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Abstract

While state-of-the-art monocular depth estimation ap-
proaches achieve impressive results in ideal settings, they
are highly unreliable under challenging illumination and
weather conditions, such as at nighttime or in the presence
of rain. In this paper, we uncover these safety-critical is-
sues and tackle them with md4all: a simple and effective
solution that works reliably under both adverse and ideal
conditions, as well as for different types of learning super-
vision. We achieve this by exploiting the efficacy of existing
methods under perfect settings. Therefore, we provide valid
training signals independently of what is in the input. First,
we generate a set of complex samples corresponding to the
normal training ones. Then, we train the model by guiding
its self- or full-supervision by feeding the generated sam-
ples and computing the standard losses on the correspond-
ing original images. Doing so enables a single model to
recover information across diverse conditions without mod-
ifications at inference time. Extensive experiments on two
challenging public datasets, namely nuScenes and Oxford
RobotCar, demonstrate the effectiveness of our techniques,
outperforming prior works by a large margin in both stan-
dard and challenging conditions. Source code and data are
available at: https://md4all.github.io.

1. Introduction
Estimating the depth of a scene is a fundamental task

for autonomous driving and robotics navigation. While
supervised monocular depth estimation approaches have
achieved remarkable results, they rely on ground truth data
which is expensive and time-consuming to produce [19, 12].
This requires costly 3D sensors (e.g., LiDAR) and signifi-
cant additional data processing [19, 12].

To circumvent these issues, geometrical constraints on
stereo pairs or monocular videos have been widely explored
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Figure 1. Predictions in challenging settings [3] for self-supervised
[11] and supervised [1] methods. Standard approaches fail due to
training assumptions or sensor artifacts. Under both supervisions,
our md4all makes the same models robust in all conditions.

to learn depth estimation in a self-supervised manner [11,
25, 34, 7, 10]. Monocular training solutions are the most
inexpensive and rely on the smallest amount of assumptions
on the sensor setup, as they require only image sequences
captured by a single camera.

Self-supervised methods rely on photometric assump-
tions and pixel correspondences [11, 34]. State-of-the-art
approaches [11, 41, 32] deliver sharp and accurate esti-
mates in standard conditions (i.e., sunny and cloudy), but
suffer from a variety of inherent issues, such as scale am-
biguity and difficulties with dynamic objects. While prior
works have already proposed robust methods to address
these problems [12, 8], there is still a major issue preventing
the wide applicability of self-supervised depth estimators in
safety-critical settings, such as autonomous driving. Dark-
ness and adverse weather conditions (e.g., night, rain, snow,
and fog) introduce noise in the pixel correspondences. As
displayed in Figure 1, this is detrimental to the effectiveness
of such methods, thereby requiring ad hoc solutions.

As shown in Figure 2, this problem is particularly se-
vere at nighttime due to reflections (e.g., caused by street-
lights and vehicle headlights), noise, and the general inabil-
ity of the embedded cameras to capture details in dark ar-
eas. This leads to wrong depth estimates, which can be dan-
gerous in safety-critical settings. A few pioneering works
have already explored this problem, albeit with highly-
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complex pipelines and significant architecture changes af-
fecting inference as well [38, 37, 22, 33, 36], such as
illumination-specific branches. Additionally, prior methods
that can operate both at night- and daytime introduce a sig-
nificant trade-off concerning the standard daytime perfor-
mance [22, 37], highlighting the need for a new solution.

In adverse weather conditions such as rain, monocular
models are similarly fooled by reflections and decreased
visibility. However, rain introduces another problem. While
radars are robust in such conditions, LiDARs become unre-
liable, as they introduce multi-path and the so-called bloom-
ing effects (Figure 2). In autonomous driving, since super-
vised depth estimation approaches learn from LiDAR data,
this causes them to learn also such erroneous measurements,
rendering them unreliable in rainy settings (Figure 1). Anal-
ogous issues occur with snow and fog. These problems are
relatively unexplored, demanding new solutions.

Alarmingly, no general solution currently allows an
image-based depth estimator to work reliably under all con-
ditions. Since LiDAR can constitute a misleading train-
ing signal in adverse weather, and pixel correspondences
are problematic too (e.g., at night), neither existing super-
vised [24] nor self-supervised [11, 34] techniques work well
in such challenging settings. A straightforward solution for
the supervised case would be using synthetic data [40, 30],
as by simply not modeling the sensor issues, a simula-
tor could produce perfect ground truth in adverse weather.
However, this is not only unexplored, but it would introduce
a series of problems, such as a substantial syn2real gap due
to the difficulty of modeling challenging conditions realis-
tically (requiring, e.g., domain adaptation).

In this paper, we address these open issues with a sim-
ple and effective solution that works reliably in a variety of
conditions and for multiple types of supervision. We ap-
proach this challenging problem by considering the success
of existing methods in standard illumination and weather
settings [11, 13, 12, 8]. This motivated us to find a way for
them to work also under challenging scenarios, exploiting
what makes them learn depth effectively in ideal conditions.
Our core idea is based on training the model by providing
always valid training signals as if it was sunny or cloudy,
even when samples with adverse conditions are given. We
apply this general principle to both supervised and self-
supervised depth estimation via a set of techniques to im-
prove the model robustness and reduce the performance gap
between standard and hard conditions. The main contribu-
tions of this paper can be summarized as follows:

• We show how estimating depth in adverse conditions
(e.g., night and rain) is problematic for both self- and
fully-supervised approaches, requiring new solutions.

• We propose md4all: a simple and effective technique
to make standard models robust in diverse conditions.
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Figure 2. Detrimental factors to monocular depth estimation in dif-
ficult settings from nuScenes [3]. Self-supervised works have is-
sues with textureless areas, reflections, and noise. Supervised ones
learn artifacts from the ground truth sensor (LiDAR is shown).

• We apply our generic method to both fully- and self-
supervised monocular settings.

• We generate and share open-source images in adverse
conditions corresponding to the sunny and cloudy sam-
ples of nuScenes [3] and Oxford Robotcar [23].

With md4all, we substantially outperform prior solutions
delivering robust estimates in a variety of conditions.

2. Related Work
2.1. Supervised Monocular Depth Estimation

The problem of estimating depth from a single color
image is challenging due to the countless 3D scenarios
that can produce the same 2D projection, making it an ill-
posed problem. Nevertheless, significant progress has been
made, thanks to the introduction of CNN-based architec-
tures by Eigen et al. [5] and fully-convolutional networks
with residual connections by Laina et al. [20] to estimate
dense depth maps from monocular inputs. While many
supervised methods have focused on directly regressing to
depth measurements from LiDAR sensors (as in KITTI [9])
or RGB-D cameras (as in NYU-Depth v2 [31]), DORN [6]
tackles the task in an ordinal manner. AdaBins [1] extended
DORN via a linear combination of predictions across adap-
tive bins. Moreover, BTS uses a multi-stage local planar
guidance [21] and P3Depth exploits coplanar pixels [24].
Others investigated the benefit of depth estimation while
tackling other tasks, such as 3D object detection [17].

Issues While the supervision signal from 3D sensors is
reliable in ideal conditions (e.g., sunny, cloudy), it severely
degrades in photometrically challenging scenarios [19].
Outdoor, LiDAR sensors deliver erroneous measurements
in adverse weather conditions, such as rain, snow and fog.
As Jung et al. demonstrated indoor [19], training on an in-
exact ground truth leads depth models to learn the sensor ar-
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tifacts and deliver wrong outputs. This problem is relatively
unexplored outdoors, e.g., with rain. A few works investi-
gated depth completion in simulated settings with LiDAR
and radar in input [40] or event cameras and RGB [30]. In
this paper, we explore this issue on AdaBins [1] and pro-
vide a simple solution to estimate depth reliably in diverse
conditions, regardless of the sensor artifacts.

2.2. Self-Supervised Monocular Depth Estimation

To bypass the need for expensive LiDAR data, self-
supervised methods employ view reconstruction constraints
through stereo pairs [7, 10] or monocular videos [11, 46].
The latter utilizes motion parallax from a moving camera in
a static environment [35] and requires simultaneous depth
and camera pose transformation prediction. Significant ad-
vancements have been made since Zhou et al.’s pioneering
video-based approach [46], including novel loss terms [11],
network architectures that preserve details [12], the use of
cross-task dependencies [18, 13], pseudo labels [25], vision
transformers [44], uncertainty estimation [26], and 360 de-
grees depth predictions [15].

2.2.1 Solutions to Inherent Issues

Scale ambiguity Video-based methods predict depth up to
scale, requiring median-scaling with ground truth data at
test time [11]. Guizilini et al. [12] used the readily available
odometry information to achieve scale awareness via weak
velocity supervision on the pose transformation.

Dynamic scenes Due to the moving camera in a static
world assumption [35], video-based methods have issues
with dynamic objects, e.g., cars. To address this, Mon-
odepth2 [11] uses an auto-masking loss on the static pixels,
R4Dyn [8] adds weak radar supervision on the objects, and
DRAFT [14] combines optical and scene flows.

Darkness Low visibility is detrimental to the losses
used to learn depth because noise and lack of details pre-
vent establishing pixel correspondences across the frames.
DeFeat-Net [33] was among the first to mitigate this, with a
cross-domain dense feature representation. ADFA [36] uses
a generative adversarial network (GAN) to adapt nighttime
features to daytime ones. R4Dyn [8] shows that radar is
beneficial not only for dynamic objects but also at night-
time as a byproduct. RNW [38] reduces the irregularities at
nighttime via, e.g., image enhancement and a GAN-based
regularizer. ADIDS [22] uses separate networks for day
and night images, partially sharing weights. ITDFA [43]
is similar to ADFA, doing feature adaptation from night
to day, with images generated with a GAN. WSGD [37]
combines denoising with a lighting change decoder to pre-
dict per-pixel changes. While these works made signifi-
cant steps towards solving the problem, they either have
complex pipelines with dedicated branches for day and

night [22, 43], use additional sensors [8], suffer from a sig-
nificant trade-off on the daytime performance [37], or are
not meant to operate on multiple conditions, such as both
day and night [36, 38, 43]. Therefore, an effective solution
without inference complications is yet to be found.

Adverse weather As at nighttime, in adverse weather
such as rain, fog, and snow, the limited visibility pre-
vents establishing correct correspondences. Even fully-
supervised approaches have issues in these settings [19]. So
far, only a handful of works have explored depth estimation
with adverse weather. ITDFA [43] requires an encoder for
each condition and was not shown to work in both standard
and adverse settings. R4Dyn [8] and MonoViT [44] are ro-
bust methods that delivered improvements also in adverse
conditions as a side effect. Thus, this problem is largely
unexplored, demanding a general solution.

Unlike prior works, in this paper, we propose a simple
and effective solution enabling a standard monocular model
to estimate depth in diverse conditions (e.g., day, night, and
rain) without any difference at inference time compared to a
common encoder-decoder pipeline [11]. Additionally, ours
does not degrade the output quality in standard settings.

3. Method
In this paper, we enable a model to estimate depth reli-

ably in diverse conditions (e.g., day, night, and rain). Dis-
played in Figures 3 and 4, our techniques exploit the ef-
fectiveness of existing approaches in standard conditions
(e.g., daytime in good weather) to increase their robustness
in adverse settings. Towards this end, we perform day-to-
adverse image translation, train on the generated adverse
samples, and learn only from valid training signals from
the original day inputs. This simple idea is suitable to both
self-supervised (Section 3.1) and supervised (Section 3.2)
frameworks and is general to operate under various weather
and illumination settings (including fog and snow).

3.1. md4all - Self-Supervised

We build upon a scale-aware video-based monocular
method (Section 3.1.1). As described in Section 2.2.1, night
and bad weather cause issues to self-supervised approaches.
We address this with md4allby computing the losses only
on the ideal samples corresponding to the hard ones given
as input (Section 3.1.2). We then take this concept even fur-
ther by distilling knowledge from a frozen self-supervised
model trained only on the ideal samples (Section 3.1.3).

3.1.1 Self-Supervised Baseline

We build on a standard video-based monocular depth base-
line equivalent to the framework shown in Figure 4 when
considering x = 0 (i.e., no translation). We predict both
the depth D̂t of a target frame and the pose transformations
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Figure 3. Our md4all-DD framework. The frozen day - depth model estimates on easy samples and provides guidance to another model
fed with a mix of easy and translated inputs. Inference is done with a simple single model for both fully- and self-supervised md4all.

between the target It and source frames Is∈{t−1,t+1}, with
which we warp the source into a reconstructed target view.
As in [11, 12], a loss is computed on the appearance shift
between It and the reconstruction [46], alongside the struc-
tural similarity [39]. Following [11], we account for partial
occlusions via the minimum reprojection error Lp, and we
ignore static pixels. Another loss Ls promotes smoothness
and preserves edges [10]. Lp and Ls are calculated at all
decoder scales, upsampled to the input size [11].

So far, this is equivalent to Monodepth2 [11]. Then,
we add the weak velocity supervision Lv to achieve scale-
awareness [12] and allow consistent predictions, beneficial
when distilling knowledge between different models.

Architecture Unlike previous works having specialized
branches [22, 43], we leave the architecture unchanged
(e.g., [11]). Instead, we act on the training process. Our
approach is general and not bound to a specific architecture.

3.1.2 md4all-AD: Always Daytime, No Bad Weather

Our md4all-AD configuration is shown in Figure 4. The
core idea is learning from easy samples, even when given
challenging ones (e.g., night) as if it was always daytime
with good visibility (i.e., sunny or cloudy). This allows us-
ing the same established losses described in Section 3.1.1,
which would otherwise fail with difficult inputs.

Day-to-adverse translation To achieve the above, we
need easy samples corresponding to the challenging ones.
This means having paired images (ei, hc

i ), with ei ∈ E
and E being the set of easy samples (i.e., sunny or cloudy),
hc
i ∈ H with H the set of the difficult samples from the

conditions of interest c ∈ C (e.g., snow). While an image
translation method could convert the training H into easy
ones, removing information is easier than adding it. There-
fore, we generate H from E (e.g., turning ei into nighttime).

Specifically, for each ei and each condition c we aim to im-
prove (e.g., night and rain), we obtain hc

i = T c(ei). We do
this with c image translation models T c trained at an earlier
stage, increasing the training set size by C × E.

Training scheme We then train depth and pose models
as shown in Figure 4. During training, we feed to the depth
model mi, which is either hc

i (for x% of the inputs, as a ran-
dom mix of c) or ei from the pre-existing training data. Ad-
ditionally, we normalize the inputs depending on the record-
ing time (i.e., day/night) to learn robust features agnostic
of the input condition. The Appendix shows how perform-
ing this step only during training delivers similar results.
Then, in the case of particularly noisy night samples (e.g.,
nuScenes [3]), we augment the inputs with heavy noise. The
pose model always takes the sequence [ei−1, ei, ei+1], cor-
responding to mi. If fed hc

i , the pose network would have
issues assessing the pixel correspondences.

Learning in all conditions Computing the losses Lp and
Ls on hc

i would lead to issues because of the difficulty of
establishing correspondences in adverse conditions (Sec-
tion 2.2.1). For this reason, training on E and deploying
on H is more effective than training on both (Section 4.2),
proving the limitations of standard methods. Our solution
to this challenging problem is relatively simple: as shown
in the figure, we provide a reliable training signal by always
calculating the losses on E. Specifically, they are always
computed on ei, even when the depth model is fed with hc

i

(x%). This constructed setting constitutes the ideal condi-
tion in which the losses Lp and Ls are already proven suc-
cessful [11], eliminating the source of the issues. This leads
the depth model to learn to extract robust features, regard-
less of whether the input belongs to E or H .

Inference After training depth and pose models, the lat-
ter is discarded, while our depth model is a simple encoder-
decoder capable of estimating depth in multiple conditions.
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Figure 4. Our self-supervised md4all-AD framework. With x = 0, it is equivalent to the day - depth model in Figure 3 and the baseline.
The depth model is trained with a mix of easy and translated samples, while the training signal is always from the easy ones.

As shown at the top of Figure 3, since we do not apply
any architectural modification, at inference time, we pre-
dict depth with the same model through the same model
parameters, regardless of the input condition. While dedi-
cated models or branches may lead to better performance,
switching between them is not always trivial, e.g., at dusk or
with light rain. Therefore, we opted for a single monocular
model, which does not penalize inference time compared to
the same model trained only on E.

3.1.3 md4all-DD: Day Distillation

We take md4all-AD (Section 3.1.2) to the next level by sim-
plifying the training scheme with md4all-DD. The core idea
of md4all-DD is the same as for md4all-AD: we aim to learn
depth only from E, pretending that the conditions C detri-
mental for the losses never occur.

Our md4all-DD framework mimics model estimates in
ideal settings E, regardless of the difficulty of the input. As
shown in Figure 3, we achieve this via knowledge distilla-
tion from a depth network B (baseline) trained at an earlier
stage on E to a new depth model DD for both easy and ad-
verse scenarios (i.e., E and H). The latter is fed mi, i.e.,
the same mix of ei and hc

i as in md4all-AD (Section 3.1.2),
while the former is given only ei. DD is optimized solely
through the following objective:

Ld =
1

N

N∑
j=1

|DD(mi)j −B(ei)j |
DD(mi)j

(1)

where N is the number of pixels, DD(mi) is DD’s depth
prediction on mi (i.e., an easy or hard sample), and B(ei)
is B’s estimation on ei (i.e., an easy sample). DD learns to

follow B at the output level, even when fed the problematic
hc
i , without being affected by the detrimental factors occur-

ring in adverse settings. Inference is unchanged.

3.2. md4all - Supervised

Learning depth from a 3D sensor in adverse conditions
exposes issues inherent to the sensor and the way it mea-
sures depth [19]. With bad weather (e.g., rain), LiDARs
provide erroneous measurements (Figure 2), so learning
from their signal means copying their artifacts as well (Fig-
ure 1). This has been ignored so far for monocular depth.

Regardless of the input, we address the sensor issues by
learning from E. Analogously to the self-supervised set-
ting, we use image pairs (ei, hc

i ) and specify our method
as md4all-AD following the self-supervised definition (Sec-
tion 3.1.2), except for the supervision signal. Thus, we train
the depth model with mi and learn from the LiDAR sig-
nal of ei. Thus, the supervision is from artifact-free data in
ideal conditions E, such that the models never experiences
the sensor issues. As in the self-supervised setup, the infer-
ence is unchanged. While md4all-DD (Section 3.1.3) also
applies to the supervised case, using AD is more reasonable
since reliable ground truth data from ei is available.

4. Experiments and Results
4.1. Experimental Setup

Datasets and metrics We used two public driving
datasets containing various illumination and weather condi-
tions: nuScenes [3] and Oxford RobotCar [23]. nuScenes
is a challenging large-scale dataset with 15h of driving in
Boston and Singapore, diverse scenes, and difficult con-
ditions. We distinguished good visibility (i.e., day-clear),
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day-clear – nuScenes night – nuScenes day-rain – nuScenes
Method sup. tr.data absRel RMSE δ1 absRel RMSE δ1 absRel RMSE δ1

Monodepth2 [11] M∗ a: dnr 0.1477 6.771 85.25 2.3332 32.940 10.54 0.4114 9.442 60.58
Monodepth2 [11] M∗ d 0.1374 6.692 85.00 0.2828 . . . . . . .9.729 51.83 0.1727 7.743 77.57
PackNet-SfM [12] Mv d 0.1567 7.230 82.64 0.2617 11.063 56.64 0.1645 8.288 77.07
R4Dyn w/o r in [8] Mvr d 0.1296 6.536 . . . . . .85.76 0.2731 12.430 52.85 . . . . . . . .0.1465 7.533 . . . . . .80.59
R4Dyn [8] (radar) Mvr d 0.1259 6.434 86.97 . . . . . . . .0.2194 10.542 . . . . . .62.28 0.1337 7.131 83.91
RNW [38] M∗ dn 0.2872 9.185 56.21 0.3333 10.098 43.72 0.2952 9.341 57.21
[ours] baseline Mv d . . . . . . . .0.1333 . . . . . . .6.459 85.88 0.2419 10.922 58.17 0.1572 . . . . . . .7.453 79.49
[ours] md4all-AD Mv dT(nr) 0.1523 6.853 83.11 0.2187 9.003 68.84 0.1601 7.832 78.97
[ours] md4all-DD Mv dT(nr) 0.1366 6.452 84.61 0.1921 8.507 71.07 0.1414 7.228 80.98

AdaBins [1] GT a: dnr 0.1384 5.582 81.31 0.2296 7.344 63.95 0.1726 6.267 76.01
[ours] md4all-AD GT dnT(r) 0.1206 4.806 88.03 0.1821 6.372 75.33 0.1562 5.903 82.82

Table 1. Evaluation of self- and GT-supervised methods on the nuScenes [3] validation set. Supervisions (sup.): M: via monocular videos,
∗: test-time median-scaling via LiDAR, v: weak velocity, r: weak radar, GT: via LiDAR data. Training data (tr.data): d: day-clear, T:
translated in, n: night (incl. night-rain), r: day-rain, a: all. Visual support: 1st, 2nd, . . .3rd best. More conditions and metrics in the Appendix.

night (including night-rain), and day-rain. We used the of-
ficial split following R4Dyn [8], with 15129 training images
(with synced sensors), and 6019 validation ones (of which
4449 day-clear, 602 night, and 1088 rain). RobotCar was
collected in Oxford, UK, by traversing the same route multi-
ple times in a year. It features a mix of day and night scenes.
We followed the split and setup of WSGD [37], with 16563
day training samples and 1411 test ones (with synced sen-
sors, of which 709 night). While we focused on night, rain,
sun, and overcast, the Appendix shows preliminary results
with fog and snow from the DENSE dataset [2]. We report
on the standard metrics and errors up to 50m for RobotCar
as in [37], and 80m for nuScenes as in [8]. More results can
be found in the Appendix.

Implementation details Our self-supervised models use
a ResNet-18 backbone [16] and learn from an image triplet
sized 576x320 for nuScenes and 544x320 for RobotCar.
The supervised model and md4all-DD are given only one
keyframe. At inference time, all models take a single RGB
input. We set x = |C|/(|C|+1) %, with |C| being the num-
ber of the adverse conditions of interest C, e.g., x = 66%
for a model to work with rain, night and day, and within
x% we used equally distributed data among C. So, our
models see an equal amount of inputs for each condition.
We used the same hyperparameters as Monodepth2 [11] and
AdaBins [1] for self- and fully-supervised models, respec-
tively. All models were trained on a single 24GB GPU.

Image translation We translated each ei image to hc
i .

Diffusion models [27, 28] are not suitable due to the lack
of already paired images. Datasets with multiple drives on
the same roads [4, 29, 23] do not solve this issue due to the
lack of synchronization and environmental changes. So we
opted for GANs. For each condition c, we used a ForkGAN
model [45] T c to translate all day-clear training samples E
of nuScenes, with c ∈ C = {night, rain}. We trained Fork-

GAN on BDD100K [42] and fine-tuned it on the nuScenes
training set. For RobotCar, we used T c to translate all day
samples E into night ones. RobotCar contains more night
samples than nuScenes, so we trained T c directly on its
training set. We share publicly all generated hc

i images.
Prior works and baselines We compared ours with a

variety of works [8, 11, 12, 38, 37, 22, 33, 1]. We applied
ours on the self-supervised Monodepth2-based baseline of
Section 3.1.1 and the fully-supervised AdaBins [1].

4.2. Quantitative Results

Night – nuScenes In Table 1, we report results for
nuScenes [3] across various settings. Night samples present
strong noise levels and reflections that are detrimental for
self-supervised models (Figure 2), causing the absRel er-
rors of most methods to double from ideal conditions (i.e.,
day-clear) to night. The difficulty of learning from night
inputs is evident comparing Monodepth2 [11] trained only
on day-clear (d) against all conditions (a), with the latter
severely underperforming. PackNet [12] improved at night
and rain, albeit doing worse in standard settings, possibly
due to its large model and the relatively small dataset. Pack-
Net’s velocity supervision also helped over Monodepth2
(md2) with our baseline. Thanks to the extra radar signal,
R4Dyn [8] delivered significant improvements, although at
night, only adding radar in input was beneficial over md2.
md2 trained only on day-clear data outperformed RNW’s
complex pipeline [38]. We retrained RNW on the official
split (the authors reported an absRel of 0.3150 at night on
their split [38]). Remarkably, despite being based on the
same model as md2, at night, our simple techniques reduced
absRel by 32% and relatively increased δ1 by 37% (DD).
Our md4all also outperformed the radar-based R4Dyn at
night. This is thanks to the ability of our method to extract
robust features from monocular data even in the dark.
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day – RobotCar night – RobotCar
Method source sup. tr.data absRel sqRel RMSE δ1 absRel sqRel RMSE δ1

Monodepth2 [11] [ours] M∗ d 0.1196 0.670 3.164 . . . . . .86.38 0.3029 1.724 5.038 45.88
DeFeatNet [33] [37] M∗ a: dn 0.2470 2.980 7.884 65.00 0.3340 4.589 8.606 58.60
ADIDS [22] [37] M∗ a: dn 0.2390 2.089 6.743 61.40 0.2870 2.569 7.985 49.00
RNW [38] [37] M∗ a: dn 0.2970 2.608 7.996 43.10 . . . . . . . .0.1850 . . . . . .1.710 6.549 . . . . . .73.30
WSGD [37] [37] M∗ a: dn 0.1760 1.603 6.036 75.00 0.1740 1.637 . . . . . . .6.302 75.40
[ours] baseline [ours] Mv d . . . . . . . .0.1209 . . . . . .0.723 . . . . . . .3.335 86.61 0.3909 3.547 8.227 22.51
[ours] md4all-DD [ours] Mv dT(n) 0.1128 0.648 3.206 87.13 0.1219 0.784 3.604 84.86

Table 2. Evaluation of self-supervised works on the RobotCar [23] test set. Trailing 0 added to the values from [37]. Notation from Table 1.

Night – RobotCar In Table 2, we report results for
RobotCar [23]. Here we compare with various approaches
that also target depth estimation in challenging condi-
tions [33, 22, 38, 37]. They all focus on night issues, tested
here. Our md4all outperforms them all across the board,
with substantially better estimates at night than theirs dur-
ing the day: the previous best WSGD [37]’s day absRel
error is 45% higher than ours at night. This is thanks to the
simplicity of our approach, which does not rely on complex
architectures, but makes existing models robust in adverse
conditions by changing their input and training signals.

Rain – nuScenes Rain is less problematic than darkness
due to the lack of cues in the latter. Results are shown in
Table 1, with all methods performing better with rain than
at night. Our self-supervised monocular md4all-DD signif-
icantly improved over Monodepth2 and the baseline, per-
forming close to the radar-based R4Dyn [8].

Fully-supervised Table 1 reports also results in super-
vised settings. LiDAR data is reliable in the dark, so night
scenes are less of an issue. Instead, rain inputs are partic-
ularly interesting for supervised works due to the reflection
issues shown in Figures 1 and 2. For supervised settings, we
applied our method on AdaBins [1]. It is to be considered
that LiDAR artifacts may have an impact on the rain val-
ues, such that perfect estimates would not score perfectly
because the ground truth is wrong (Figure 2). So, while
we can assess the improvements of md4all at handling the
blur caused by raindrops, we cannot correctly quantify its
impact on eliminating the artifacts. Therefore, these com-
parisons are more meaningful when considered alongside
qualitative outputs (Figure 5). Our supervised md4all per-
formed better than AdaBins both quantitatively and quali-
tatively, eliminating the dependency on the sensor artifacts.
Additionally, thanks to the strong regularization introduced
by the translated samples, our model generalizes signifi-
cantly better than the standard AdaBins, leading to vast im-
provements across the board, also at night. Training on the
sparse LiDAR signal of nuScenes [3] (Figures 2 and 5) can
lead to overfitting. Ours is a beneficial data augmentation
technique, adding diversity to the training, as the model is
shown |C|+ 1 variations of each day-clear input.

Day(-clear) While we do not include any modification
addressing standard conditions, we still see improvements
over the baselines across both datasets and supervision
types (Tables 1 and 2). This is due to the training mix of
easy and translated samples acting as a strong data augmen-
tation and regularization technique. Since the same weights
are optimized on all conditions, they learn to extract robust
features which are beneficial also with good visibility. In-
stead, RNW [38] is meant for operating only at night.

All conditions Remarkably, across all tested conditions,
md4all significantly improves over Monodepth2 and Ad-
aBins on which we applied it, without the need for spe-
cialized branches (Tables 1 and 2). There is no trade-off
introduced when training our unique md4all model for mul-
tiple conditions, as the scores and errors remain equivalent
or even improve compared to training only in ideal settings.
This proves the effectiveness and generality of our simple
ideas. The Appendix includes preliminary results with snow
and fog on the challenging DENSE dataset [2].

AD and DD Our md4all delivers improvements both as
DD and AD (Tables 1 and 2). While the two are applica-
ble under both supervisions, available and reliable ground
truth alongside the day-clear data makes AD more suitable
for supervised setups. DD works better than AD in self-
supervised settings thanks to the simplified training scheme
and the guidance of our strong baseline.

Robustness against translations In Table 3, we as-
sess the impact of the quality of image translation on our
method. While the selected ForkGAN [45] translates bet-
ter than CycleGAN [47], it does not give perfect outputs
either (Appendix). Since we use the translations to learn ro-
bust features, their imperfections even help our model’s ro-

Method avg/all day night

[ours] w/ CycleGAN [47] 0.1244 0.1159 0.1328
[ours] w/ ForkGAN [45] 0.1174 0.1128 0.1219
[ours] w/ degraded ForkGAN 0.1213 0.1159 0.1266

Table 3. Robustness of md4all-DD against translations from dif-
ferent GANs. Evaluation of absRel on the RobotCar [23] test set.
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input image ground truth AdaBins md4all (sup.) [ours] Monodepth2 md4all (self-sup.) [ours]

fully-supervised self-supervised

Figure 5. Comparison on nuScenes [3] between fully-sup. AdaBins [1] w/o and w/ ours, and self-sup. Monodepth2 [11] w/o and w/ ours.

bustness by making it harder to recover information for the
depth task, as the translations act as data augmentation and
regularization. The table confirms the robustness of md4all,
performing similarly regardless of which GAN is used, even
when degrading 10% of the inputs via random erasing.

4.3. Qualitative Results

Qualitative comparisons in Figures 5 and 6 confirm the
quantitative findings, with our md4all delivering improved
estimates in both adverse and standard conditions. On
nuScenes [3] (Figure 5), unlike the baselines, both our mod-
els correctly identified the truck in the first rainy sample.
As shown in Figure 2, rain leads to artifacts in the LiDAR
ground truth, which cause the standard fully-supervised Ad-
aBins [1] to learn them and estimate the road wrongly. Our
supervised md4all exhibits no such artifacts as it was not
trained with the problematic rainy samples but rather on our
translated ones, which have reliable ground truth. Instead,
self-supervised methods have issues at night. While Mon-
odepth2 [11] could identify critical elements of the scenes
(e.g., car and sign), its difficulties in extracting informa-
tion in the dark are evident. Monodepth2 had fewer issues

input image WSGD md4all [ours]

Figure 6. Comparison on RobotCar [23] samples between ours
self-supervised and WSGD [37]. Ouputs of WSGD are from [37].

with brighter night samples, as shown in the Appendix. Our
self-supervised md4all delivered sharp estimates, identify-
ing even the two trees on the left side of the bottom in-
put, which are particularly hard to see. For RobotCar [23]
(Figure 6), we compared on the same samples displayed by
WSGD in their paper [37]. As in Table 2, our md4all de-
livered better and sharper estimates in both conditions, cor-
rectly estimating the people’s distance.

Limitations md4all improves in all tested conditions,
but DD may propagate errors from the baseline. Thus,
a stronger baseline would help. Despite the robustness
against translations (Table 3), GANs [45] could be prob-
lematic. Better translations would help eliminate the do-
main gap, as seen with RobotCar (Table 2). GANs require
many adverse images for training. Hard-to-distinguish data
distributions (e.g., light snow vs. overcast) may create prob-
lems. md4all is applicable to stereo-based models too, but
only given consistent translations for the stereo images. Fu-
ture work may focus on eliminating the dependency on the
GAN. Furthermore, md4all does not address the issue of
dynamic objects, so flow [14] or weak radar supervision [8]
may be beneficial, albeit adding complexity. The core ideas
of this work can be extended to other tasks.

The Appendix includes a variety of extra results, e.g.,
experiments with snow and fog, and sample translations.

5. Conclusion

We presented the simple and effective md4all, enabling
a single monocular model to estimate depth robustly in both
standard and challenging conditions (e.g., night, rain). We
showed md4all delivering significant improvements under
both fully- or self-supervised settings, overcoming the detri-
mental factors that make adverse conditions problematic.
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