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Abstract
Visual Question Answering (VQA) and Image Caption-

ing (CAP), which are among the most popular vision-
language tasks, have analogous scene-text versions that re-
quire reasoning from the text in the image. Despite their ob-
vious resemblance, the two are treated independently and,
as we show, yield task-specific methods that can either see
or read, but not both. In this work, we conduct an in-
depth analysis of this phenomenon and propose UniTNT,
a Unified Text-Non-Text approach, which grants existing
multimodal architectures scene-text understanding capabil-
ities. Specifically, we treat scene-text information as an
additional modality, fusing it with any pretrained encoder-
decoder-based architecture via designated modules. Thor-
ough experiments reveal that UniTNT leads to the first sin-
gle model that successfully handles both task types. More-
over, we show that scene-text understanding capabilities
can boost vision-language models’ performance on general
VQA and CAP by up to 2.69% and 0.6 CIDEr, respectively.

1. Introduction
In recent years, Vision-Language (VL) tasks, such as Vi-

sual Question Answering (VQA) [4, 18] and Image Cap-

tioning (CAP) [34, 2], have gained immense research inter-

est [55, 39, 49, 30, 22, 46, 10, 47]. However, despite the

remarkable success of VL models on these tasks, it was dis-

covered a few years ago that such models are incapable of

reasoning from the text in natural images [41, 8, 40]. This

finding raised significant concerns, as understanding scene-

text is crucial in almost any real-world application.

To address this issue, designated scene-text datasets were

introduced for both VQA [41, 8] and CAP [40], aiming to

highlight the importance of utilizing textual information in

images. Following the introduction of the above datasets,

a new line of research has arisen, focusing on scene-text-

oriented tasks, evaluated individually and effectively dis-
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Figure 1: See and read in VQA. Illustration of the possible

three types of reasoning required in VQA image-question

pairs and representative datasets distributions (middle).

Samples from the ’see’ (bottom left), ’read’ (bottom right),

and ’see-∩-read’ (top) subsets are presented. Each sample

includes an image, question, OCR, and model predictions.

sociated from the general one. From a user perspective,

this separation is artificial and does not adequately reflect

the objective of real-world VQA systems, and as we show,

it encourages models to only excel on one task at a time.

Therefore, we advocate that VL research should strive to-

wards unified models, and thus, methods should be eval-

uated accordingly. To this end, we propose conducting

combined evaluation for VL models on both general and

scene-text benchmarks and treating the average results as

expressing the “see” and “read” capabilities. We emphasize
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the final published version of the proceedings is available on IEEE Xplore.
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that even the minority of works that evaluate both types of

tasks [46, 11, 3] do it on separate models, which are fine-

tuned per task, perpetuating the faulty tasks’ segregation.

Apart from being unjustified, this separation introduces

biases [7, 48], providing the models with prior knowledge

that implies which modality to focus on, which does not ex-

ist in real-world scenarios. Namely, it creates a shortcut that

encourages models to excel solely on a specific benchmark

by acquiring an understanding of either the visual or tex-

tual information in the image, but not both. In particular,

Biten et al. [7] recently showed that SOTA performance on

scene-text VQA can be achieved without using the visual

modality, and Wang et al. [48] revealed that existing scene-

text VQA models’ success stems from exploiting language

priors. Our combined evaluation effectively addresses this

problem by testing whether models can reason from both

types of information, as exploiting such data biases and pri-

ors would yield low combined results.

From a more high-level view, three categories span the

space of VL data; the first are examples that require reason-

ing over vision only (dominant in VQA [18] and CAP [9]),

the second are instances in which using scene-text informa-

tion solely is sufficient (dominant in scene-text VQA [8, 41]

and scene-text CAP [40]), and the third are ones in which

both are essential. We denote the three subsets as ’see’,
’read’, and ’see-∩-read’, respectively. For completion, the

whole space is denoted as ’see-∪-read’, the union of all

others. We illustrate this conceptual data distribution for

VQA in Fig. 1. Examining the performance of existing

VQA approaches over the three types of questions men-

tioned above, shown in Fig. 2, reveals that while some of

the methods [30, 31, 47] perform well on the first subset and

some [21, 52] on the second, none are optimal on the entire

domain. Moreover, throughout our analysis, we reveal that

the ’see-∩-read’ subset, in which both visual and textual in-

formation are needed for answering, is very challenging and

underrepresented, requiring a new dedicated benchmark.

In this work, while striving towards models that excel

on the entire space of VL data, we propose UniTNT, a

Unified Text-Non-Text model, which provides VL archi-

tectures with scene-text understanding capabilities. Specif-

ically, we treat textual information in the image, i.e. tokens

and positions, as a third modality and introduce it into the

pretrained model. Adding a new modality to an already-

trained model is challenging and might lead to suboptimal

results [16, 43, 54, 3]. To overcome this, we encode such

information using a designated encoder and inject it into

the existing pretrained decoder via a novel fusing mecha-

nism that gradually shifts between VL features to textual-

enriched ones. Moreover, we propose scene-text-related

intermediate supervision to encourage the already-trained

model to leverage the newly added information. Being both

task and model agnostic by its design, our method can be

Figure 2: Models’ accuracy on different types of VQA
data. Leading methods and UniTNT performance on dif-

ferent benchmarks. VQAv2 and TextVQA datasets mostly

require reasoning from visual information only (‘See’) and

textual information only (‘Read’), respectively. ‘See-∩-

Read’ refers to a subset of the TextVQA dataset (Sec. 4.3),

in which both modalities are essential for answering each

question. ‘See-∪-Read’ represents the sets’ union.

applied to any VL encoder-decoder-based architecture.

We evaluate UniTNT on both general and scene-text

benchmarks of VQA and CAP using combined evaluation
and show that it leads to the first single model perform-

ing well on both tasks. We show that our method can

be easily integrated into existing VL models, improving

their scene-text understanding substantially by applying it

to BLIP [30] and ALBEF [31]. Interestingly, such rea-

soning abilities boost the base model’s VQA results (e.g.,
improves BLIP [30] by 2.69% on VQAv2 [18]), while

achieving state-of-the-art competitive results on scene-text

VQA benchmarks. A similar trend exists in captioning,

where UniTNT enhances BLIP’s performance by 0.6 CIDEr

points on COCO Captions [9] while substantially boosting

its scene-text CAP performance. These improvements high-

light the significance of scene-text comprehension in VL

tasks, laying the foundation for future research on general

multimodal architectures that can leverage scene-text.

To summarize:

• We thoroughly analyze current methods and reveal that

the faulty text-non-text task separation leads to models

that either reason from visual or textual information in

images, but not both.

• We introduce UniTNT, a model-agnostic method to grant

reading capabilities to pretrained VL models by fusing

the scene-text information as an additional modality.

• Extensive experiments show that our method not only im-

proves the scene-text benchmarks’ results but also signif-

icantly enhances the performance of VQA and CAP.
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Method OCR
System

Visual Question Answering Image Captioning
VQA TextVQA ST-VQA Avg. COCO TextCaps Avg.

test-dev test-std val test test-ANLS Karpathy-test val test

Se
pa

ra
te

M4C [21, 40] � 27.47 27.70 46.53 47.42 0.43 37.56 4.7 95.5 90.1 47.4

TAP [52] � 18.76 18.81 54.71 53.97 0.60 36.39 4.6 109.2 103.2 53.9

ALBEF [31] � 75.22 75.38 11.67 13.88 0.19 44.63 - - - -

BLIP [30] � 76.39 76.59 20.50 23.74 0.34 50.16 133.3 59.4 61.9 97.6

OFALarge [47] � 79.70 79.85 22.10 21.47 0.27 50.66 150.7 64.5 66.8 108.8

C
om

b. M4C [21] � 59.11 59.04 47.22 48.61 0.50 53.83 109.8 102.7 98.0 103.9

ALBEF [31] � 75.61 75.87 16.15 17.04 0.22 46.46 - - - -

BLIP [30] � 77.40 77.39 32.43 31.48 0.44 54.44 133.4 101.4 91.8 112.6

Table 1: Current status of VQA and CAP models. The results of leading methods on both scene-text and general VQA

and CAP benchmarks reveal that currently, no method performs well on both scene-text and general benchmarks, even when

applying combined training. Separate and Comb. summarize the results described in Sections 2.1, 2.2 and 2.3, respectively.

2. See and Read: Analyzing Methods and Data
In this paper, contrary to the common practice in VL

research, we highlight the importance of models to “see”

and “read” altogether and start by comprehensively analyz-

ing such capability via a ”see-∪-read”-oriented combined
evaluation. Our analysis reveals that existing models’ rea-

soning abilities over both types of information are lacking,

prompting the question of whether this limitation is due

to inherent method constraints or biased data. Our eval-

uation focuses on the performance of leading general and

scene-text-oriented models on VQAv2 [18], TextVQA [41],

and ST-VQA [8] for VQA, and COCO Captions [9] and

TextCaps [40] for captioning.

2.1. Visual Question Answering

General VQA Methods: During the vision-language revo-

lution, numerous methods [33, 39, 31, 30, 47, 49, 46, 3, 10,

55, 53, 13, 22] have been proposed for various multimodal

tasks, including VQA, which have advanced the state-of-

the-art. These methods can leverage vast online image-

caption pairs via vision-language pretraining [32, 12, 39],

followed by task-specific fine-tuning. However, a few years

ago, such models were shown to be ineffective in reason-

ing from textual information in the scene, as they primarily

focus on the images’ visual content [41, 8].

Nevertheless, such models have advanced significantly

in the past few years. Thus, to reveal the current sta-

tus of such models in scene-text understanding, we exam-

ine the performance of three leading VQA models, AL-

BEF [31], BLIP [30], and OFA [47], using unconstrained

open-vocabulary generation, on scene-text VQA tasks. As

seen in Tab. 1, although such methods perform well on

VQA, as expected, their results on the analogous scene-text

VQA datasets are unsatisfactory, testifying their incompe-

tence in scene-text understanding. Interestingly, their in-

ability to utilize scene-text information hinders its perfor-

mance even on VQA, as we later show in Sec. 4.

Scene-Text VQA Methods: Several methods have been

proposed to improve the scene-text understanding of VQA

models [21, 19, 17, 52, 23, 36, 7]. These models utilize

an off-the-shelf OCR system’s output alongside the image

and question as input to a multimodal transformer. How-

ever, some recent studies [48, 7] have indicated that scene-

text VQA datasets may have biases discouraging models

from relying on the visual modality. To properly test such

claims, we evaluate M4C [21] and TAP [52] on general

VQA, which requires strong visual understanding and re-

port the results in Tab. 1. As can be seen, M4C and TAP

obtain only 27.70% and 18.81%, respectively. When com-

pared to, for example, BLIP’s 76.59%, it testifies that, in-

deed, such methods disregard the visual information. Inter-

estingly, although TAP consistently outperforms M4C on

the scene-text benchmarks, it achieves lower results on the

general one, implying the data biases in the former datasets.

2.2. Image Captioning

Similar to VQA’s analysis, we conduct a captioning

combined evaluation using TextCaps and COCO Captions

for both types of models and report the average CIDEr

scores. Our empirical results in Tab. 1 demonstrate that

while general models (BLIP and OFA) and scene-text ones

(M4C-Captioner and TAP) perform well on their desig-

nated benchmarks, they fail to obtain satisfactory results

on the analogous one. In particular, BLIP obtains a CIDEr

score of only 61.9 on TextCaps, compared to 90.1 of M4C-

Captioner. On the other hand, the latter achieves 4.7 on

COCO captions, compared to BLIP’s 133.3. In addition,

like in VQA, while TAP outperforms M4C in TextCaps, it

does not occur on COCO Captions. These findings suggest

that existing methods exhibit unsatisfactory performance

when evaluated on both captioning benchmarks.

2.3. The Role of the Datasets in ’See and Read’

We now examine whether this limitation stems from a

lack of representative training data rather than method lim-

itations. Specifically, we test if the inferior performance of
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Figure 3: An overview of UniTNT. Our method endows existing general VL models with scene-text understanding capa-

bility. The OCR information is encoded separately and injected into the decoder via a gated cross-attention-based fusing

mechanism as complemental information. LOCR-BC and LOCR-LM are auxiliary losses, enforcing the model to utilize the

scene-text information. UniTNT newly introduced components are presented in bold. ‘See’, ‘Read’, and ’Fusing’ related

modules are in blue, orange, and red, respectively.

scene-text-oriented models on visual tasks and vice versa is

solely due to the training data’s bias towards reasoning over

solely one type of information. To test this claim, we merge

two datasets, conduct combined training for both general

and scene-text-oriented methods, and report the results in

Tab. 1. As can be seen, while unified training leads to im-

proved performance on both types of VL benchmarks, there

is a substantial performance gap – scene-text models lag

behind general ones on the general benchmarks and vice-

versa. Nevertheless, these results indicate that reasoning

from text and vision are not at odds and suggest a symbiotic

relationship between the two tasks. Furthermore, they pro-

vide further motivation for avoiding the common practice of

separating the tasks, as done in previous work [3, 11, 46].

To conclude, while joint training is a step forward, it is not

enough to achieve our ultimate goal.

3. Method

In this section, we describe UniTNT, a method aimed to

obtain our titular goal by granting pretrained general VL

models the ability to reason over scene-text information

during finetuning while retaining their original reasoning

capabilities, depicted in Fig. 3. By doing so, we propose

a change of perspective compared to top-performing ST

methods, such as [7, 52], that harnesses an OCR-oriented

pretrained model but fails to enrich it with visual under-

standing during finetuning. Adapting pretrained models to

consider additional inputs, absent during pretraining, is a

non-trivial task tackled by recent literature [43, 3]. On the

one hand, we wish to encourage the model to utilize the new

stream of information and, on the other hand, to prevent it

from neglecting the original stream. To address this, we en-

code the OCR information via a designated OCR encoder

and fuse it residually, retaining the former stream of in-

formation and gradually shifting towards an OCR-enriched

one. Moreover, we propose auxiliary losses, encouraging

the pretrained decoder to utilize this information. Similarly

to previous works [21, 52, 36, 7], we utilize an off-the-shelf-

OCR system to extract the scene-text information.

3.1. Architecture

We design our architecture in a task-agnostic way – en-

abling compatibility with both visual question answering

and image captioning tasks. In addition, UniTNT is model

agnostic and can be applied to any encoder-decoder-based

VL model. In this work, we integrate our approach into two

top-performing open-source methods – ALBEF [31], and

BLIP [30] as a case study, denoted as UniTNTALBEF / BLIP.

OCR Encoder Rather than utilizing the pre-existing en-

coder to process the OCR alongside the visual modality,

as in [7, 21, 52], we introduce a dedicated OCR encoder,

which maps the scene-text information into features fed into

the existing system’s decoder. This encoder receives the

question alongside OCR information, namely tokens and 2-

dimensional (2D) positional information, both extracted by

the OCR system. The positional information was proven

to be valuable for documents and scene-text understanding
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tasks [50, 51, 5, 7]. Not only that our approach outperforms

the one that utilizes the pre-existing text encoder to process

the OCR tokens (demonstrated in Sec. 5), but it also pro-

vides flexibility to address tasks that do not utilize a text

encoder, such as image captioning.

Formally, each OCR instance is represented by

(t, x0, y0, x1, y1, w, h), namely, its word token, bound-

ing box’s top-left, bottom-right, width, and height

values, respectively. We embed each value sep-

arately using designated embedding layers E (i.e.,
torch.nn.Embedding). Next, we sum the 2D repre-

sentations, pass them via a 2-layer MLP and add it to the

token’s representation, yielding the OCR representation:

eOCR =EOCR(t)+α ∗MLP(Ex(x0) + Ey(y0)+

Ex(x1) + Ey(y1) + Ew(w) + Eh(h))
(1)

where α is a predefined hyperparameter. As for the ques-

tion, we embed its tokens using the same embedding layer.

Since both the OCR and the question representations are

fed into the same model, we equip the question representa-

tions with pseudo-2D information corresponding to the size

of the entire image, yielding the final question representa-

tion eq . Finally, we concatenate them to obtain the OCR

encoder’s input,
{
e1q . . . e

M
q , e1OCR . . . eNOCR

}
, where M and

N are the lengths of the question and OCR, respectively.

VL-OCR Decoder To integrate the OCR information into

the decoder, we add a dedicated OCR Cross Attention (CA)

and a fusing mechanism, as visualized in Fig. 3. We place

the OCR CA block parallel to the pre-existing VL CA mod-

ule to enrich the decoded features with textual information

in the image. This architectural design yields two data

streams (visual and scene-text-oriented ones) that need to

be merged adequately into a single VL-OCR representation.

To this end, we introduce a fusing mechanism composed of

a gated cross-attention mechanism, which gradually shifts

from VL features to fused, OCR-enriched ones.

Formally, our fusing mechanism merges the output of

our new OCR CA with the one of the VL CA, denoted

as FOCR and FVL respectively. Specifically, this module

receives two features sequences, FOCR,FVL ∈ R
B×L×C ,

and outputs Ffused ∈ R
B×L×C , where B,L,C are the batch

size, sequence length and the number of channels, respec-

tively. First, we concatenate FOCR and FVL across the chan-

nel dimension and insert them into a simple 2-layer MLP to

obtain an attention map Fattn ∈ R
B×L×C . Next, we pass

the element-wise product of FOCR and Fattn in a tanh gat-

ing mechanism [20, 3]. The goal of the tanh gating is to

enable gradual OCR blending with the VL one by multi-

plying its inputs with tanh(β), where β is a learnable pa-

rameter initialized to zero. At initialization, it ensures that

the added modules are skipped, preserving the model pre-

training’s data flow. Finally, we sum the output of the tanh

gating with FVL to obtain the fused features:

Fattn = MLP(concat(FVL,FOCR)), (2)

Ffused = FVL + tanh(β)(FOCR �Fattn), (3)

where � is the Hadamard product.

3.2. Scene-text Auxiliary Losses

We propose two auxiliary losses, encouraging the model

to utilize the scene-text signal rather than ignoring it - OCR

Causal Language Modeling (OCR-LM) and OCR Binary

Classification (OCR-BC).

OCR Causal Language Modeling To better fuse the

scene-text information, we add a causal language modeling

supervision over the OCR tokens. Specifically, we prepend

the shifted OCR tokens (according to the OCR system read-

ing order) to the inputs of the decoder and train the system

to predict the next OCR token based on previous ones,

LOCR-LM = −
N∑

i=1

log
(
P
(
ti|t<i

))
(4)

where ti is the ith OCR token. Minimizing such loss en-

forces the system to account for the scene-text signal, as

desired. While variants of such a loss were previously used

during pretraining [52, 7], we are the first to utilize it during

finetuning. Moreover, inserting the OCR into the decoder

at inference has another significant advantage, as it serves

as a prefix and enables the model to condition its answers

on the OCR. Such behavior is desirable since the OCR can

provide meaningful information for general and scene-text

VL tasks, as we experimentally demonstrate in Sec. 4.1.

OCR Binary Classification To obtain more meaningful

and task-beneficial OCR encodings, we propose a binary

classification objective of predicting whether each OCR to-

ken is a part of the ground-truth answer. We build a binary

linear classifier on top of the outputs of the OCR encoder

and train it using a binary cross-entropy loss. More specif-

ically, since most of the OCR tokens are not part of the an-

swer, we employ a weighted version, as such classification

task is highly imbalanced. We denote this loss as LOCR-BC.

3.3. Training Procedure

So far, we have described the main building blocks in

our method, and now, as illustrated in Fig. 3, we put it

all together. First, we harness a trained general encoder-

decoder VL model and modify it as described above in

Sec. 3.1. Next, we freeze the VL model’s pre-existing im-

age encoder, similarly to [54, 3], and train UniTNT on a

unified dataset (i.e., general and scene-text VQA datasets
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Method OCR
System

VQA TextVQA ST-VQA Avg.
test-dev test-std val test test-ANLS

V
Q

A

SimVLMlarge [49] � 79.32 79.56 - - - -

GITVQA
large [46] � 75.51 - - - - -

ALBEF [31] � 75.22 75.38 11.67 13.88 0.19 44.63

OFALarge [47] � 79.70 79.85 22.10 21.47 0.27 50.66

mPLUGViT-B [29] � 79.79 79.81 - - - -

BLIP [30] � 76.39 76.59 20.50 23.74 0.34 50.17

UniTNTBLIP � 79.68 79.78 36.33 35.90 0.50 57.84

Δ ↑ 3.28 ↑ 3.19 ↑ 15.83 ↑ 12.16 ↑ 0.16 ↑ 7.67

Te
xt

V
Q

A

GITTextVQA
large [46] � - - 37.47 - - -

SA-M4C[23] � - - 45.4 44.6 0.50 -

LOGOS [36] � - - 51.53 51.08 0.58 -

M4C [21] � 27.47 27.70 46.53 47.42 0.43 37.56

TAP [52] � 18.76 18.81 54.71 53.97 0.60 36.39

LaTr [7] � - - 59.53 59.55 0.68 -

BLIP [30] � 40.16 40.39 30.12 27.72 0.36 34.06

UniTNTBLIP � 37.01 37.24 50.19 47.39 0.59 42.32

Δ ↓ 3.15 ↓ 3.15 ↑ 20.07 ↑ 19.67 ↑ 0.23 ↑ 8.26

C
om

b.

M4C [21] � 59.11 59.04 47.22 48.61 0.50 53.83

ALBEF [31] � 75.61 75.87 16.15 17.04 0.22 46.46

UniTNTALBEF � 77.60 77.80 43.73 44.13 0.58 60.97

Δ ↑ 1.99 ↑ 1.93 ↑ 27.58 ↑ 27.09 ↑ 0.36 ↑ 14.51
BLIP [30] � 77.40 77.39 32.43 31.48 0.44 54.44

UniTNTBLIP � 79.90 80.08 55.21 55.35 0.66 67.72
Δ ↑ 2.50 ↑ 2.69 ↑ 22.77 ↑ 23.87 ↑ 0.22 ↑ 13.28

Table 2: VQA results. Accuracy of general, scene-text

oriented VQA methods and UniTNT using three training

regimes – separate VQA and TextVQA and combined train-

ing, where non-open vocabulary methods results are in gray.

Δ indicates improvement over the base architecture in the

same regime. These results highlight our method’s effec-

tiveness, significantly improving the general VQA results

by enriching VL models with scene-text understanding.

or general and scene-text captioning datasets). Specifically,

LUniTNT = Lbase + α1LOCR-LM + α2LOCR-BC is minimized,

where Lbase is the base task-dependent loss term used in our

base architecture, and α1, α2 are tunable hyperparameters.

4. Experiments
In this section, we experimentally examine UniTNT,

comparing its performance with state-of-the-art methods

with a similar capacity on both VQA and CAP tasks, us-

ing separate and combined training. In particular, to better

study the effects of our method, we test it and the base-

lines in three distinct training regimes; (i) separate training

on the general datasets, (ii) separate training on the scene-

text ones, and (iii) combined training approach, denoted

as Comb. As we focus on models’ see and read capabili-

ties, we emphasize the combined training regime and view

it as the most crucial one. However, the separate training

regimes can provide insights into the impact of scene-text

understanding on the general benchmarks and the biases

within the scene-text datasets. As in Sec. 2, for each of the

regimes, we consider three standard benchmarks for VQA:

VQAv2 [18], TextVQA [41] and ST-VQA [8], and two for

CAP: COCO Captions [9] and TextCaps [40]. We report

the performance on each benchmark and the non-weighted

averaged one (combined evaluation) to quantify the mod-

els’ reasoning capabilities from both visual and textual in-

formation as a single number. For VQA, we calculate this

Method OCR
System

COCO TextCaps Avg.
Karpathy-test val test

C
ap

s

VinVL [55] � 129.3 - - -

LEMONbase [22] � 133.3 - - -

GIT
Cap
large [46] � 138.5 - - -

SimVLMlarge [49] � 142.6 - - -

OFALarge [47] � 150.7 64.5 66.8 108.8

BLIP [30] � 133.3 59.4 61.9 97.6

UniTNTBLIP � 133.7 59.6 62.8 98.3

Δ ↑ 0.4 ↑ 0.2 ↑ 0.9 ↑ 0.7

Te
xt

C
ap

s

GIT
TextCap
large [46] � - 106.3 - -

MMA-SR [45] � - 98.0 88.0 -

CNMT [42] � - - 93.0 -

M4C-Captioner [40] � 4.7 95.5 90.1 47.4

TAP [52] � 4.6 109.2 103.2 53.9

BLIP [30] � 84.8 112.7 103.7 94.3

UniTNTBLIP � 70.4 130.5 123.1 96.8

Δ ↓ 14.4 ↑ 17.8 ↑ 19.4 ↑ 2.5

C
om

b.

M4C-Captioner [40] � 109.8 102.7 98.0 103.9

BLIP [30] � 133.4 101.4 91.8 112.6

UniTNTBLIP � 134.0 119.1 109.4 121.7
Δ ↑ 0.6 ↑ 17.7 ↑ 17.6 ↑ 9.1

Table 3: CAP results. CIDEr scores of general, scene-text

oriented CAP methods and UniTNT using three training

regimes – separate Caps and TextCaps and combined train-

ing. Δ indicates improvement over the base architecture in

the same regime. These results highlight our method’s ef-

fectiveness, significantly improving the general CAP results

by enriching VL models with scene-text understanding.

score only on VQAv2 and TextVQA test sets. Lastly, in

Sec. 4.3, we present a new subset evaluation setting for

scene-text VQA to measure the model’s ability to answer

questions requiring reasoning over all modalities simultane-

ously. For all datasets, we extract OCR information using

Amazon Text-in-Image1 [35, 38, 1, 26]. The supplementary

materials list the implementation details, additional dataset

information and for completeness, a comparison with other

methods, disregarding the models’ size.

4.1. Visual Question Answering Experiments

We integrate our approach to two models, ALBEF and

BLIP, denoted as UniTNTALBEF and UniTNTBLIP, respec-

tively, and report their performance using three training

regimes: (i) VQA, (ii) TextVQA, and (iii) Comb., as shown

in Tab. 2. In the first regime, training UniTNTBLIP exclu-

sively on VQAv2 results in performance improvements of

+3.19% and +12.16% on VQA, and TextVQA, respec-

tively, leading to a significant boost of +7.67% in the

average score. Even though VQAv2 mainly focuses on

reasoning from visual information, these results stress the

importance of scene-text understanding in this benchmark

and the effectiveness of our method. Interestingly, despite

the marginal presence of OCR in VQAv2, UniTNTBLIP

manages to effectively harness it and obtain 35.90% on

1https://docs.aws.amazon.com/rekognition/
latest/dg/text-detection.html
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Figure 4: Reasoning over all modalities. We curate a subset out of TextVQA [41] validation set, containing only the samples

which require reasoning over both vision and scene-text in the same question. Presented are representative examples from

this subset, each includes an image, question, OCR input tokens, and model predictions. Green and red stand for correct and

wrong predictions, respectively.

Method TextVQA TextVQARead TextVQASee∩Read Gap↓
M4C [21] 46.53 47.94 35.69 12.25

TAP [52] 54.71 56.24 35.83 20.41

UniTNTBLIP 55.21 56.32 44.44 11.88

Table 4: TextVQA splits. Accuracy of leading scene-

text VQA methods on the two non-overlapping subsets of

TextVQA validation data, and the gap between them. ’See-

∩-Read’ refers to our subset, in which reasoning over all

modalities is needed for each sample. ’Read’ stands for the

rest of the TextVQA validation set.

TextVQA, outperforming BLIP that trained solely on

TextVQA itself (27.72%). In the scene-text configuration,

performance improves by +19.67% on TextVQA; however,

it decreases by −3.15% on VQA. This reinforces previous

findings [48, 7], suggesting that scene-text VQA datasets

contain biases encouraging models to over-rely on the OCR

and disregard the visual information. As BLIP’s scene-

text understanding is very restricted, it cannot fully ex-

ploit such biases and retains its visual understanding bet-

ter, expressed via better VQAv2 results. In the final com-

bined training configuration, we showcase the versatility of

our approach by presenting results for both UniTNTALBEF

and UniTNTBLIP, highlighting its model-agnostic nature.

When trained on both types of datasets, UniTNTBLIP im-

proves BLIP by +2.5%, +22.77%, and +13.28% on VQA,

TextVQA, and on average, respectively, achieving the high-

est average score. The results indicate that despite the bi-

ases in scene-text VQA datasets, UniTNT can harness them

without sacrificing the visual reasoning capability. More-

over, UniTNTBLIP trained on the combined dataset outper-

forms models trained on each task separately, attesting to

the tasks’ mutually beneficial relationship, motivating the

community to strive towards models that can see and read.

To gain a better understanding of the enhancements

achieved by UniTNT across both ”see” and ”read” datasets,

we conducted a qualitative analysis of our method, com-

paring it to BLIP and M4C in Fig. 1, Fig. 4 and in the

supplementary materials. Our analysis indicates that the

improvements observed in VQA are due to questions that

necessitate reading and those that become easier to answer

with OCR information. Regarding scene-text VQA, M4C

struggles to reason from visual information, while UniTNT

excels in this regard, resulting in significant performance

improvements on both TextVQA and ST-VQA.

4.2. Image Captioning Experiments

Similar to our VQA experiments, we evaluate the per-

formance of UniTNT on CAP by comparing it to top-

performing methods using the same three training regimes

(Caps, TextCaps, and Comb.). We only integrate our ap-

proach to BLIP (UniTNTBLIP), as ALBEF was not applied

to captioning. As the results in Tab. 3 indicate, in the Caps

regime, our approach slightly improves both the per-task

and the average results. Like in VQA, in the TextCaps

training regime, UniTNT results in significant gains over

TextCaps (+19.4 CIDEr points) but a decline in COCO

(−14.4 CIDEr points), compared to BLIP. Moreover, while

combined training leads to the best COCO results, the best

TextCaps performance is achieved via designated TextCaps

finetuning. This phenomenon aligns with the earlier find-

ings by [40], attributing it to the different nature of ground

truth captions in the scene-text and general benchmarks (ad-

ditional analysis appears in the supplementary materials).

Nevertheless, the combined trained UniTNT leads to the

best average score across all methods and regimes.

4.3. A subset for Reasoning Over All Modalities

As illustrated in Fig. 1, VQA data is composed of three

categories. Some questions can be answered using just

vision (’see’), some by reasoning over the scene-text in-

formation only (’read’), and some require reasoning over

both modalities at once (’see-∩-read’). Since most of the

questions in current benchmarks fall either in the ’see’ or

21724



OCR-Sys OCR-Enc Fuse LOCR−LM LOCR−BC 2-D VQA CAP
VQAv2 TextVQA COCO TextCap

� � � � � � 77.40 32.43 133.4 101.4

� � � � � � 77.66 43.02 133.5 109.7

� � � � � � 78.41 46.13 133.5 110.4

� � � � � � 78.65 47.38 133.5 118.3

� � � � � � 79.86 52.66 133.8 118.9

� � � � � � 79.81 52.66 - -

� � � � � � 79.74 52.93 134.0 119.1

� � � � � � 79.90 55.21 - -

Table 5: UniTNT design choices. UniTNTBLIP results on

VQA and CAP w.r.t its different building blocks.

’read’ category, unifying them is beneficial for testing meth-

ods’ performance on the whole space, denoted by ’see-∪-

read’, eliminating the model’s prior on whether a question

is of type ’see’ or ’read’. However, the more challenging

and intriguing questions are the ones that require reasoning

over scene-text and visual information altogether, denoted

as ’see-∩-read’. To provide a more reliable way to evaluate

VQA models on this questions’ category, we manually cu-

rate all such image-question pairs from the TextVQA [41]

validation set, producing an evaluation subset of 480 image-

question pairs out of the total 5000 (±10%).

This subset can serve as a foundation for measuring

models’ capabilities on what we believe are the more

challenging questions that the research community should

tackle. In Fig. 4, we depict examples from this sub-

set alongside the prediction of M4C [21], BLIP [30], and

UniTNT. This qualitative analysis confirms that both scene-

text and general VQA models struggle to cope with this

type of questions, while UniTNT is substantially better.

Moreover, in Tab. 4 we report the quantitative results of

leading scene-text-oriented methods and UniTNT on the

non-overlapping subsets of TextVQA validation set, i.e.,
the ’TextVQASee∩Read’ subset and its complementary set,

’TextVQARead’, exposing the performance degradation that

occurred on the former. As these findings suggest, our

method leads to the best performance, affirming that it is

indeed better at reasoning on scene-text and visual infor-

mation simultaneously. Nevertheless, as can be seen, while

UniTNT is a step forward, there is still a big room to im-

prove on these types of challenging questions.

5. Ablation Studies
In this section, we study the effect of our key contribu-

tions and test the impact of freezing the vision encoder.

Design Choices: We ablate UniTNT’s components on both

the general and scene-text-oriented datasets in Tab. 5, where

all numbers are reported under the Comb. settings. Since

the trends in CAP results are similar to VQA, we will fo-

cus on analyzing the latter. First, we report the added per-

formance of a naive approach – simply inserting the OCR

tokens as an additional input to BLIP’s existing text en-

coder, similar to [21, 52, 7]. As seen in Tab. 5, the accu-

Method Freeze
VE

VQA TextVQA Avg.
test-dev val

UniTNTALBEF � 75.55 40.60 58.08

UniTNTALBEF � 77.60 43.73 60.67

UniTNTBLIP � 78.77 52.45 65.61

UniTNTBLIP � 79.90 55.21 67.56

Table 6: Visual encoder freezing. VQA accuracy of

UniTNTBLIP and UniTNTALBEF , with and without freezing

the visual encoder, attesting to the freezing’s importance.

racy on TextVQA improves by +10.59% (from 32.43% to

43.02%) while improving VQA results by +0.22%. Our

designated OCR encoder increases TextVQA performance

to 46.13% (+3.11%) while obtaining an additional +0.75%
gain in VQA. Introducing our VL-OCR decoding scheme

(denoted as “Fuse”) boosts us to 47.37% on TextVQA and

an extra +0.24% on VQA. Furthermore, using LOCR-LM

significantly improves TextVQA performance by +5.22%
(from 47.38% to 52.66%) while gaining an extra +1.21%
on VQA. Finally, the combination of LOCR-BC with the 2-

D information gets us to 55.21% and 79.9% on TextVQA

and VQA. Overall, UniTNT leads to significant +22.78%
and +2.50% improvements on TextVQA and VQA over the

combined trained BLIP.

The Effect of Freezing the Visual Encoder: Recently, a

few works [43, 3, 54] have examined different freezing con-

figurations to avoid knowledge forgetness when combining

pretrained models. Inspired by these works, we examine the

effect of freezing the Visual Encoder (VE) weights while

applying UniTNT, preserving its valuable knowledge ac-

quired in pretraining, and summarize the results in Tab. 6.

As our findings suggest, freezing the VE significantly im-

proves the results on VQA for both UniTNTALBEF and

UniTNTBLIP by +2.05% and +1.13%, and on TextVQA by

+3.13% and +2.75%, respectively.

6. Discussion and Conclusions

We wish to convey a few take-home messages to the VL

research community. First, current SOTA methods cannot

adequately reason over both scene-text and vision informa-

tion. Our experiments demonstrate that this occurs even

when combining training datasets, suggesting a fundamen-

tal limitation of existing methods. Second, our findings dis-

cover the symbiotic nature of these two types of reasoning

capabilities, as performance on both tasks can be improved

jointly. Moreover, by proposing UniTNT, we present the

first single model that successfully handles both task types.

Finally, we argue that the VL research community should

strive to develop models that can simultaneously reason

over vision, language, and scene-text. To facilitate this, we

curate a suitable subset to serve as a benchmark foundation.
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