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Abstract

We propose Strivec, a novel neural representation that
models a 3D scene as a radiance field with sparsely dis-
tributed and compactly factorized local tensor feature grids.
Our approach leverages tensor decomposition, following
the recent work TensoRF [6], to model the tensor grids. In
contrast to TensoRF which uses a global tensor and focuses
on their vector-matrix decomposition, we propose to uti-
lize a cloud of local tensors and apply the classic CANDE-
COMP/PARAFAC (CP) decomposition [4] to factorize each
tensor into triple vectors that express local feature distribu-
tions along spatial axes and compactly encode a local neu-
ral field. We also apply multi-scale tensor grids to discover
the geometry and appearance commonalities and exploit
spatial coherence with the tri-vector factorization at mul-
tiple local scales. The final radiance field properties are re-
gressed by aggregating neural features from multiple local
tensors across all scales. Our tri-vector tensors are sparsely
distributed around the actual scene surface, discovered by a
fast coarse reconstruction, leveraging the sparsity of a 3D
scene. We demonstrate that our model can achieve better
rendering quality while using significantly fewer parame-
ters than previous methods, including TensoRF and Instant-
NGP [23].

1. Introduction
Representing 3D scenes as radiance fields [22] has en-

abled photo-realistic rendering quality and emerged as a
popular design choice in 3D vision and graphics appli-
cations. While many methods [27, 42, 3] (following
NeRF [22]) purely use MLPs to represent neural fields, re-
cent works, like TensoRF [6] and Instant-NGP [23], have
demonstrated the advantages of using shared global feature
encoding for radiance field modeling, in terms of speed,
compactness, and quality. However, these methods share
and assign neural features uniformly in a scene (with ten-
sor factors or hash tables), assuming the scene content is
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Figure 1: We compare with previous methods in terms of
rendering quality (PSNR) and model capacity (number of
parameters) on the NeRF Synthetic dataset on the bottom.
Our method and TensoRF are shown with different model
sizes. Our approach consistently achieve better rendering
quality with fewer model parameters than TensoRF, as well
as other methods like iNGP. On the top, we show one ex-
ample of visual comparisons of the mic scene that has chal-
lenging fine-grained geometric structures, where our ap-
proach captures most of the details and is the closest to
the reference. Note that the results of NeRF and Point-
NeRF use 200k optimization steps while the rest use only
30k steps.

equally complex over the entire space, which can be inef-
ficient (requiring high model capacity) to accurately model
intricate local scene details (see Fig.1).

We aim to accurately and compactly model a 3D scene
and reproduce the complex local details. To this end, we
propose Strivec, a novel neural scene representation that
utilizes sparsely distributed and compactly factorized local
tensor grids to model a volumetric radiance field for high-
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quality novel view synthesis. As shown in Fig.1, our ap-
proach is able to accurately model the complex scene struc-
tures that are not recovered well by previous methods. More
importantly, our superior rendering quality is achieved with
much less model capacity.

In particular, we base our model on TensoRF [6], a recent
approach that leverages tensor factorization in radiance field
modeling. It is fast, compact, and of high rendering quality.
TensoRF applies CP and vector-matrix (VM) decomposi-
tion techniques to factorize a field into vectors and matri-
ces and model the entire scene as a global factorized ten-
sor. Instead of a single global tensor, we leverage a sparse
set of multiple small local tensors distributed around the
scene surface for more efficient scene modeling. Specifi-
cally, each of our tensors represents a local radiance field in-
side its local bounding box and is compactly modeled with
factorized triple vectors based on the CP decomposition.

Note that the global CP decomposition in TensoRF has
led to a highly compact model but cannot achieve compa-
rable rendering quality to their VM decomposition. This
is because a tri-vector CP component is rank-one, while a
global feature grid of an entire 3D scene is often complex
and of high rank, requiring a large (impractical) number of
CP components for high accuracy. TensoRF addresses this
by introducing matrix factors in their VM decomposition,
essentially increasing the rank of each tensor component.
Our model instead consists of multiple small tensor grids,
exploiting local spatial commonalities in a scene. Com-
pared to a global tensor, our local tensor is less complex and
of much lower rank, thus effectively reducing the required
number of CP components (per tensor) and enabling prac-
tical high-quality radiance field reconstruction with highly
compact tri-vector factors. Our local tri-vector tensors can
lead to superior rendering quality and compactness over
TensoRF’s VM model (see Fig. 1). We also observe that our
local tensors are generally more robust than a global tensor
against the orientation of spatial axes (which can affect the
rank of a tensor and thus affects the quality; see Fig. 2).

Importantly, adopting local tensors (instead of a global
one) also brings us the flexibility to allocate neural features
according to the actual scene distribution, enabling more
efficient scene modeling and better usage of model param-
eters than a global representation. To do so, we pre-acquire
coarse scene geometry – that can be easily achieved via
a fast RGBσ volume reconstruction (like DVGO [32]) or
multi-view stereo (like Point-NeRF [39]) – to directly dis-
tribute local tensors around the actual scene surface, leading
to a sparse scene representation that avoids unnecessarily
modeling the empty scene space. Note that while previous
methods have also leveraged sparse representations (with
voxels [19, 41] or points [39]) of radiance fields, their lo-
cal features are modeled and optimized independently. Our
model instead correlates a group of local features inside a

local box and compactly express them with triple vectors,
uniquely exploiting the local spatial coherence along axes
and imposing local low-rank priors in the feature encoding
via tensor factorization. Moreover, unlike previous sparse
representations that only use a single-scale feature grid or
point cloud, we distribute multi-scale local tensors to effec-
tively model the scene geometry and appearance at multiple
scales in a hierarchical manner. In particular, for an arbi-
trary 3D location, we aggregate the neural features from its
neighboring tri-vector components at all scales and decode
the volume density and view-dependent color from the ag-
gregated features for radiance field rendering.

Our approach takes the best of previous local and global
radiance field representations. Compared with global repre-
sentations like TensoRF and Instant-NGP, our model takes
advantage of the sparsity of a scene more directly; com-
pared with local representations like Plenoxels and Point-
NeRF, our model makes use of the local smoothness and
coherence of scene geometry and appearance. As shown in
our experimental results on both synthetic and real datasets,
our model is able to achieve state-of-the-art rendering qual-
ity on these datasets, outperforming previous methods, in-
cluding TensoRF and Instant-NGP, while using significantly
fewer model parameters, demonstrating the superior repre-
sentational power of our model.

2. Related Work
Scene representations. To represent a 3D scene, tradi-
tional and learning-based methods have studied various rep-
resentations, such as depth map [13, 18], mesh [15, 36, 30],
point cloud [28, 1, 35] and implicit function [7, 21, 24, 40].
In recent years, continuous neural field representations
stand out in various 3D tasks such as single-view 3D recon-
struction [38, 11], surface completion [8, 26], multi-view
reconstruction [24] and novel view synthesis [22, 20]. Com-
pared with traditional discrete representations, a continuous
field have no limitation on spatial resolution, e.g., volume
resolution or the number of points. It can also naturally be
represented by neural networks, such as an MLP, which are
known for approximating complex functions well.

Neural field representations. Specifically, NeRF [22]
represents a 3D scene as a radiance field with a global co-
ordinate MLP, which models geometry, lighting and tex-
ture information jointly, leading to photo-realistic render-
ing quality in novel view synthesis. Apart from its advan-
tage, purely MLP-based NeRF models [3, 34] in general
suffer from inefficiency [2] when modeling highly complex
or large-scale scenes, due to limited model capacity, slow
optimization speed, and the cost of modeling empty space.

To model radiance fields more efficiently, recent works
have explored combining neural fields with various tradi-
tional 3D representations, including voxels [19, 41, 32, 43]
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and points [39]. Low-rank representations such as tri-
plane [5, 10] and tensor decomposition [6, 25] have also
been studied. In particular, DVGO [32] and Plenoxels [41]
respectively use dense and sparse voxels with neural fea-
tures for radiance field modeling. While being efficient
to optimize, these localized feature grid-based represen-
tations lead to a large model size and can face overfit-
ting issues when the features are of very high resolution.
Consequently, DVGO can also work with a low-resolution
grid and Plenoxels requires additional spatial regularization
terms. On the other hand, recent works have adopted global
feature encoding to express a high-resolution feature grid,
including Instant-NGP [23] that hashes spatial features into
multi-scale hash tables and TensoRF [6] that factorizes a
feature grid into vector and matrix factors. These global fea-
ture encoding methods exploit the spatial correlation across
the entire scene space, leading to fast and compact recon-
struction and surpassing previous MLP-based or grid-based
representations on rendering quality. However, similar to
NeRF, such global representation can also be limited by its
model capacity when representing highly complex or large-
scale content.

Our approach instead combines local and global repre-
sentations. Our tri-vector fields are sparsely distributed in
the scene, similar to local representations (like plenoxels
and Point-NeRF); meanwhile, features in each field are rep-
resented by tri-vector components shared across the local
region as done in TensoRF, exploiting spatial feature com-
monalities. Our model leverages both spatial sparsity and
coherence, leading to much higher compactness and better
reconstruction quality than previous local and global repre-
sentations (see Tab. 1).

Relevant to our work, previous methods, such as Kilo-
NeRF [29] and BlockNeRF [33] have also utilized multiple
local MLPs to represent a scene. Specifically, KiloNeRF fo-
cuses and speeding up NeRF and their rendering quality is
sacrificed; BlockNeRF essentially uses multiple NeRFs to
increase the total model capacity. Instead of pure MLPs, our
work is built upon tensor factorization-based feature encod-
ing as done in TensoRF [6], and we in fact achieve superior
rendering quality while decreasing the model capacity.

3. Sparse Tri-Vector Field Representation

We now present our novel radiance field representation.
In essence, our model consists of a cloud of small local tri-
vector tensors at multiple scales, designed to leverage both
sparsity and multi-scale spatial coherence (see Fig. 2).

Let T = {τn|n = 1, ..., N} denote a cloud of tri-vector
tensors. Each local tensor τ is located at p, covering a local
cuboid space ω with an edge length of l. This cloud of tri-

vector tensors represents a radiance field for the 3D space:

Ω =

N⋃
n=1

ωn. (1)

Here, each tensor τ encodes a local multi-channel fea-
ture grid that includes a (single-channel) density grid Aσ

and a (multi-channel) appearance grid Ac, similar to the
tensor grid in TensoRF [6]. In contrast to using a single
global tensor in TensoRF [6], we model the volume den-
sity and view-dependent colors with multiple local tensors.
In particular, for an arbitrary location χ ∈ Ω, we select M
nearest tensors that cover χ. Across the selected tensors, we
aggregate the extracted density and appearance features re-
covered by their tri-vector factors for radiance field property
regression, where the volume density σ is directly obtained
after the aggregation and the view-dependent color c is re-
gressed by a small MLP ψ along with the viewing direction
d. The continuous radiance field can be expressed as:

σχ, cχ = Aσ({Gσ(χ)}), ψ(Ac({Gc(χ)}),d). (2)

3.1. Local tri-vector tensors.

We apply the classic Canonical polyadic (CP) decompo-
sition [4] to model our local tensors with tri-vector compo-
nents.

CP decomposition. CP decomposition factorizes aM di-
mension tensor τ ∈ RI1×I2×...×IM into a linear combina-
tion of R rank-1 tensors:

τ =

R∑
r=1

λrv
0
r ⊗ v1

r ⊗ ...,⊗vM
r , (3)

where ⊗ denotes outer product; the weighting factor λr can
be absorbed into vectors {v0

r , ...,v
M
r }.

Density and appearance tensors. In our case of mod-
eling a 3D radiance field, we set the geometry grid Gσ ∈
RI×J×K as a 3D tensor. And the multi-channel appearance
grid Gc ∈ RI×J×K×P corresponds to a 4D tensor. The
fourth appearance mode is of lower dimension (compared
with the spatial modes), representing the final dimension of
the features sent to the MLP decoder network.

According to Eqn.3, we factorize each tensor’s feature
grids, Gσ and Gc, by CP decomposition:

Gσ =

Rσ∑
r=1

Aσ,r =

Rσ∑
r=1

vX
σ,r ⊗ vY

σ,r ⊗ vZ
σ,r, (4)

Gc =

Rc∑
r=1

Ac,r ⊗ br =

Rc∑
r=1

vX
c,r ⊗ vY

c,r ⊗ vZ
c,r ⊗ br, (5)
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Figure 2: Overview of our Sparse Tri-Vector Radiance Fields. We distribute our local tensors based on a coarse geometry
estimated by a fast RGBσ volume reconstruction as done in DVGO [32]. Here, we show our model running under S = 2
scales. Each local tensor is factorized as axis-aligned triple based on CP decomposition. For any shading point χ, we extract
and evaluate features in each local tensor, according to the factorization (Sec. 3.1). Then, we aggregate these features among
nearby tensors (Sec. 3.2) and across different scales (Sec. 3.3). Finally, the density and color are decoded (Sec. 3.4) and used
by volume rendering (Sec.4).

Here Rσ and Rc denote numbers of component; Aσ,r and
Ac,r are the component tensors that are factorized spatially;
vX
σ,r, ...,v

X
c,r, ... are the 1D vectors with resolution I, J,K,

modeling scene geometry and appearance along X,Y, Z
axis; Rσ and Rc are the component numbers; br expresses
the feature dimension.

As done in TensoRF [6], we stack all feature-mode vec-
tors br as columns together, which ends up a P×Rc appear-
ance matrix B. This matrix models the appearance feature
variations of the tensor and functions like a appearance dic-
tionary. Note that naively following CP decomposition like
TensoRF will assign a different appearance matrix for every
local tensor. Instead, we propose to utilize a global appear-
ance matrix Bc shared across the entire cloud of local ten-
sors, leading to a global appearance dictionary that explains
the color correlations across scene. This further improves
both the computational efficiency and model compactness
of our model.

Therefore, each of our local tensors is represented by
their unique local tri-vector factors vX

r , vY
r , vZ

r .

Feature evaluation. To achieve a continuous field, we
consider trilinear interpolation when evaluating the tensor
grid features. For a location χ, we first compute its relative
position χ̃ to the selected tensor located at p:

x̃, ỹ, z̃ = x− px, y − py, z − pz. (6)

Then, for example, to get Aσ,r at (x̃, ỹ, z̃), we can com-
pute and trilinearly interpolate eight Aσ,r on the corners.
As mentioned in [6], applying linear interpolation on each

vector first is mathematically equivalent and can reduce the
computation cost. Under the rule of outer product, we have
Ar,i,j,k = vX

r,iv
Y
r,jv

Z
r,k, then the interpolated density fea-

tures at location χ are:

Gσ(χ) =
∑
r

vX
σ,r(x̃)v

Y
σ,r(ỹ)v

Z
σ,r(z̃) =

∑
r

Aσ,r(χ̃), (7)

where vX
σ,r(x̃) is vX

σ,r’s linearly interpolated value at (x̃)
along its X axis. Here, Gσ(χ) is a scalar.

Similarly, the interpolated appearance features can be
computed as:

Gc(χ) =
∑
r

vX
c,r(x̃)v

Y
c,r(ỹ)v

Z
c,r(z̃)br (8)

=
∑
r

Ac,r(χ̃)br (9)

= B · (⊕[Ac,r]r), (10)

where “⊕” denotes concatenation, “·” denotes dot product.
The appearance feature Gc(χ) ∈ RP is a vector.

3.2. Feature aggregation.

We propose to aggregate the features from M neigh-
boring tensors to jointly model the volume density and ap-
pearance for each 3D location χ. In particular, inspired by
Point-NeRF, we leverage an inverse distance-based weight-
ing function to directly aggregate the multi-tensor features.
Specifically, this weight can be expressed by

wm =
1

∥pm − χ∥
. (11)
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With this weight function, we directly obtain the density
feature via the weighted sum:

fσ(χ) =
1∑
wm

M∑
m=1

wmGσ
m(χ). (12)

Similarly, the appearance feature aggregation can be ex-
pressed in a similar way, while using the shared appearance
matrix (as described in Sec. 3.1) across local tensors:

f c(χ) =
1∑
wm

M∑
m=1

wmGc
m(χ) (13)

=
1∑
wm

M∑
m=1

wmBc · (⊕[Ac,r]r) (14)

=
1∑
wm

Bc · (
M∑

m=1

wm(⊕[Ac,r]r)). (15)

Note that owing to sharing the appearance matrix across
tensors, we reduce the computational complexity from
O(M · P ·Rc) in Eqn.14, to O((M + P ) ·Rc) in Eqn.15.

3.3. Multi-scale tri-vector fields.

Complex 3D scenes often contain multi-frequency ge-
ometry and appearance details. This motivates us to build
multi-scale tensor clouds to discover the local geometry and
appearance commonalities at multiple scales. Our final ra-
diance field is modeled by multiple tri-vector tensor clouds
at S different scales. Different clouds consist of tensors
with different resolutions.

To regress the density and appearance at a location χ,
we gather the density and appearance features from a set of
tensor clouds that cover χ, {Ts|1 ≤ s ≤ S, χ ∈ Ωs}. Please
note that tensor clouds of certain scales might not cover the
location, so that ∥{Ts}∥ ≤ S. We simply compute the mean
features across these scales:

fσ(χ) =
1

∥{Ts}∥
∑
s

fσs (χ), (16)

f c(χ) =
1

∥{Ts}∥
∑
s

f cs (χ). (17)

Note that fσ(χ) and f c(χ) are the final density and ap-
pearance features we aggregate across multiple scales and
multiple neighboring tensors.

3.4. Decoding.

We apply softplus activation on the density feature
fσ(χ) to obtain the final volume density and regress the
view-dependent color by sending the appearance feature
f c(χ) and the viewing direction d to the MLP decoder ψ.

4. Rendering and Reconstruction

Volume Rendering We evaluates each pixel’s color with
physically-based volume rendering via differentiable ray
marching. Following NeRF [22], we sample Q shading
points at {χq | q = 1, ..., Q} along the ray, and accumu-
late radiance by density:

c =

Q∑
q=1

Tq(1− exp(−σqδq))cq,

Tq = exp(−
q−1∑
t=1

σtδt).

(18)

σq and cq are the density and radiance at shading points; δt
is the marching distance per step; T denotes transmittance.

Distributing local tensors. First of all, to better leverage
the sparsity of a scene, we first obtain a geometric prior that
roughly covers the scene geometry. The geometric prior
can be in any commonly-used form, e.g., point cloud, oc-
cupancy grid, octree, or mesh vertices. Then we can uni-
formly distribute tensors in the spatial neighborhood of the
geometry. For a multi-scale model, each of the scale will
be distributed independently. For most of our results, we
quickly optimize a coarse RGBA volume from the multi-
view images and use the optimized occupancy grid as the
geometry prior, as done in DVGO [32], which finishes in
seconds.

To maintain training stability and speed, each tensor τ ’s
position p and coverage ω is fixed once determined. We also
initialize the 3(Rσ +Rc) vectors (vX

σ,r, ...,v
X
c,r, ...) of each

tensor by normal distribution. For each scale s, a P × Rc

appearance matrix Bc
s is shared by all tri-vector tensors of

that scale. Specifically, “Bc ·()” in Eqn.15 can be efficiently
implemented as a fully-connected neural layer. Therefore,
Bc for each scale and a global appearance MLP ψ will be
implemented as neural networks and initialized by default
methods [12].

Optimization and objectives. Given a set of multi-view
RGB images with camera poses, the sparse tri-vector radi-
ance field is per-scene optimized to reconstruct the radiance
fields, under the supervision of the ground truth pixel col-
ors. Following the volume rendering equation 18, the L2
rendering loss can be past back to the global MLP and ag-
gregated features, then, all the way to the the appearance
matrices and the feature vectors of local tensors.

We apply a rendering loss to supervise the reconstruc-
tion and also apply an L1 regularization loss on density fea-
ture vectors vσ,r to promote geometry sparsity and to avoid
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Method BatchSize Steps Time↓ # Param.(M)↓ PSNR↑ SSIM↑ LPIPSV gg ↓ LPIPSAlex ↓
NeRF[20] 4096 300k 35.0h 1.25 31.01 0.947 0.081 -

Plenoxels[41] 5000 128k 11.4m 194.50 31.71 0.958 0.049 -
DVGO[32] 5000 30k 15.0m 153.00 31.95 0.960 0.053 0.035

Point-NeRF200k[39] 4096 200k 5.5h 27.74 33.31 0.962 * 0.049 0.027
InstantNGP[23] 10k-85k 30k 3.9m 11.64 32.59 0.960 - -
TensoRF-CP[6] 4096 30k 25.2m 0.98 31.56 0.949 0.076 0.041
TensoRF-VM[6] 4096 30k 17.4m 17.95 33.14 0.963 0.047 0.027

Ours-24 4096 30k 34.3m 7.07 33.24 0.963 0.046 0.026
Ours-48 4096 30k 35.7m 13.52 33.55 0.965 0.044 0.025

Table 1: Comparisons of our method with other radiance-based models [20, 37, 19, 39, 6, 23] on the Synthetic-NeRF dataset
[20]. Ours-24 is the one with 24 components while Ours-48 is the one with 48 components. We report the corresponding
rendering quality (PSNR, SSIM, and LPIPS), model capacity (number of parameters), and training time, batch size and steps.
Our model achieves the best rendering quality with a compact model size. We report PointNeRF’s updated SSIM.

overfitting as done in TensoRF [6]:

Lr = ∥C − C̃∥22, (19)

LL1 =
1

N

Rσ∑
r

∥vσ,r∥, (20)

where C̃ is the ground truth pixel color, ∥vσ,r∥ is the sum
of absolute values of elements on density vectors, and N is
the total number of elements. The total loss is:

L = Lr + αLL1. (21)

We set the weight of the sparsity term α as 1e−5 by default.

5. Implementation
To obtain coarse scene geometry, we modify the coarse

density estimation introduced in [32] and get a 1003 occu-
pancy volume in 30 seconds. We can skip this step if there
exists available geometric data, e.g., the meshes in Scan-
Net [9], or point clouds from multiview stereo. According
to the experiments, our method is not very sensitive to the
initial geometry. Please refer to our supplementary mate-
rial for more details. We set the default number of scales
to 3. In a scene box of [-1,1], we rasterize the scene ge-
ometry (occuppied voxels centers or points) onto 3 grids
with different voxel sizes, e.g., 0.43, 0.23, 0.13. For each
grid, we distribute tri-vector tensors at the center of its oc-
cupied voxels. The tensor spatial coverage of these 3 scales
is 0.63, 0.33, 0.153, respectively. For each scale, we query
M = 4 nearby tensors. Following [32], our feature decod-
ing network ψ is a 2-layer MLP with 128 channels. For
each scale, its appearance matrix Bc is implemented by a
single linear layer of 27 channels.

We implement the framework in PyTorch [14] with cus-
tomized CUDA operations. During optimization, we adopt
the coarse to fine strategy in [6], linearly up-sample the
vectors’ dimension (I, J,K) from 29 to 121 for scale one,

15 to 61 for scale two, and 7 to 31 for scale three. The
up-sampling happens at step 2000, 3000, 4000, 5500, and
7000. We use the Adam optimizer [16] with initial learning
rates of 0.02 for vectors and 0.001 for networks. On a single
3090 RTX GPU, we train each model for 30000 steps while
each batch contains 4096 rays. Please find more details in
the supplemental materials.

6. Experiments
6.1. Evaluation on the NeRF Synthetic Dataset.

We first evaluate our method on the Synthetic-NeRF
dataset [20] and the quantitative results compared with
other methods are reported in Tab.1, including NeRF [22],
Plenoxels [41], DVGO [32], Point-NeRF [39], iNGP [23],
and TensoRF [6]. We report our models of two different
model sizes with different numbers of components; both
settings are with the same 3 scales of local tensors.

Our approach achieves the best averaged PSNR,
LPIPSV gg and LPIPSAlex in all the methods, leading to
superior visual quality as shown in Fig. 3 Meanwhile, our
high rendering quality is achieved with a compact model
size. When compared with local voxel-based representa-
tions, such as Plenoxels and DVGO, our approach are sig-
nificantly better.

On the other hand, global featuring encoding-based
methods, like iNGP and TensoRF, are known for their high
compactness and can achieve higher rendering quality than
local voxel-based methods. Nonetheless, our method can
still outperform them. Note that, even our smaller model
(Ours-24) leads to better rendering quality than both iNGP
and TensoRF that leverage global feature encoding, while
our model uses significantly fewer parameters (about 60%
and 40% of the size of iNGP and TensoRF). This clearly
demonstrates the high visual quality and high compatness
of our model with our sparsely distributed tri-vector tensors.

In all the baseline methods, Point-NeRF is able to
achieve relatively higher rendering quality than others.
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Ours-48INGP ReferenceTensoRF-VM-192 Point-NeRF

Figure 3: Qualitative comparisons on the NeRF Synthetic dataset [22].

However, this is enabled by optimizing their model for 300k
steps with a long period of 5.5 hours. In contrast, our
method achieves higher quality with significantly fewer op-
timization steps (only 30k) and optimization time (about 36
min). As expected, our model is slower to optimize than
TensoRF due to the additional costs of multi-tensor aggre-
gation. However, though speed is not our focus in this work,
our model can still converge quickly and lead to signifi-
cantly faster reconstruction than MLP-based methods, such
as NeRF, as well as Point-NeRF that is point-based.

Performance w.r.t. rotation. We observe that tensor
factorization-based methods can be sensitive to the orien-
tation of the coordinate frames, since axis-aligned features
are used; in essence, this is because the rank of a sparse ten-
sor is sensitive to rotation, as shown in Fig. 4. Especially,
this can benefit reconstruction on synthetic synthetic scenes
where the objects are perfectly aligned with the axes, e.g.
the lego scene in the NeRF synthetic data. However, we
find that our method based on local tensors are more robust
against the orientation of the axes than a global TensoRF. In
particular, we compare our method with TensoRF in Tab.2
with different degrees of rotation around the Z axis on two
scenes, lego (which is strongly aligned with axes) and chair
(which is less aligned and thus less affected ) . As shown in
the table, while both methods are affected by the rotation,
our method has much smaller drops of PSNRs.

chair / lego rot 0◦ rot 5◦ rot 45◦

TensoRF-CP 33.60 / 34.50 32.90 / 29.79 32.50 / 28.57
TensoRF-VM 35.76 / 36.46 34.91 /32.53 34.55 / 32.31
Ours-48 35.88 / 36.52 35.72 / 35.37 35.64 / 34.97

Table 2: Comparisons of our method with TensoRF [6] on
the chair and lego scenes of Synthetic-NeRF dataset [20]
when considering rotation of different angles around z-axis.

Figure 4: A toy example to illustrate the TensoRF-CP with
global decomposition in (left) axis-aligned and (right) non-
axis-aligned situations. The bottom shows the grid values.
In axis-aligned case, only 1 component is needed to rep-
resent the scene (vector bases recover grid values by outer
product). In non-axis-aligned case, however, 3 components
are needed because the rank of matrix changes from 1 to 3
after scene rotation. While our design with local low-rank
tensors can alleviate this issue.

6.2. Evaluation on the real datasets.

The ScanNet dataset. We evaluate our method on the real
dataset, ScanNet [9] with the two scenes selected by NSVF
[19], and compare with other methods. We follow the
same experiment setting as done in NSVF [19], using the
provided mesh to distribute our tensors, and optimize our
model, TensoRF for the same 100k steps for fair compar-
isons. Please note that Point-NeRF uses all scanned depth
images as initial geometry instead of meshes. Therefore, we
also obtain the results of Point-NeRF 100k steps from the
authors, using the provided mesh for fairness. We find the
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Figure 5: Qualitative comparisons on the ScanNet dataset.

Average over Scene 101 and Scene 241
PSNR ↑ SSIM ↑ LPIPSAlex ↓# Param.(M) ↓

SRN [31] 18.25 0.592 0.586 -
NeRF [20] 22.99 0.620 0.369 -
NSVF [19] 25.48 0.688 0.301 -
Point-NeRF[39] 25.92 0.891 0.273 159.01
TensoRF-CP[6] 27.54 0.751 0.328 0.97
TensoRF-VM[6] 28.61 0.787 0.290 49.92
Ours-48 29.05 0.792 0.243 12.82

Table 3: Quantitative comparison on two scenes in the
ScanNet dataset [9]. Point-NeRF, TensoRF-CP, TensoRF-
VM and Ours-48 are optimized for 100k steps.

Scannet data has many holes in the provided mesh geome-
try, while methods, such as NSVF and Point-NeRF, require
accurate initial geometry; though Point-NeRF can poten-
tially fix them with it point growing technique as shown in
their original paper, it is not able to fully address them in
100k step optimization and lead to holes in their final ren-
dering. Our approach instead does not require very accu-
rate coarse geometry, since our local tensors cover relatively
large regions. We show the quantitative results in Tab. 3 and
qualitative results in Fig. 5. Note that our method can also
perform well on real scenes, achieving the highest perfor-
mance in terms of PSNR and LPIPSAlex, while using the
second smallest model size (the smallest one is TensoRF-
CP100k). Our visual quality is also higher than the compar-
ison methods.

The Tanks and Temples dataset. We also evaluate our
method on another real dataset, Tanks and Temples [9]
with the 5 object scenes selected by NSVF [19]. We us-
ing the very coarse geometries estimated by DVGO[32]
to distribute our tensors. We follow the same experiment
setting as done in TensoRF [6], optimizing our model for
the same 30k steps for fair comparisons. As is shown in

Tab. 3, our method outperforms other methods in terms of
PSNR, SSIM and LPIPSAlex, while using the second small-
est model size.

Scale PSNR ↑ SSIM ↑ # Param.(M) ↓ Time ↓
Single(0.6) 32.22 0.957 1.75 18.22m
Single(0.3) 32.73 0.961 4.15 21.31m
Single(0.15) 31.96 0.952 10.20 28.55m
Multi(0.6, 0.3) 33.11 0.963 6.20 30.12m
Multi(0.6, 0.3, 0.15) 33.55 0.965 13.52 35.70m

Table 4: Ablation under different scale settings on
Synthetic-NeRF dataset. We select 3 scales of tensors with
cube sizes of 0.6, 0.3, and 0.15.

6.3. Ablation study

We analyze our model in terms of different scales in Ta-
ble.4, while keeping the number of components the same
(here we use 48). The scale here is the size of our local
tensors of each axis. We considered 3 different scales, i.e.,
0.6, 0.3, and 0.15 respectively as single-scale settings and
some of their combinations as multi-scale settings. Note
that even with a single scale (0.3), the performance of our
method can be comparable with some other methods such
as iNGP [23] while ours have less than half of the model
size. When increasing the number of scales or decreasing
the size of local tensors, our model size will also increase.
In general, there is a trade-off of our method between scales
and computational consumption (time and size).

Usually, a smaller scale can lead to better performance,
though our method with a scale of 0.15 does not strictly
follow because we don’t have high-quality input geome-
try to place these local tensors with a very small size. In
fact, according to our per-scene breakdown results on the
Synthetic-NeRF dataset (please refer to our supplemental
material), single-scale(0.075) can achieve higher perfor-
mance than single-scale(0.3) and single-scale(0.15) on most
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scenes, except for ship because it has many thin structures
that our coarse reconstruction does not cover.

PSNR ↑ SSIM ↑ LPIPSAlex ↓ # Param.(M) ↓
NeRF [22] 25.78 0.864 0.198 -
NSVF [19] 28.40 0.900 0.153 -
TensoRF-CP30k[6] 27.59 0.897 0.144 0.97
TensoRF-VM30k[6] 28.56 0.920 0.125 49.92
Ours-4830k 28.70 0.922 0.113 14.11

Table 5: Quantitative comparison on scenes in the Tanks
and Temples dataset [17] selected in NSVF [19]. TensoRF-
CP, TensoRF-VM and Ours-48 are optimized for 30k steps.

We also compare our method with a variant that uses
vector-matrix (VM) decomposition [6] in each local tensor
instead of CP decomposition. Please refer to Appendix.A.
for more details. Also, we can achieve a higher training
and inference speed without a significant performance drop,
which we refer to the supplementary material.

7. Conclusion
In this work, we have presented a novel approach

for high-quality neural scene reconstruction and photo-
realistic novel view synthesis. We propose a novel ten-
sor factorization-based scene representation, which lever-
ages CP decomposition to compactly model a 3D scene as
a sparse set of multi-scale tri-vector tensors that express lo-
cal radiance fields. Our representation leverages both spar-
sity and spatial local coherence, and leads to accurate and
efficient modeling of complex scene geometry and appear-
ance. We demonstrate that the sparse tri-vector radiance
fields can achieve superior rendering quality than previous
state-of-the-art neural representations, including TensoRF
and iNGP, while using significantly fewer parameters.
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