount of communication cost in FL algorithms. There-
fore, some works have attempted to explore large-scale pre-
training models in a parameter-efficient fine-tuning man-
ner [17]. In this way, the backbone network is frozen dur-
ing training, and only a small number of parameters can
be learned or tuned to “understand” downstream tasks. In
particular, prompt [21, 14, 22], adapter [13, 12, 33], and
SSF [28] have been suggested to leverage the representa-
tion abilities of large-scale pre-training models to achieve
good performance on downstream tasks by fine-tuning a
few trainable parameters.

Among these parameter-efficient fine-tuning methods,
most prompt and adapter-based methods [13, 15] introduce
additional parameters and computational costs in the infer-
ence stage. In addition, prompt tuning is sensitive to the
number of prompts; e.g., different tasks need to adopt dif-
ferent numbers of prompts, and an inappropriate number
will reduce the accuracy or increase the redundancy of the
calculation. In contrast, SSF [28] does not bring extra pa-
rameters and FLOPs during the inference phase since it only
adds learnable parameters during the training phase and
merges them into the original pre-trained model weights via
reparameterization after training. Despite these progress, it
remains not studied for the effectiveness of SSF in a dis-
tributed framework with intra- and inter-client data hetero-
geneity. Therefore, different from the above centralized
works, in this paper we focus on exploring how to make SSF
work for decentralized FL frameworks to effectively handle
data heterogeneity.

3. Methodology

3.1. Federated Learning

As growing privacy concerns arise, federated learning
has received intensive recent interest by training and de-

ploying deep neural network models in a distributed man-
ner [30]. Suppose there are K local clients, where each of
them has their local dataset Dk. The distributed paradigm
FL aims to learn a global model w over the whole training
data D =

{
D1,D2, . . . ,DK

}
using a central server with-

out exchanging local private data. Formally, such a process
can be expressed as

argmin
w
L(w) =

K∑
k=1

|Dk|
|D|
Lk(w), (1)

where |D| denotes the number of samples in D, and w de-
notes the model parameters. Lk(w) is the empirical loss of
client k which can be expressed as

Lk(w) = E(x,y)∈Dkℓk (x;w) , (2)

where ℓk denotes the local loss term, e.g., cross-entropy
loss, and x denote a sample of client k.

3.2. Learning Federated SSF

In federated learning, the local data Dk of a client may
not be sufficient to train a large scale deep network. Pre-
trained models can thus be introduced to compensate for
the deficiency of local data [32, 2]. However, pre-trained
model usually has a large number of model parameters. Di-
rect fine-tuning the full model consequently gives rise to
significant communication costs between the server and the
client. In this work, we adopt a recent parameter-efficient
fine-tuning paradigm, i.e., SSF [28], which trains only a
small number of learnable parameters and brings no infer-
ence overhead by reparameterizing them into the original
pre-trained model weights. In the following, we will in-
troduce federated SSF, which incorporates SSF into the FL
framework.

In SSF, given a pre-trained model with parameters θ, we
remodulate features by insert SSF with the scale γ and shift
β factors after each operation (OP) [28], i.e., multi-head
self-attention (MSA), MLP and layer normalization (LN),
etc. During the fine-tuning phase, the model parameters of
SSF can be represented as w = {γ,β,h,θ}, where h is
the parameters of the classification head. In particular, the
pre-trained weights are kept frozen, and only the SSF and
classification head are kept updated. Once the training is ac-
complished, {γ,β,h} can then be merged into θ to obtain
the updated model parameter θ′.

As shown in Fig. 2 (b), when incorporating SSF into FL,
we only require to update the client-specific SSF and clas-
sification head, i.e., δ = {γ,β,h}. Thus, Eq. (1) can be
modified as,

δg = arg min
δ
L(δ) =

K∑
k=1

|Dk|
|D|
Lk(δ). (3)

Federated SSF only requires a small number of pa-
rameters δk of local clients to be updated and commu-

23289



(a) Initialization the local model

Backbone

Backbone

❄

🔥

Initialize

Local
data

(Aggregation)

SSF pool

🔍

Best-matchDatabase

…

🔥 🔥

…
🔍🔥

SS
F

O
P 1

❄

O
P 2

❄

🔥
SS
F

O
P N

❄

🔥
SS
F …

He
ad
🔥

…

🔥
SS
F

O
P 1

❄

O
P 2

❄

🔥
SS
F

O
P N

❄

🔥
SS
F …

He
ad
🔥 SSF

(Aggregation)

…

…

…

Server

Server

Trainable

Frozen

Client

Server

Upload

Download

🔥

❄

(b) Federated SSF

(c) FedIns

…

🔥
SS
F

O
P 1

❄

O
P 2

❄

🔥
SS
F

O
P N

❄

🔥
SS
F

He
ad
🔥

…
🔍🔥

SS
F

O
P 1

❄
O
P 2

❄

🔥
SS
F

O
P N

❄

🔥
SS
F

Local
data

…

He
ad
🔥

Massive data

Pre-trained model

SSF
Pool

SSF Pools

…

δz

δz+1
g

FIz

FIz+1
g

Figure 2: Overall pipeline of our proposed FedIns. (a) Pre-train the backbone on the massive data offline and fine-tune a small number of
learnable parameters on local data in a parameter-efficient manner. (b) For federated SSF, we train an SSF for each client and aggregate the
SSFs from all clients to obtain the global SSF (see Sec. 3.2). (c) As for FedIns, we train a federated SSF pool for each client and aggregate
the SSF pools from all clients to obtain the global SSF pool (see Sec. 3.3).

nicated with the server, and thus is both parameter- and
communication-efficient for FL.
Local Update Step: Assume there are Z rounds of com-
munication with T local updates per round. The clients are
optimized using the following update rules with a learning
rate of ηk for each communication round z = {1, 2, ..., Z}:

δz,t+1
k ← δz,tk − ηk∇ℓk

(
xk; δz,tk

)
, (4)

where t denotes the t-th update of the local clients.
Server Update Step: The server performs aggregation ev-
ery round by receiving the updated parameters of all par-
ticipated clients after the local updates within each round.
Formally, we have

δz+1
g ←

K∑
k=1

|Dk|
|D|

δzk, (5)

where δz+1
g denotes the global updated parameters of round

z + 1. Then, we can obtain a robust global model param-
eterized by δg after Z rounds of communication without
disclosing any local private data.

When the training is accomplished, we can re-
parameterize the SSF by merging it into the original param-
eter space (i.e., model weight θ). As a result, federated SSF
is not only efficient in terms of communication costs, but
also does not introduce any extra parameters during the in-
ference phase.

3.3. FedIns

In this subsection, we further present FedIns for handling
intra-client data heterogeneity. In many complex real-world
scenarios, the data in a local client may contain multiple un-
known mixed sub-domains [3]. Despite its merit on com-
munication cost, federated SSF is still limited in alleviat-
ing the intra-client data heterogeneity issue. To address this
issue, we extend federated SSF to SSF pool for enabling
instance-adaptive inference in the FL framework, resulting
in our FedIns algorithm. As shown in Fig. 2 (c), we train an
SSF pool for each client, and aggregate them into the fed-
erated SSF pool on the server. For a given instance, we
dynamically find the best-matched SSF subsets from the
pool and aggregate them to generate an adaptive SSF for
instance-adaptive inference. In the following, we will intro-
duce FedIns in more detail.

To extend federated SSF, we allow each client have an
SSF pool ∆k =

{
δ1k, δ

2
k, · · · , δMk

}
of a set of δmk s, where

M denotes the size of pool. Furthermore, we introduce a
pool of learnable Keys Kk =

{
k1
k,k

2
k, · · · ,kM

k

}
corre-

sponding to ∆k. Taking both ∆k and Kk into account,
the learnable parameters of FedIns of each client can be ex-
pressed as,

FIk = {Kk,∆k} . (6)

Then, the local update in FedIns can be written as,

FIz,t+1
k ← FIz,tk − ηk∇ℓk

(
xk;FIz,tk

)
. (7)
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Figure 3: Illustration of instance-adaptive inference. For a given
instance, we use the pre-trained model to generate a query, and
then dynamically select the C best-matched SSFs, which are
then aggregated to form an instance-adaptive SSF for enabling
instance-adaptive inference.

After T local updates, the server update can be expressed
as,

FIz+1
g ←

K∑
k=1

|Dk|
|D|

FIzk. (8)

After Z rounds of communication, we can obtain the global
model of FedIns, which is also parameterized by an SSF
pool ∆g and a set of keys Kg . The detailed FedIns al-
gorithm is given in Algorithm 1. In contrast to federated
SSF, during the inference phase, FedIns allow to dynami-
cally find the best matched SSF subsets from the SSF pool
for a given instance, thereby making instance-adaptive in-
ference feasible.

3.4. Instance-Adaptive Inference

When the training of FedIns is accomplished, the learned
federated SSF pool ∆g and the corresponding global Keys
Kg will be distributed to each client. As shown in Fig. 3, to
enable instance-adaptive inference using FedIns, we resort
to generating an instance-adaptive SSF from ∆g and Kg

during the inference phase.
To this end, for a given instance x of a client, we first

use the pre-trained model to generate a query qk(x) which
has the same dimension as the keys. Based on the cosine
similarity between qk(x) and each keys in Kg , we select
the C best-matched SSFs, i.e.,

{
δm1
g , δm2

g , · · · , δmC
g

}
from

∆g corresponding to the C most similar keys. The instance-
adaptive SSF of x can then be given by,

δ(x) =

C∑
c=1

1

C
δmc
g . (9)

We note that δ(x) is determined by x and is instance-
adaptive. Thus, instance-adaptive inference can be ful-

Algorithm 1: FedIns
Input: Local datasets of K clients:

D1,D2, . . . ,DK , local updates T ,
communication rounds Z, pre-trained model
parameters θ, learnable parameters
FIk = {Kk,∆k}, learning rate η,
hyperparameter c, and M ;

Output: The final global model w;
1 // ServerExecution:
2 Initialize global SSF pool ∆k =

{
δ1k, δ

2
k, · · · , δMk

}
with Keys of Kk =

{
k1
k,k

2
k, · · · ,kM

k

}
;

3 for each communication round z ∈ {1, 2, ..., Z} do
4 for each client k ∈ {1, 2, ...K} in parallel do
5 FIzk ← FIzg;
6 Local updating with regard to each input

instance x:
FIz,t+1

g ← LocalUpdate(k,x,FIz,tg );
7 end
8 FIz+1

g ←
∑K

k=1
|Dk|
|D| FI

z
k;

9 end
10 return FIz+1

g

11 // LocalUpdate (k, x, FIz,tk ):
12 for each local epoch t ∈ {1, 2, ...T} do
13 FIz,t+1

k ← FIz,tk − ηk∇ℓk
(
xk;FIz,tk

)
;

14 end
15 return FIz,t+1

k

filled by merging δ(x) into θ to obtain the instance-adaptive
model parameter θ′(x).

4. Experiments

4.1. Experimental Setup

Implementation Details. We implement our method with
Pytorch on one NVIDIA RTX 3090Ti GPU. During the fed-
erated training, all participants adopt the same hyperparam-
eter settings, e.g., M = 25, C = 3. Both collaborative and
local updating use the stochastic gradient descent (SGD)
optimizer with a batch size of 32 and a learning rate of 0.01.

Datasets. Experiments are conducted on two scenar-
ios [27, 23], including Label Shift: CIFAR-100 [18],
and Tiny-ImageNet1, and Feature Shift: Domain-
Net [34]. To simulate the FL scenario, we use Dirichlet dis-
tribution to split the training data of CIFAR-100 and Tiny-
ImageNet into multiple non-i.i.d. clients, respectively, and
evaluate the performance on the test data [24]. DomainNet
consists of data from six different domains with the same
class labels. Following [27], we deploy the data from each

1https://www.kaggle.com/c/tiny-imagenet.
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Table 1: Accuracy % of state-of-the-art FL methods on two scenarios, including Label Shift: CIFAR-100 [18] and Tiny-ImageNet,
and Feature Shift: DomainNet [34], where # Com.cost is the communication cost. w.Full indicates that the local model of a FL
algorithm is fully fine-tuned. The arrow ↑ and ↓ indicate improvements and decrements compared with FedAvg (w.Full), respectively.
Detailed analyses are provided in Sec. 4.2.

Method # Com.cost DomainNet CIFAR-100 Tiny-ImageNet

SOLO − 62.18(17.84) ↓ 33.81(47.41) ↓ 17.17(61.85) ↓

FedAvg2017 (w.Full) [30] 85.80 M 80.02(0.00) ↓ 81.22(0.00) ↓ 79.02(0.00) ↓
FedProx2020 [25] 85.80 M 78.73(1.29) ↓ 81.56(0.34) ↑ 79.57(0.55) ↑
SCAFFOLD2020 [16] 85.80 M 80.31(0.29) ↑ 78.02(3.20) ↓ 76.76(2.26) ↓
FedBN2021 [27] 85.76 M 80.07(0.05) ↑ 81.24(0.02) ↑ 79.82(0.80) ↑
MOON2021 [24] 85.80 M 81.65(1.64) ↑ 81.92(0.70) ↑ 81.38(2.18) ↑
FedDC2022 [9] 85.80 M 79.92(0.10) ↓ 78.44(2.78) ↓ 79.81(0.79) ↑
FedIns (w. SSF Pool) 5.35 M 82.34(2.32) ↑ 84.11(2.89) ↑ 86.29(7.27) ↑
FedIns (Ours) 5.35 M 83.12(3.10) ↑ 84.83(3.61) ↑ 86.79(7.77) ↑

domain as a specific client. To demonstrate the effective-
ness of our proposed approach, each client in our experi-
ments has only a small number of images, i.e., Domain-
Net is divided into six clients with only 26 images for each
of them; CIFAR-100 is divided into five clients with 123,
209, 168, 222, and 278 images, respectively; and Tiny-
ImageNet is divided into five clients with 322, 360, 343,
466, and 509 images, respectively.
Baselines. We compare our method, FedIns, with var-
ious state-of-the-art FL algorithms, including: (1) Fed-
Prox [25], which alleviates the data heterogeneity by ap-
plying a proximal term to the local objective function; (2)
SCAFFOLD [16], which corrects the client-drift by a series
of control variates; (3) MOON [24], which corrects the lo-
cal update by computing the similarity between model rep-
resentations; (4) FedBN [27], which alleviates the client-
shift by using batch normalization on each local client; (5)
FedDC [9], which bridges the gap between the local and
global model parameter by an auxiliary local drift variable
and the classical FL algorithm; and (6) FedAvg [30], which
trains a global model by averaging parameters from all the
participating clients. In comparison, we also add (7) SOLO,
where participants train a model on each client and their
private data without FL. For a fair comparison, we use ViT-
B/16 [5] pre-trained on ImageNet-21K as the backbone of
all the methods in our experiments.

4.2. Comparison with State-of-the-arts

To assess the effectiveness of our method, FedIns, we
compared it to the above state-of-the-art FL algorithms,
which aim to alleviate the data heterogeneity. For a fair
comparison, all methods are retrained using the same model
with their best hyperparameters. Specifically, for MOON,
the hyperparameter of µ is set to 1. For FedProx [25],
the hyperparameter to control the weight of its proximal
term is set to 0.001. For FedDC, we set the hyperpa-
rameter of α to 0.01. Here, all the competing methods
are trained with 300 communication rounds and 10 local

epochs for each round. As the results shown in Table 1,
our FedIns consistently outperform baselines in all settings,
achieving state-of-the-art results in most cases. In par-
ticular, on DomainNet, CIFAR-100, and Tiny-ImageNet
datasets, our method improves the accuracy of FedAvg from
80.02%, 81.22%, and 79.02% to 83.12%, 84.83%, and
86.79%, respectively. These results indicate the robustness
of our method in the two scenarios, i.e., Label Shift
and Feature Shift. The FedAvg (w.Full) [30] is
prone to overfitting, even it uses the pre-trained model lo-
cally when local data is limited. However, the parameter-
efficient method of freezing the backbone network is con-
sistent with the mechanism of personalized FL which is also
an effective way to improve FL performance. More im-
portantly, the number of training parameters and commu-
nication cost of our method are only 15% of those of Fe-
dAvg (w.Full) [30]. It is worth noting that FedProx [25]
and SCAFFOLD [16] perform worse than FedAvg [30], i.e.,
DomainNet: 80.02% → 78.73% and CIFAR-100: 81.22%
→ 78.02%. This is primarily due to the fact that correcting
local updates through proximal terms and control variates
will result in some deviations when there are only a few
training datasets on the local clients. Differently, FedDC
dynamically bridges the gap between the local model and
the global model in the parameter aggregation stage, mak-
ing the global model able to alleviate the data heterogene-
ity [9]. Nonetheless, even compared with FedDC [9], which
is the latest work aiming to address the statistical hetero-
geneity, our method still achieves a 8.75% improvement on
Tiny-ImageNet, (i.e., 79.81%→ 86.79%).

In contrast, the results of SOLO are lower than those
of other FL algorithms, although it is also fine-tuned on
a pre-trained model, which demonstrates the benefits of
FL. These classical FL algorithms only consider the inter-
client data heterogeneity, ignoring the intra-client data het-
erogeneity, which will also degrade the FL performance.
This finding confirms our core idea that the performance
of FL algorithms can be improved by simultaneously re-
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Figure 4: Accuracy comparison of different state-of-the-art FL algorithms in terms of different communication rounds on two scenarios,
including Label Shift: CIFAR-100 [18] and Tiny-ImageNet, and Feature Shift: DomainNet [34] datasets.

Table 2: Ablation studies with regard to the key components of FedIns on the three datasets, where #New.Param. represents the new
introduced parameters of each method, ↓ indicates decrements compared with our full model SSF Pool (Ours). Detailed analyses are
provided in Sec.4.5.

Variation Prompt SSF Pool #New.Param. DomainNet CIFAR-100 Tiny-ImageNet

Prompt ! − − 0.10 M 79.03(4.09) ↓ 80.25(4.58) ↓ 81.02(5.77) ↓

Prompt Pool ! − ! 2.32 M 80.17(2.95) ↓ 81.39(3.44) ↓ 81.98(4.81) ↓

SSF − ! − 0.00 M 80.75(2.37) ↓ 83.81(1.02) ↓ 84.32(2.47) ↓

SSF Pool (Ours) − ! ! 5.16 M 83.12(0.00) ↓ 84.83(0.00) ↓ 86.79(0.00) ↓

lieving the inter- and intra-client data heterogeneity. In the
next section, we analyze the communication efficiency of
FedIns and the influence of FedIns on inter-/intra-client data
heterogeneity and local epoch.

4.3. Communication Efficiency Analysis

Our primary goal is to investigate how to efficiently
alleviate inter- and intra-client heterogeneity and make
instance-adaptive models feasible for FL, leveraging FL
to perform well with less local data, a smaller number of
parameters, and lower communication costs. Therefore,
we evaluate the communication efficiency of the proposed
method in terms of communication cost, number of param-
eters, and different numbers of communication rounds. As
shown in Table 1, FedIns only requires 5.35 M of commu-
nication, which is 15% of the others. Similarly, the number
of learnable parameters of FedIns is only 5.35 M. There-
fore, our method has high efficiency in both local client
updates and server communication. On the contrary, al-
though the classical federated algorithms MOON [24] and
FedBNs [27] can also achieve good accuracy, they require
a large amount of local computation and incur high com-
munication costs. In Fig. 4, we compare the accuracy of all
methods under different communication rounds to demon-
strate the superior communication efficiency of our method.
We note that for all competing methods, the local epoch of
each method is fixed at 10. As can be seen from this figure,
FedIns reached stability in the 10-th round, while the other
methods needed to reach stability after 20 rounds. This in-
dicates that our FedIns dynamically guides the local model

to alleviate the intra-client data heterogeneity, enabling the
instance-adaptive model feasible in FL.

4.4. Effect of Statistical Heterogeneity

As we mentioned before, our proposed method can im-
prove the performance of FL algorithms by alleviating both
inter- and intra-client data heterogeneity. Therefore, here
we explore whether the proposed method remains effec-
tive as inter- and intra-client data heterogeneity increases.
First, we examine the influence of inter-client data hetero-
geneity on our algorithm by changing the concentration pa-
rameter β of the Dirichlet distribution. The smaller β val-
ues, the higher inter-client data heterogeneity [24]. Fig. 5
(a) shows the classification accuracies of β values vary
in {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. As can be seen
from the figure, the classification accuracies of all the FL
algorithms increase with the increasing β value. FedIns,
on the other hand, consistently has the highest classification
accuracy and is least affected by β. However, with the in-
crease in inter-client data heterogeneity, the performance of
FedAvg [30] will rapidly decline. On the contrary, FedIns
is least affected by heterogeneity and still holds an accuracy
of 85.13% when β = 0.1. Then, we fix β = 0.2, and ran-
domly convert some local images to other styles to control
the intra-client data heterogeneity [10].

Similarly, the bigger γ values, the higher intra-client data
heterogeneity. Fig. 5 (b) shows the classification accuracies
of γ values vary in {2, 4, 6, ..., 20}. Similar to Fig. 5 (a),
the classification accuracy scores of all the FL algorithms
decrease with the increasing γ value. These baseline meth-
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Figure 5: Accuracy comparison of different state-of-the-art
FL algorithms in terms of various (a) inter-client heterogeneity
and (b) intra-client heterogeneity on Tiny-ImageNet, where the
smaller β values, the higher inter-client heterogeneity; the larger
γ values, the higher intra-client heterogeneity.

ods, in particular, show the most marked downward trend.
Nonetheless, when γ = 20, our proposed method only de-
creases the accuracy from 75.63% to 64.15%. In contrast,
the classical FL algorithm FedBN, which aims to solve the
data heterogeneity problem, decreases the accuracy from
68.53% to 31.69% when γ = 20.

4.5. Ablation Study

Effectiveness of Core Designs. We first analyze the key
components of FedIns on three datasets to evaluate the ef-
fectiveness of our core designs. The evaluated compo-
nents include SSF pool in our model, and SSF, which is the
parameter-efficient mechanism in our model. To this end,
we built four derived ablation models, where Prompt repre-
sents that the SSF of our method is replaced by the sim-
ilar parameter-efficient mechanism prompts [14], Prompt
Pool represents employing the prompt pool mechanism
on Prompt, SSF indicates that the FedIns model removes
the SSF pool mechanism, and only retains the parameter-
efficient mechanism of SSF in the federated framework,
and SSF Pool represents our FedIns that preserves the full
components. Following [14], we add the prompt embed-
dings with a size of 10 × 12 × 768. Table 2 summarizes
the classification accuracy of all ablation models. As com-
pared with Prompt, we observed that SSF improves the per-
formance from 81.02% to 84.32% on the Tiny-ImageNet
dataset, indicating that SSF can provide better performance
than prompt since prompt is often sensitive to data and tasks
and needs to be carefully designed for each client. Addi-
tionally, SSF achieves zero overhead by reparameterizing
them into the original pre-trained model weights at the in-
ference stage, while prompt-based methods introduced ad-
ditional parameters, i.e., Prompt with 0.10 M and Prompt
Pool with 2.32 M parameters. This supports our design of
using SSF to fine-tune the local model and communicate
with the server. SSF Pool (Ours) equipped with all com-
ponents, produces the best classification accuracies, im-
proving the results from 81.02% to 86.79% on the Tiny-
ImageNet dataset. In general, our core designs can help

Pool Size Best-matched Number

Ac
c.
%

Ac
c.
%

(a) (b)M c

Figure 6: Ablation studies versus (a) Pool size analysis and (b)
Best-matched number analysis on DomainNet, CIFAR-100, and
Tiny-ImageNet datasets.

to alleviate federated data heterogeneity and enhancing the
performance of FL algorithms.

Pool Size Analysis. Here, we focus on analyzing the effect
of the pool size on model effectiveness. We can freely se-
lect the size with the greatest performance even though the
number of network parameters increases with pool size be-
cause the number of parameters for SSF is small, i.e., M
= 1 only requires 0.20 M parameters. Additionally, these
parameters can be incorporated into the original pre-trained
weights by model reparameterization at the inference stage,
thereby avoiding additional parameters for the downstream
tasks. We record the performance of different pool sizes
on the three datasets in Fig. 6 (a). It can be seen from the
figure that as the pool size increases, the performance of
FedIns on the three datasets will improve. When M = 25,
our method yields the best classification performance while
only requiring 5.35 M parameters. When M is greater than
25, the performance degrades due to a large amount of re-
dundancy, which affects the update of the local client by
instance-adaptive models. It is worth noting that our model
always preserves a higher classification accuracy than the
baseline, i.e., when M = 5, Ours preserve the results of
Acc. = 86.50% vs. FedBN: Acc. = 79.81%.

Best-matched Number Analysis. As the selected SSF val-
ues for each input will affect the update of the local model,
we need to choose an appropriate best-matched number C
to train a good SSF pool. In Fig. 6 (b), we record the clas-
sification accuracy of c values varying in {1, 3, 6, ..., 24}.
As can be seen from this figure, we observe that our pro-
posed method obtains the highest classification accuracy
when C = 3 and the accuracy decreases monotonically on
the CIFAR-100 when the value of C increases, while re-
maining invariant on the Tiny-ImageNet dataset. However,
even at the lowest point, our method still produces higher
classification accuracy than the baselines in the two scenar-
ios, i.e., Label Shift and Feature Shift (see Ta-
ble 1). Therefore, this study reveals the effectiveness of our
proposed SSF pool mechanism.
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5. Conclusion

In this work, we re-examine the problem of data hetero-
geneity in FL, and find that there is not only inter-client data
heterogeneity but also intra-client heterogeneity in many
complex real-world scenarios, which also significantly de-
grades FL performance. To address this issue, we propose
a new parameter-efficient fine-tuning FL algorithm, FedIns,
which makes it possible to use instance-adaptive inference
for FL, thus enabling dynamically guided locals to alleviate
intra-client data heterogeneity. Unlike existing approaches,
FedIns trains an SSF pool for each client and aggregates
them into the federated SSF pool on the server. For a given
instance, FedIns dynamically finds the best-matched SSF
subsets from the pool, and aggregates them to generate an
adaptive SSF for instance-adaptive inference. In addition,
FedIns introduces only a small number of learnable param-
eters with the help of the large-scale pre-training model, and
greatly reduces the communication cost. Extensive experi-
ments show the superiority of FedIns in handling the inter-
and intra-client data heterogeneity issue.
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