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Abstract

Low-light video enhancement is a challenging task with

broad applications. However, current research in this area

is limited by the lack of high-quality benchmark datasets. To

address this issue, we design a camera system and collect

a high-quality low-light video dataset with multiple expo-

sures and cameras. Our dataset provides dynamic video

pairs with pronounced camera motion and strict spatial

alignment. To achieve general low-light video enhance-

ment, we also propose a novel Retinex-based method named

Light Adjustable Network (LAN). LAN iteratively refines

the illumination and adaptively adjusts it under varying

lighting conditions, leading to visually appealing results

even in diverse real-world scenarios. The extensive exper-

iments demonstrate the superiority of our low-light video

dataset and enhancement method. Our dataset is available

at https://github.com/ciki000/DID.

1. Introduction

Low-light video enhancement is a crucial task in com-

puter vision with a wide range of applications, such as

surveillance, self-driving cars, and consumer electronics. It

aims to improve the visibility and visual quality of videos

captured in low-light conditions, which typically suffer

from low brightness, low contrast, severe noise, and blur.

Despite significant advances in this area, low-light video en-

hancement remains a challenging problem due to the com-

plex and variable nature of low-light environments.

Recent advances in deep learning methods [14, 2, 9,

20, 4] have shown promising results in low-light video en-

hancement. However, the performance of deep learning-

based methods heavily relies on the quality of the train-

ing dataset. Capturing high-quality spatially-aligned video

pairs of dynamic scenes is particularly challenging, as it re-

quires the camera to capture a low-light video and a normal-

light video of the same scene with identical motion. As a

result, existing low-light video datasets have certain limi-

SDSDNet [20] with SDSD LAN with SDSD

SDSDNet [20] with DID LAN with DID

Figure 1: Visual comparison on a low-light video captured

by an iPhone 14 Pro.

tations. For instance, SIDGAN [19] is a synthetic dataset

that lacks real-world variability, and SMID [2] is a static

video dataset. While SDSD [20] collected paired low-light

videos of real-world scenes, the dataset has some limita-

tions, including a restricted range of camera motion, sub-

optimal spatial alignment, and inconsistent frames across

some scenes. Therefore, building a high-quality low-light

video dataset is still a challenging task.

To collect a high-quality low-light video dataset, we de-

sign a camera system to capture spatially aligned dynamic

video pairs. We build a large-scale paired low-light video

dataset named DID, which means “Dancing in the Dark”.

Compared to previous low-light video datasets, our dataset

contains a more diverse set of real-world scenes, larger cam-

era motion, and more accurate spatial alignment. Moreover,

our dataset is captured by multiple cameras under varying

lighting conditions, which enhances its generalizability.

We propose a Light Adjustable Network (LAN) based

on the Retinex theory [10] for general low-light video en-

hancement. LAN iteratively refines the illumination com-

ponents to generate enhanced results of different luminance.

Our method adapts to different scenes by adaptively select-

ing the magnitude of the light enhancement and can also

be manually adjusted to change the illumination of the re-

sults. Thus, our method exhibits good generalization and
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avoids over or underexposure in extreme cases, unlike pre-

vious one-to-one methods that could only enhance lighting

degradation similar to the training low-light samples.

We conducted extensive experiments to demonstrate the

generalization and superiority of our dataset and method.

Fig. 1 shows the results of different methods trained on

both SDSD dataset and our dataset for enhancing low-light

videos captured by mobile phones in real scenes.

In summary, the contributions of our work are as follows:

• We build a high-quality paired low-light video dataset

with pronounced camera motion, strict spatial align-

ment, and diverse scene content.

• We propose a Retinex-based low-light video en-

hancement method, named Light Adjustable Network,

which iteratively refines the illumination components

and adaptively adjusts the illumination to generate

more natural and robust enhanced results.

• We conduct extensive experiments to validate the ef-

fectiveness of our dataset and the Light Adjustable

Network compared with state-of-the-art methods.

2. DID Dataset

The performance of the low-light enhancement method

is affected by the quality of the training dataset, however

(a) Low camera motion.

(b) Misalignment.

(c) Inconsistent scenarios.

Figure 2: Limited quality of SDSD dataset.

Figure 3: The camera system we built to capture the

low/normal-light videos.

Table 1: Comparison of our dataset with previous low-light

video datasets.

Dataset Real Status Capture Device Num Release

SIDGAN [19] × Dynamic - - �

EHSC [22] � Dynamic Canon 5D Mark III 900 ×
SMOID [9] � Dynamic FLIR GS3-U3-23S6C 35800 ×

DRV [2] � Static Sony RX100 VI 22220 �

SDSD [20] � Dynamic Canon 6D Mark II 37500 �

Ours

(DID)
� Dynamic

Sony RX100 M4

Canon EOSR10

Panasonic G9

Fujifilm XT4

Nikon Z5

41038 �

collecting high-quality paired low-light video datasets is

challenging due to the difficulty of ensuring that two videos

with different lighting captured in the same scene have the

same motion trajectory. Although paired video data can

be generated [19], deep models trained on synthetic data

may introduce artifacts and color bias when processing real-

captured low-light videos due to the gap between synthetic

and real-world data [11]. Some works [2, 20] have released

real-captured paired low-light video datasets recently, but

they all have some limitations in various ways. As shown in

Table 1, EHSC [22] and SMOID [9] have not been released

until now, while DRV [2] consists of static videos. And the

video quality of SDSD [20] is limited, as shown in Fig. 2.

Furthermore, if all videos of the train set are obtained by

a camera with the same non-linear camera response, this

can lead to severe performance degradation of the model in

videos with unknown camera response functions [1]. Mod-

els trained with these datasets are often unsatisfactory in

real applications scenarios. Therefore, there is a great need

for a general high-quality low-light video dataset.

2.1. Camera System

To collect a general high-quality low-light video dataset,

we design a camera system consisting of 5 capture devices,

an electric gimbal, a signal generator and a central pro-
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(a) (b) (c) (d)

Figure 4: Statistical indicators for our DID dataset. (a) Intensity distribution for low/normal-light videos. (b) Distribution of

videos captured by five different brand cameras. (c) Luminance distribution for low-light videos. (d) Luminance distribution

for normal-light videos.

Figure 5: Two example videos of our DID dataset.

Figure 6: LOE and optical flow of different datasets.

cessing device. Our camera system collects paired video

datasets by shooting frame by frame. As shown in Fig. 3,

the central processing device adjusts the camera ISO to cap-

ture a series of low-light frames and normal-light frames at

the same location, and then these frames are sent to the cen-

tral processing device. The central processing device will

check these frames and if their quality is up to standard, then

it will synthesize these frames into the final low/normal-

light frames, otherwise it will send a signal to recapture

them until they meet the requirements. After capturing a

pair of frames, the signal generator sends a signal to make

the electric gimbal move slightly. To ensure continuity be-

tween adjacent frames, we limit the sum of the horizontal

and vertical rotation angles of the electric gimbal to less

than 1◦ each time. The specific inspection and synthesis

methods for a series of low/normal-light frames and the spe-

cific parameters of each shooting device are described in

detail in the supplementary material.

2.2. Video Data

We collected 413 paired videos with a total of 41038

frames and named them as DID dataset (standing for “Danc-

ing in the Dark”). The resolution of our videos is 2560 ×
1440, and more statistical indicators of the overall dataset

are shown in Fig. 4. In Fig. 5, we give two samples of dif-

ferent scenarios in our dataset.

To quantitatively compare our dataset with the previ-

ous low-light video datasets, we introduce two metrics,

lightness-order-error (LOE) [21] and optical flow [6]. LOE

calculates the relative order of lightness in different local ar-

eas, which can be used to measure the alignment of paired

low/normal-light frames. Optical flow is used for calculat-

ing pixel motion between two consecutive images, which

can be used to measure the dynamics of a video. Specific

implementations of LOE and optical flow are given in the

supplementary material. As shown in the Fig. 6, our dataset

has the lowest LOE, indicating that our paired videos are

well aligned. In addition, the optical flow of our dataset

is much larger than that of DRV [2] and SDSD [20], in-

dicating stronger or faster motion in our videos while the

videos in DRV and SDSD have low motion activity or are

static. Therefore, the model trained on our dataset has better

performance than other datasets on real scenarios with high

motion activity or strong movement.

In summary, our DID dataset has the following advan-

tages over the previous low-light video datasets:

• DID is a multi-illuminance, multi-camera low-light

video dataset.

• DID is a dynamic video dataset with obvious camera

motion, rather than static or with only small motion.

• DID is a high quality paired dataset with very precise

spatial alignment.

• Experiments demonstrate that models have better per-

formance when trained with our dataset.
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(a)

(b) (c)

Figure 7: Overview of our method. (a) The framework of our LAN. (b) The process of iterative illumination refinement. (c)

The structure of the blocks in reflectance estimation module and synthesis module.

3. Method

Low-light enhancement is a highly ill-posed problem.

Like many such inverse problems, a low-light image or

video may correspond to multiple suitable normal-light im-

ages or videos. Although previous low-light enhancement

methods have been able to generate results close to ground

truths, most of these methods are one-to-one models with

fixed outputs for a single input resulting in their limited gen-

eralization performance. In real application scenarios, the

distribution of low-light samples may differ somewhat from

existing low-light datasets, and may even contain extremely

dark scenes or slightly dark scenes. Therefore simply fitting

the light degradation of the training data may lead to subop-

timal solutions and often leaves the enhanced results over-

exposed or underexposed. For general low-light video en-

hancement, we propose Light Adjustable Network(LAN),

which can adaptively adjust the illumination to generate ap-

propriately exposed results, and can also be used by the user

to adjust the light intensity to generate different outputs.

3.1. Light Adjustable Network

Fig. 7 (a) illustrates the framework of our proposed LAN.

According to Retinex theory [10], we decompose the input

video frames Xt+i,i∈[−k,k], into reflectance components Rt

and illumination components It, and then enhance the il-

lumination components by iterative refinement, and finally

synthesize them into normal light frames Ŷt.

Specifically, given a sequence of low-light frames

Xt+i ∈ R
k×H×W×3, we first concatenate them and project

them as embedding F 0
t ∈ R

H×W×C through a Residual

Block [7]. Then, the reflectance estimation module es-

timates the reflectance Rt from it. The reflectacne esti-

mation module is a hierarchical structure with 4 stages,

each stage consisting of a feature extraction block and a

down-sampling layer. The components of the feature ex-

traction block are shown in Fig. 7 (c), which is inspired

by [28, 3]. For the i-th stage, the feature map F i−1
t ∈

R
H

2i−1
×

W

2i−1
×2i−1C

will be processed as feature map F i
t ∈

R
H

2i
×

W

2i
×2iC

. F 4
t will be considered as the reflectance com-

ponent Rt and then sent to the synthesis module.

The illumination enhancement module first encodes the

input frame Xt into a latent representation z0 by a pre-

trained encoder, and then enhances the illumination com-

ponent by iterative refinement, which will be described in

detail in Section 3.2.

The estimated reflectance Rt and the enhanced illumi-

nation Ît are first aligned by a convolutional layer and then

fed into the synthesis model. The synthesis module is also

a hierarchical architecture with 4 stages, each stage con-

sisting of a feature fusion block and a up-sampling layer.
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The components of the feature fusion block are the same

as the feature extraction block of the reflectance estimation

module. In addition, we use skip connections in the cor-

responding stages of the synthesis module and reflectance

estimation module to better recover image details. Finally,

the feature map output from the synthesis module is pro-

jected by a convolutional layer as the enhanced result Ŷt.

3.2. Iterative illumination refinement

Since the enhancement of the illumination component

requires more global information than local texture infor-

mation, we think it is a good way to process it in a lower-

dimensional representational space. This also prevents iter-

ative refinement from taking up too much computational re-

sources. Therefore we first encode the input Xt into the la-

tent space via an autoencoder, which is perceptually equiv-

alent to the data space.

To be able to adjust the light intensity of the enhanced

result, we iteratively refine the light so that the illumina-

tion component can be adjusted by changing the number of

iterations. As shown in Fig. 7 (b), the illumination enhance-

ment module generates target illumination features zt in T

refinement steps. Starting with the latent representation z0,

the module iteratively refines the illumination component

through successive iterations (z1, z2, ... , zT−1, zT ). The

ground truths for illumination of different intensities are

defined as latent representations of a mixture of low light

frames and corresponding normal light frames. The ground

truth of zk,k∈[1,T ] is shown below:

αk =
k

T

z̃k = E (αk · Yt + (1− αk) ·Xt)
(1)

where E denotes the representation of the pre-trained en-

coder.

Inspired by diffusion models [8, 16, 18], we use a U-Net

[17] to learn the mapping from z̃k to z̃k+1. Then the illumi-

nation component can be adjusted by changing the number

of iterative refinements.

3.3. Adaptive light adjustment

Although our model has better generalization than one-

to-one networks, we believe that manual adjustment to se-

lect the appropriate illumination is a suboptimal solution.

Therefore, we further improve our model so that it can ad-

just the illumination adaptively in different scenarios.

Since the model tends to perform poorly on low-light

samples that differ significantly from the distribution of the

training data, we vary the number of iterations so that the

recovered illumination features approximate the illumina-

tion distribution of the normal-light samples of the training

data. We assume that the intensity data of the normal-light

samples l follow a Gaussian distribution,

l ∼ N (
μ, σ2

)
(2)

where μ denotes the mean and σ denotes the standard de-

viation. We perform statistical analysis on normal light

samples of the training data and calculate the sample mean

and sample standard deviation. With a specific distribu-

tion of normal light intensities, we calculate the intensity of

the generated illumination component zk for each iteration

and perform a hypothesis test on the intensities of (zk−2n,

zk−2n+1 , ... , zk), where n is a pre-defined interval param-

eter. We use an one-sided Student’s test, which compares

the mean intensity l̄k of (zk−2n, zk−2n+1 , ... , zk) with

the known mean μ of the normal-light intensity distribu-

tion. The null hypothesis H0 and the alternative hypothesis

H1 are shown below:

H0 : l̄k ≥ μ

H1 : l̄k < μ
(3)

The test statistic is calculated as:

t =
l̄k − μ

sk

√
2n+ 1 (4)

where sk is the standard deviation of the intensities of

(zk−2n, zk−2n+1 , ... , zk).

The rejection region is:

t < tα,2n (5)

where α is the significance level (we take 0.05) and 2n is the

degree of freedom. tα,2n is the α quantile of a t-distribution

with 2n degrees of freedom. It represents that under the t-

distribution, there is an α probability that the value is less

than tα,2n.

Finally, we compare our calculated t with critical value

tα,2n. If t < tα,2n then we reject the null hypothesis (i.e.

the mean intensity l̄k is less than the known mean μ) and

the illumination enhancement module continues to iterate

to generate a higher intensity illumination component; oth-

erwise we cannot reject the null hypothesis and the illumi-

nation enhancement module stops iterating and sends zk−n

to the synthesis module.

In addition, to prevent brightness jitter in the enhanced

video, we limit the difference in the number of iterations of

adjacent frames to no more than T
p

(where p is a hyperpa-

rameter).

3.4. Training and Loss Function

First, we follow [16] to train a VAGAN [5, 27] for en-

coding the input frames into latent space. Then we train

the illumination enhancement module. For each latent rep-

resentation of the input samples, we let the U-Net used for

iterative refinement learn the mapping from z̃k to z̃k+1, as

follows:
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LU =
√

‖fU (z̃k)− z̃k+1‖2F + ε2 (6)

where fU denotes the mapping function learned by U-Net

and LU is the loss term used to train U-Net, ‖·‖F represents

Frobenius norm and the constant ε is set to 0.001. k ∈ [1, T ]
is a random variable. By employing a lightweight U-Net ar-

chitecture and a limited number of iterations, we ensure that

iterative refinement does not impose a performance bottle-

neck on the model.

Finally we train the entire network. According to

Retinex theory, the reflectance components of low-light

frames and paired normal-light frames should be consistent,

so we add reflectance consistency loss as follows:

LR = ‖fR(Xt)− fR(Yt)‖2F (7)

where fR denotes the mapping function of the reflectance

estimation module.

The overall loss function to train our LAN is summarized

as:

L = (1− λ)

√
‖Ŷt − Yt‖2F + ε2 + λLSSIM

(
Ŷt, Yt

)
+

LR

τ
(8)

where λ is a trade-off parameter, LSSIM represents the struc-

tural similarity loss [24], and τ denotes a temperature pa-

rameter.

4. Experiments

4.1. Implementation Details

We show the superiority of our proposed approach and

the effect of our constructed DID through experiments in

this section. To evaluate the effect of our method, we retrain

9 previous representative methods on the DID and SDSD

datasets for comparison and give an ablation study for our

method. In addition, a user study is conducted to demon-

strate the results of our approach and the chosen baselines.

We divide our DID dataset into a training set, a test set,

and a validation set in the ratio of 3:1:1. Then we use the

training set to train our LAN. We augment the data using ro-

tation and horizontal flipping and optimize the network by

AdamW optimizer [13] with the momentum terms of (0.9,

0.999). We set the learning rate to 0.001 and use the co-

sine decay strategy to decrease it. Our default number of

iterations T = 10 and we train LAN for 200 epochs.

4.2. Quantitative Evaluation

To comprehensively evaluate the effectiveness of our

proposed method, we conduct quantitative experiments on

paired video datasets captured under various scenes, includ-

ing both the DID and SDSD datasets. Specifically, we eval-

uate the performance of our method on the test dataset of

DID, which comprises videos with diverse scenes and illu-

mination conditions, including some challenging data with

Table 2: Quantitative results of different methods on SDSD

and our DID datasets.

Methods Learning
SDSD DID

PSNR SSIM PSNR SSIM

DRBN[26] Image 22.31 0.65 25.22 0.91
RUAS[12] Image 15.48 0.64 17.01 0.74

LLFlow[23] Image 24.90 0.78 25.71 0.92
SNR-Aware[25] Image 25.27 0.82 24.05 0.90

SCI[15] Image 16.90 0.64 11.15 0.44
MBLLEN[14] Video 21.79 0.65 24.82 0.91

SMID[2] Video 24.09 0.69 22.97 0.87
SDSDNet[20] Video 24.92 0.73 21.88 0.83

Chhirolya et al.[4] Video 23.46 0.79 22.77 0.88
Ours (default T ) Video 26.95 0.85 27.28 0.92
Ours (adaptive) Video 27.25 0.85 29.01 0.94

Table 3: The results of different low-light enhancement

methods in the user study. “LAN” is the percentage that

our result is preferred, “Other” is the percentage that some

other approach is preferred, “Same” is the percentage that

the users have no preference.

Methods Other Same LAN

MBLLEN[14] 40.7% 14.8% 44.4%
SMID[2] 17.9% 20.5% 61.5%

SDSDNet[20] 0% 0% 100%
Chhirolya et al.[4] 13.9% 27.8% 58.3%

Table 4: The results of different datasets in the user

study. “DID” is the percentage that our dataset is preferred,

“SDSD” is the percentage that the SDSD dataset is pre-

ferred, “Same” is the percentage that the users have no pref-

erence.

Methods SDSD Same DID

MBLLEN[14] 0.0% 3.7% 96.3%
SMID[2] 38.0% 0% 62.0%

SDSDNet[20] 38.1% 19.0% 42.9%
Chhirolya et al.[4] 23.8% 4.8% 71.4%

LAN 8.33% 8.33% 83.3%

extremely low illumination levels that are difficult to re-

cover. We compare the quality of the enhanced videos pro-

duced by our Light Adjustable Network with state-of-the-

art methods. Moreover, we further evaluate the performance

of our approach on the test dataset of SDSD, which includes

12 indoor video pairs and 13 outdoor video pairs.

We adopt two well-known objective evaluation metrics:

Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-

ity (SSIM)[24]. PSNR is the ratio between the maximum

possible power of normal light image and the power of the

enhanced image and measures the fidelity between them.

SSIM is a perceptual approach for predicting the quality of

digital images and videos, based on the change of structural

information between two images.
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Input DRBN[26] LLFlow[23] SNR-Aware[25] MBLLEN[14]

SMID[2] SDSDNet[20] Chhirolya et al.[4] Ours Ground truth

Figure 8: Visual comparison with state-of-the-art low-light enhancement methods on DID dataset.

Input DRBN[26] LLFlow[23] SNR-Aware[25] MBLLEN[14]

SMID[2] SDSDNet[20] Chhirolya et al.[4] Ours Ground truth

Figure 9: Visual comparison with state-of-the-art low-light enhancement methods on SDSD dataset.

Table 2 presents the quantitative evaluation results of dif-

ferent methods on both DID and SDSD datasets. As shown

in the table, our proposed Light Adjustable Network (LAN)

outperforms all other methods in all metrics, demonstrating

its superior performance in low-light video enhancement.

Particularly, our method achieves higher PSNR values than

all other methods with a significant margin (more than 3dB

on DID and more than 1.9dB on SDSD, respectively). This

superiority highlights the effectiveness of our approach in

enhancing low-light videos compared to all other methods.

Furthermore, our adaptive lighting adjustment strategy is

shown to be very effective in improving the performance

of the model, especially in datasets with richer scenes.

4.3. Qualitative Evaluation

We perform thorough qualitative evaluations on the DID

and SDSD datasets to assess the performance of our pro-

posed method. Fig. 8 presents the results obtained on the

DID dataset, where it is observed that SNR-aware, SMID

and the method proposed by Chhirolya et al. produce im-

ages with a darker tone, leading to substantial color devi-

ation. Moreover, SMID suffers from high levels of noise,

while LLFlow exhibits noticeable checkerboard artifacts.

DRBN and MBLLEN fail to depict image details effec-

tively, and SDSDNet produces images with severe artifacts.

Fig. 9 presents the visual results obtained on the SDSD

dataset, which comprises low-quality videos with signifi-

cant noise that pose challenges for enhancement. In com-

parison to the GroundTruth, DRBN yields images with low

brightness and weak enhancement. LLFLow exhibits no-

ticeable checkerboard artifacts. Both the Chhirolya et al.’s

method and SDSDNet produce images with obvious arti-

facts or noise, which fail to display specific detailed infor-

mation. SNR-aware, MBLLEN and SMID result in sig-

nificant color deviation, which adversely affects the visual

quality of the images.

Fig. 10 shows the visual results for the extreme samples.

It is evident that for videos with extremely low illumination,

most methods produce underexposed outputs, whereas for

videos with slightly low illumination, most methods gen-

erate overexposed outputs. Our proposed method, with its

default iterative settings, has successfully achieved superior

results and further improved the brightness with the light

adaptive light adjustment strategy. The impact of the num-

ber of iterations on the enhanced results is also investigated

and presented in the supplementary material.

After a comprehensive evaluation of the comparative re-

sults of different methods on the two datasets, our proposed
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Input Chhirolya et al.[4] SDSDNet[20] Ours (default T = 10) Ours (adaptive T = 19)

Input Chhirolya et al.[4] SDSDNet[20] Ours (default T = 10) Ours (adaptive T = 7)

Figure 10: Visual comparison on extremely dark and slightly dark videos.

MBLLEN[14] with SDSD SMID[2] with SDSD SDSDNet[20] with SDSD [4] with SDSD Ours with SDSD

MELLEN[14] with DID SMID[2] with DID SDSDNet[20] with DID [4] with DID Ours with DID

Figure 11: Visual results in the user study.

method demonstrates excellent visual performance in terms

of global brightness, color recovery and details.

4.4. User Study

We conduct a user study with 20 participants to compare

the subjective visual quality of LAN and other video low-

light enhancement methods. We use an iPhone 14 Pro to

capture 20 videos in real-world scenarios using camera mo-

tion and local subject motion for the user study. The videos

are then enhanced using five video low-light enhancement

methods (MBLLEN, SDSDNet, Chhirolya et al.’s method,

SMID and LAN), each trained on both DID and SDSD to

compare the performance of different models and the gen-

eralization of models trained on these two datasets.

Each participant underwent five sets of tests, including

three sets of model performance tests and two sets of model

generalization tests, with three videos randomly selected

for comparison in each set. The model performance tests

use models trained on the DID dataset. The participants

first randomly select three out of the four video enhance-

ment methods other than LAN and compare their results

with those of LAN. Then, two methods are randomly se-

lected from the five methods for dataset generalization test-

ing, where the participants compare the results of models

trained on both SDSD and DID for each method. In each

comparison, participants simultaneously view two videos

(referred to as video A and video B) and compare them in

terms of photo realism, brightness, contrast etc., making a

choice among three options: “Video A is better”, “Video B

is better”, or “I cannot determine which is better”.

The quantitative results in the user study are shown in Ta-

ble 3 and Table 4, respectively. Besides, the visual results

in the user study can be seen in Fig. 11. The tables and the

figure present the comparison results between our method

and other methods as well as the comparison results for

generalization between the SDSD and DID datasets. The

data indicates that our method is more appealing to users

in all comparisons with other methods, suggesting that our

results are more natural and realistic. In addition, in the

comparison of generalization between the DID and SDSD

datasets, our DID dataset is found to have better general-

ization across all methods according to user feedback. It

is evident that models trained on SDSD exhibit blurry en-

hanced results for real-captured low-light videos. This blur-

riness primarily arises from imprecise spatial alignment in

the paired training data. In contrast, models trained on DID

produce enhancement results without such blurriness.
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5. Conclusion

In this paper, we present a dynamic high-quality paired

low-light video dataset, called DID (“Dancing in the

Dark”), captured using our designed camera system, with

pronounced camera motion and strict spatial alignment.

Based on the Retinex theory, we propose a Light Adjustable

Network (LAN) for general low-light video enhancement,

which adaptively adjusts the illumination to generate nat-

ural and robust enhanced results. Extensive experiments

and user studies demonstrate the effectiveness of our pro-

posed dataset and method, which outperform state-of-the-

art approaches. Our work provides a valuable resource and

a novel method for low-light video enhancement.
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