
SiLK: Simple Learned Keypoints

Pierre Gleize
gleize@meta.com

Weiyao Wang
weiyaowang@meta.com

Meta AI
https://github.com/facebookresearch/silk

Matt Feiszli
mdf@meta.com

Abstract

Keypoint detection & descriptors are foundational tech-
nologies for computer vision tasks like image matching,
3D reconstruction and visual odometry. Hand-engineered
methods like Harris corners, SIFT, and HOG descriptors
have been used for decades; more recently, there has been
a trend to introduce learning in an attempt to improve key-
point detectors. On inspection however, the results are dif-
ficult to interpret; recent learning-based methods employ a
vast diversity of experimental setups and design choices:
empirical results are often reported using different back-
bones, protocols, datasets, types of supervisions or tasks.
Since these differences are often coupled together, it raises a
natural question on what makes a good learned keypoint de-
tector. In this work, we revisit the design of existing keypoint
detectors by deconstructing their methodologies and iden-
tifying the key components. We re-design each component
from first-principle and propose Simple Learned Keypoints
(SiLK) that is fully-differentiable, lightweight, and flexi-
ble. Despite its simplicity, SiLK advances new state-of-the-
art on Detection Repeatability and Homography Estimation
tasks on HPatches and 3D Point-Cloud Registration task on
ScanNet, and achieves competitive performance to state-of-
the-art on camera pose estimation in 2022 Image Matching
Challenge and ScanNet.

1. Introduction
Keypoint detection and matching is a foundational com-

puter vision technique to obtain a sparse yet informa-
tive representation of an image. Image stitching [7, 1],
SLAM [14, 34], SfM [44], camera calibrations, track-
ing [37], and object detection [30] are important tasks built
on keypoint correspondences [32]. A good keypoint model
should be able to select a subset of points useful and infor-
mative to a specific task. One typically also wants robust-
ness of the descriptor to some set of transformations (e.g.
scale, viewpoint, or lighting variation).

Figure 1. The top image is an example of keypoint matching un-
der viewpoint change; correct matches are green, incorrect ones
are red. The bottom image shows keypoints which are cycle-
consistent by SiLK. As can be observed, SiLK has learned to find
distinctive geometric features (corners, curves, intersections,..);
from single non-annotated images.

Existing keypoint methods come in multiple forms and
flavors (Tab. 1). However, those differences are often cou-
pled together and not controlled for, which make it chal-
lenging to identify the source of gain. Our quest to find-
ing the key-components of good keypoint detectors led to
an in-depth review of alternative approaches, as well as
the design, from first principle, of SiLK (Simple Learned
Keypoints) : A simple self-supervised approach to learn
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distinctive and robust keypoints from arbitrary image data
in a traditional “detect-and-describe” framework. Despite
its simplicity, SiLK is competitive or surpasses SOTA in
most settings.

Additionally, leveraging SiLK’s simple one-stage train-
ing protocol and modular architecture, we are able to ab-
late various dimensions of detector performance for differ-
ent tasks. In particular, with an eye toward real-time per-
formance, we identify tasks where extremely lightweight
backbone architectures are sufficient.

2. Related Work
Early work focused on carefully engineered methods

to identify distinctive keypoints with descriptors which
are robust to changes such as viewpoint and illumination.
Hand-crafted techniques like Harris-corners[20], SIFT[31],
ORB[41] and others [40, 8, 26, 2, 5, 13] have used explicit
geometric notions like corners, gradients, and scale-space
extrema to achieve results which remain both efficient and
competitive to date [44, 34].

More recent work like SuperPoint[16] chose to learn to
find corners; they generate a large set of synthetic shapes
with annotated corners and train a model with this ground
truth. While providing compelling evidence for learned
methods, their training procedure is quite complex: it con-
tains multiple training phases, a synthetic dataset, and em-
ploys a homography adaptation trick that can be difficult to
tune (see our reproduced results in Tab. 2).

In the same spirit as more recent work [17, 39, 50, 49, 21,
11, 48], SiLK aims to learn keypoints in simple end-to-end
fashion, without explicitly defining them as corners.

Several attempts have been made to learn keypoints im-
plicitly; either by the careful design of the loss [17, 39, 11,
48]; or by directly predicting the matching success of de-
scriptors [50, 21, 49]. SiLK falls in the second category, but
with slight twist (cf. Sec. 3.4).

To learn descriptors, contrastive losses are commonly
used. Similar to [50, 47], SiLK adopts a probabilistic ap-
proach by modeling the matching probabilities in a double-
softmax, cycle-consistency setting and optimizes the log
likelihood. The probabilistic formulation, similar to In-
foNCE [35], gives us a clean way to reason about matching,
and the abundant supply of hard negative examples (from
pixels in the same image) makes it an attractive choice.

Context aggregation (CA) is a recent addition to the
toolkit. Initiated by SuperGlue[42], CA aims to refine or
transform descriptors from a pair of images before match-
ing them. Implemented as a GNN[43] in [42], or as a
Transformer[51] in [47], CA’s predictions are conditional
on all descriptors from the pair of images. In other words,
for an image, the descriptors will be different when match-
ing against different images. As a result, CA needs to run
on every pair of images prior to matching, as opposed to

running on single images. The run-time implications render
CA prohibitively expensive in some applications (quadratic
versus linear complexity). SiLK does not use CA, but out-
performs [42] and performs competitively with [47]. Incor-
porating CA is optional for future works if performance is
paramount and computation cost is less of a concern.

As a postprocessing after CA, SuperGlue[42] introduced
the concept of differentiable optimal transport (OT) to im-
prove matching, using the Sinkhorn algorithm[46]. LoFTR
[47] leveraged OT as well, but found little difference be-
tween OT and the simpler approach of mutual nearest
neighbor (MNN) in some benchmarks.

3. Methodology
SiLK’s contribution is simplicity and flexibility. Our so-

lution is built on the traditional approach of identifying dis-
tinctive pixels via robust local descriptors. We use modern
but established techniques to learn to localize and describe
keypoints given an arbitrary source of unlabeled images.
Unlike classical methods, our descriptors and invariances
are learned, and unlike some modern methods, there is no
particular complexity in the matching process (SiLK em-
ploys only cosine distances and mutual nearest neighbor);
this leaves few structural hyperparameters to tune. The sim-
ple backbone+heads design is backbone-agnostic, allowing
experimentation. The annotation-free SSL approach means
SiLK can be trained on any image or video dataset. Fi-
nally, a simple, one-stage training pipeline allows us to eas-
ily train and ablate different architectures, datasets, and hy-
perparameters for different tasks.

SiLK is trained to identify keypoints from single
grayscale images. It provides both keypoint detections (lo-
cation) and keypoint descriptors (for matching). Cycle con-
sistency is employed for descriptor learning and a binary
classifier identifies distinctive keypoints at pixel-level.

To learn descriptors, we take a source image and a trans-
formed copy, extract descriptors for each point, and use
descriptor similarity to define transition probabilities from
a source location to each transformed location (and vice-
versa). We optimize the descriptors to maximize cycle-
consistency; i.e. we maximize the probability of a round-
trip from the source to its transformed location and back.

To locate good keypoints, we train a binary classifier to
identify points which will satisfy a matching criterion. A
point and its transformed copy are positives when they are
mutual nearest neighbors in the sense of transition proba-
bilities, and they are negatives otherwise. We train both the
cycle-consistency and classification losses jointly.

We provide simple pseudo-code in Fig. 2.

3.1. Architecture

The SiLK architecture (Fig. 3) follows the ”detect-and-
describe” architecture originally proposed by SuperPoint
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Keypoint Detection Descriptors & Matching Model & Training
Learned Sparse Cell-based NMS Supervision CA Matcher Supervision Input Backbone Data E2E

SIFT No ✓ No ✓ - No MNN - - - - -
SuperPoint ✓✓✓ ✓ ✓ ✓ Homo. Adapt. No MNN Rand. Homo. Grey VGG COCO No
SuperGlue - ✓ - - - GraphNN OT SfM Grey VGG Oxford & Paris No
GLAMPoints ✓✓✓ ✓ No ✓ Matching Succ. No MNN - Grey UNet SlitLamp ✓✓✓
D2-Net ✓✓✓ ✓ ✓ ✓ Triplet Ranking No MNN SfM RGB VGG MegaDepth ✓✓✓
R2D2 ✓✓✓ ✓ ✓ ✓ Matching AP No MNN SfM RGB L2-Net Aachen ✓✓✓
DISK ✓✓✓ ✓ ✓ ✓ Matching Succ. No MNN SfM RGB UNet MegaDepth ✓✓✓
URR - No - - - - MNN 3D Rendering RGB ResNet ScanNet ✓✓✓
LoFTR - No - - - Transformer MNN,OT SfM Grey FPN ScanNet,MegaDepth ✓✓✓
SiLK ✓✓✓ Optional No No Matching Succ. No MNN Rand. Homo. Grey Generic Any Image Set ✓✓✓

Table 1. Non-exhaustive deconstruction of keypoint detectors along different dimensions. On each, SiLK adopts the simplest choice
or is flexible to different choices. In particular, SiLK does not depend strongly on backbone type or training data (Tab. 7 & Tab. 9).

1 def loss(image_0, model):
2 # get warped image and pixel correspondences
3 image_1, corr_0, corr_1 = rand_homo(image_0)
4

5 # apply image augmentations
6 image_0 = augment(image_0)
7 image_1 = augment(image_1)
8

9 # extract dense descriptors and keypoints
10 desc_0, kpts_0 = model(image_0)
11 desc_1, kpts_1 = model(image_1)
12

13 # compute similarity matrix
14 sim_mat = cosim(desc_0, desc_1)
15

16 # compute the descriptor loss
17 # using ground truth correspondences
18 loss_desc = nll(sim_mat, corr_0, corr_1)
19

20 # measure matching success
21 y = is_match_success(sim_mat, corr_0, corr_1)
22

23 # compute keypoint loss
24 # using current matching success
25 loss_kpts = bce(kpts_0, y, corr_0)
26 loss_kpts += bce(kpts_1, y, corr_1)
27

28 return loss_desc + loss_kpts

Figure 2. Pseudo-code: learning keypoints from a single image.

[16]. A dense feature map is first extracted by feeding an
image to an encoder backbone. The shared feature map is
then fed to two heads : The keypoint head extracts the logits
(used to calculate the dense keypoint probabilities), while
the descriptor head extracts a dense descriptor map (used
to calculate keypoint similarities). The model is backbone-
agnostic and can easily be swapped.

3.2. High Matching Probability Defines Keypoints

As mentioned above, the keypoint probability esti-
mate predicts the probability that a pixel will be correctly
matched (i.e. survive a round-trip). Points with the highest
likelihood of matching correctly are exactly those which we
select as keypoints.

Figure 3. Architecture for SiLK

A common approach [16, 50, 39, 17] for obtaining key-
point probabilities is to use a softmax cell-based approach.
A cell is a N × N patch in which the probability of each
cell position is determined by a local softmax. The softmax
operates on N×N+1 bins; +1 being the dustbin, handling
the case of cells devoid of keypoints.

SiLK’s approach is equivalent to a cell-based approach
with a cell size of N = 1. This has several consequences.
First, the softmax formulation becomes a sigmoid σ(x) =

1
1+e−x . Second, it removes the sparsity constraint that key-
points are exclusive events inside a cell. And third, this
removes a free parameter (the cell size N ) that we do not
have to later tune.

In the same spirit, SiLK does not use NMS during in-
ference. Even though NMS is an established pruning tech-
nique that aims to spread out keypoints [16], we find SiLK
doesn’t need NMS to perform (cf. Tab. 2).

3.3. Descriptors Define Matching Probability

Similar to [47, 50], we model the cycle matching proba-
bility using a double softmax (i.e. the probability of match-
ing i to j, and back).

Pi←→j = Pi−→jPi←−j
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where Pi−→j is the directional probability of matching the
ith descriptor from image I to the jth descriptor in image I ′.
Pi←−j is similar, but in the reverse direction. Both forward
and backward probabilities are modeled as a softmax with
temperature over descriptor cosine similarities. For fixed
i, Pi−→j is a softmax over the i-th row of the descriptor
similarity matrix, and Pi←−j takes softmax over column j.

3.4. Training

Self-Supervision. Pixel-accurate correspondences are re-
quired during training. Similar to SuperPoint [16], we
obtain image-pair correspondences by applying a random
transformation (homography) to an image. However, the
homography is a linear mapping that gives correspondences
at a subpixel level.

To obtain pixel correspondences, we apply the sampled
homography to all the pixel positions of image I; positions
being the center of pixels (e.g. the top-left pixel has position
(0.5, 0.5)). This first step establishes dense directional cor-
respondences from I to I ′. We then run the same process
from I ′ to I (using the inverse homography this time). Once
both directional correspondences are obtained, the resulting
positions are discretized; out-of-bound and non-bijective
correspondences are discarded.
Image Augmentations. As done in [16, 42], we em-
ploy image augmentation to improve robustness; augmen-
tations include random brightness, contrast, gaussian noise,
speckle noise and motion blur. We refer to supplementary
materials for details.
Negative and Positive Selection. One defining property of
a keypoint is distinctiveness – the point can be reliably dis-
tinguished from its peers. In our case this means the point
can be reliably identified in a matching algorithm, similar
to [49, 50]. With that in mind, we adopt a similar supervi-
sion technique as [49]. Keypoints that are correctly matched
(using the currently trained descriptors) are labelled as pos-
itive; otherwise negative.
Descriptor and Keypoint Losses. Similar to [47, 50], the
descriptor loss is the negative log-likelihood loss applied to
the matching probabilities for the positive round-trips (i.e.
paths from point i to its location i′ in the transformed image
and back again).

Ldesc = − (logPi−→i′ + logPi←−i′)

This implicitly penalizes non-positive paths via softmax.
One might notice Ldesc requires the computation of a large
matrix (size HW ×HW ). To handle potential GPU out-of-
memory, we provide a simple, yet efficient implementation
which computes the similarity matrix in a block-wise fash-
ion, and recomputes block dot products instead of storing
them for backpropagation (in the same vein as [36, 25]).

The keypoint loss Lkey is a simple binary cross-entropy
loss applied to a logistic sigmoid, in contrast to [49]. It

is trained to identify keypoints with successful round-trip
matches (defined by mutual-nearest-neighbor) among all
others (unsuccessful).

4. Experiments
In this section, we empirically evaluate SiLK together

with representative baselines and state-of-the-art meth-
ods. On HPatches we evaluate two complementary key-
point quality metrics (Repeatability, Mean Matching Ac-
curacy [33]) and planar stereo estimation capabilities (Ho-
mography Estimation). In addition, we benchmark on three
real-world stereo tasks: outdoor camera pose estimation on
Image Matching Challenge (IMC) 2022, and both indoor
camera pose estimation and 3D point-cloud registration on
ScanNet. In these experiments, we study the following:
(1) Many methods employ complex strategies to learn and
predict good keypoints and descriptors, including elements
like multi-stage training, cell-based priors, complicated
post-processing, context aggregation, and groundtruth 3D
pose supervision (see Tab. 1), in various combinations.
What machinery is necessary? SiLK contains no such ma-
chinery, and can be viewed as a reduction from these meth-
ods. However, SiLK either achieves new SOTA or com-
pares very favorably. This questions the need for complex
schemes for the evaluated tasks.
(2) We observed rather strong performance from engineered
features (e.g. SIFT in Tab. 2&Tab. 6) vs learned methods.
This motivates us to revisit design choices in a learned key-
point detector: What makes a good keypoint detector? We
ablate each component (data, backbone, etc.) and test gen-
eralization performance under various conditions (e.g. in-
put size, test data, task, etc). SiLK proves very robust to
these choices (Sec. 4.6). In particular, a very lightweight
version of SiLK (two 3x3 convolution layers) is competi-
tive to SOTA on homography estimation, camera pose esti-
mation and point cloud registration (Tab. 7&Tab. 8).

We hope these results can serve the community and help
adapt keypoint models to their tasks and needs. For exam-
ple, labeling tasks (e.g. self-training [37], object pose [38])
might focus on high accuracy (i.e. larger backbone and
denser keypoint selection), while tasks requiring speed (e.g.
SLAM [34]) might find our lightweight backbone attractive.

4.1. Implementation Details

Our own training pipeline has been used for all experiments
with SiLK, as well as our reproduced SuperPoint (Tab. 2)
results. Training time is ˜5 hours on 2 Tesla V100-SXM2
GPUs using our default setup.
Default Setup. Unless specified otherwise, all results use
the following setup. Trained on COCO [29] images (ran-
domly sampled), with Adam [24] optimizer with learn-
ing rate 1e−4 and betas (0.9, 0.999); trained for 100k it-
erations; batch size of 1 per GPU; dense descriptor map
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is 146 × 146 for all architectures and input resolutions;
cosine similarities scaled by temperature 20−1; VGGnp-4
backbone (VGG architecture with max-pooling removed,
details in Sec. 4.6); sparse keypoints obtained with top-k
(k = 10000); detection head is 1 3x3 convolution (128-
dims), and 1 1x1 convolution; descriptor head is 1 3x3 con-
volution (128-dims), and 1 1x1 convolution (128-dims out);
no padding in convolutions; ReLU and batchnorm used as
non-linearity and normalization (see supplementary).

4.2. HPatches Homography Estimation

Following [16, 42, 39, 47], we evaluate homography es-
timation on HPatches [3]. HPatches contains 57 scenes
(of 6 images) with significant illumination changes and 59
scenes with large viewpoint variations. Images in each
scene are related by groundtruth homographies. We follow
LoFTR [47], (currently SOTA on HPatches), and scale the
shorter image edge to 480 at inference time.
Evaluation Protocol. For every image pairs, the model de-
tects a set of keypoints. These are desired to be distinctive
and thus repeatably detected across views. We use Repeata-
bility to evaluate detection performance as in [16]. To test
invariance of keypoint descriptors, each model’s preferred
matching algorithm establishes correspondence across im-
ages to obtain a subset of keypoints. We distinguish this
subset as post-matching and the entire set as pre-matching.
The accuracy of each correspondence is evaluated by Mean
Matching Accuracy as in [17, 39, 50]. Finally, we use
OpenCV RANSAC algorithm to estimate homography from
matched keypoints, and evaluate Homography Estimation
Accuracy [16] and Homography Estimation AUC [42, 47].
Baselines. We compare SiLK against both sparse detector-
based methods and dense detector-free methods. The
sparse detector-based methods generally follow “detect then
match”: the model first detects a sparse set of distinctive
points, then matches features. We include SIFT [31] as well
as learned detectors SuperPoint [16] (both official release
and our repro), R2D2 [39] and DISK [50]. On the other
hand, dense detector-free perform “detection by matching”:
the model first extracts features, then applies a learned pre-
matching CA module (e.g. GNN [42] or transformer [47])
to adapt the features to a specific pair of images, and then
finds matches. While SiLK does not employ CA, we still in-
clude comparisons to the SOTA detector-free LoFTR [47].
Results. Despite its simplicity, SiLK outperforms all meth-
ods on repeatability, homography accuracy and homogra-
phy estimation (Tab. 2). In particular, SiLK has a strong
margin when the error threshold is small (ϵ = 1). This val-
idates our pixel-accurate keypoint localization. SiLK lags
only on the MMA@3 metric. This is caused by the pixel-
accurate contrastive loss (Fig. 4). Consequently, SiLK does
not benefit from increasing error threshold in MMA. In ad-
dition, even vs LoFTR (which uses dense features and CA)

in Tab. 3, SiLK shows strong performance on Homography
Estimation AUC and competitive performance on Homog-
raphy accuracy. This questions the necessity of CA for these
particular tasks; this may be valuable in applications which
are particularly sensitive to runtime performance.

Figure 4. The pixel-accurate contrastive loss results in very dis-
criminative local features, thus reshaping the error distribution to
make fewer local errors (MMA@1). This differs from interpo-
lated, cell-based descriptors used in SuperPoint, which produces
less accurate keypoints (MMA@3+).

4.3. IMC 2022 outdoor pose estimation

The Image Matching Challenge (IMC 2022) [22] pro-
vides pairs of outdoor images from different viewpoints;
participants are required to estimate the fundamental ma-
trix. Camera pose accuracy is then computed for ten
thresholds of rotation and translation error (ranging from
(1◦, 20cm) to (10◦, 5m)). Mean average accuracy (mAA)
is reported by averaging across thresholds and scenes.
Evaluation Protocol. Sparse methods (DISK, SiLK) detect
keypoints in individual images; mutual nearest neighbor is
used to select matches from each pair. Methods with CA
(SuperGlue, LoFTR) directly identify matches from each
image pair. In either case, the fundamental matrix is esti-
mated using MAGSAC [4]. The challenge allows different
image sizes and tuning MAGSAC parameters [22]. We use
30k keypoints and MAGSAC threshold .25.
Baselines. We consider the best leaderboard results from
three baselines. (i) DISK is the winner of IMC 2020 and is
SOTA among sparse methods. 2022 DISK results are from
the IMC team (submission). We also take the best version of
(ii) SuperGlue (submission) and (iii) LoFTR (submission)
provided by the community.
Results. We coarsely tune SiLK for this task for 30 trials
(compared to LoFTR’s 200 trials). SiLK again performs
competitively (c.f. Tab. 4), outperforming DISK by a sig-
nificant margin (+0.19/+0.18 mAA). SiLK also performs
favorably compared to SuperGlue, which uses context ag-
gregation and optimal transport matching.

4.4. ScanNet: Indoor Pose & Point Clouds

ScanNet [12] is a large-scale dataset of 1513 indoor
scenes of RGB-D images and ground-truth camera poses.
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Repeatability Hom. Est. Acc. Hom. Est. AUC MMA # of keypoints
ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 pre-match post-match

SuperPoint (MagicLeap) 0.34 0.61 0.43 0.8 0.2 0.51 0.41 0.72 847 499
SuperPoint (Ours) 0.33 0.52 0.48 0.75 0.26 0.52 0.38 0.53 1143 474
SIFT 0.31 0.52 0.6 0.84 0.34 0.61 0.41 0.55 2189 910
R2D2 0.36 0.72 0.45 0.79 0.2 0.5 0.34 0.75 6088 1967
DISK 0.38 0.69 0.45 0.8 0.22 0.52 0.52 0.84 3349 1794
SiLK (top-10k) 0.62 0.81 0.62 0.87 0.4 0.66 0.59 0.71 10000 4283
SiLK (top-5k) 0.56 0.76 0.6 0.85 0.39 0.64 0.57 0.69 5000 2074
SiLK (top-1k) 0.43 0.61 0.53 0.81 0.32 0.58 0.52 0.63 1000 389

Table 2. SiLK achieves new SOTA on HPatches compared to other methods with sparse keypoints and features. Despite its simplicity,
SiLK achieves higher performance on all metrics except MMA@3. We include the # of keypoints to ensure a fair comparison.

Hom. Est. Acc. Hom. Est. AUC MMA
ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3 ϵ = 1 ϵ = 3

LoFTR (MegaDepth) 0.65 0.87 0.37 0.65 0.64 0.91
LoFTR (ScanNet) 0.24 0.57 0.07 0.33 0.36 0.76
SiLK (top-10k) 0.62 0.87 0.4 0.66 0.59 0.71
SiLK (top-5k) 0.60 0.85 0.39 0.64 0.57 0.69

Table 3. SiLK achieves competitive performance to SOTA
LoFTR on HPatches, despite not using context aggregation.
The top-5k SiLK has similar number of matches compared to out-
door LoFTR. We remark that LoFTR has large generalization gap
when training on different types of dataset (indoor vs. outdoor).

private mAA public mAA
Sparse Features
DISK 0.491 0.502
SuperGlue 0.676 0.678
SiLK 0.685 0.684
Dense Features
LoFTR (MegaDepth) 0.735 0.721

Table 4. SiLK achieves new SOTA for sparse methods on
IMC2022 and performs competitively to dense methods with
context aggregation.

Using the official train/test split we evaluate both relative
camera pose estimation and point-cloud registration. Rela-
tive camera pose estimation has been used in multiple pre-
vious works [52, 53, 6, 42, 47]. The task is to estimate
the essential matrix with RANSAC from point matches in
a pair of images. We report pose error AUC at thresholds
(5◦,10◦,20◦) using 20k keypoints and inlier threshold .5.

This protocol measures translation error in degrees and is
known to suffer from scale ambiguity [52]. Angular trans-
lation error may be unstable, in particular if the underly-
ing translation (in meters) is small. In response, recent
works [19, 18] have introduced a 3D point-cloud registra-
tion task, using the ground-truth depth provided in ScanNet.
A pair of images 20 frames apart is first sampled. Given this
pair, a model predicts point matches. After matching, rela-
tive camera pose is estimated. Different from the previous
protocol, ground-truth depth and camera intrinsics are now
used to align matches in 3D. In addition to relative pose er-
rors (reported separately for translation (cm) and rotation
(degree)), the Chamfer distance (in cm) is measured be-
tween the registered point cloud and the groundtruth point
cloud. We refer to the original papers [19, 18] for details on

Pose Estimation AUC @5◦ @10◦ @20◦

Sparse Features
D2-Net [17] + MNN 5.3 14.5 28.0
SuperPoint [16] + MNN 9.4 21.5 36.4
SuperPoint + PointCN [52] 11.4 25.5 41.4
SuperPoint + OANet [53] 11.8 26.9 43.9
SuperPoint + SuperGlue [42] 16.2 33.8 51.8
SiLK + MNN 18.0 34.4 50.4
Dense Features
DRC-Net [27] 7.7 17.9 30.5
LoFTR (MegaDepth) 16.9 33.6 50.6
LoFTR (ScanNet) 21.5 40.8 57.6

Table 5. SiLK advances SOTA on relative pose estimation
among sparse methods on ScanNet and performs competi-
tively against dense method LoFTR.

the evaluation setup and metrics.

4.4.1 Relative pose estimation

Baselines. We compare SiLK with both sparse detector-
based methods and dense detector-free methods. For
the sparse methods, we consider local feature descriptors
(R2D2, SuperPoint) with mutual nearest neighbor (MNN)
for matching. SiLK falls into this category. In ad-
dition, we consider multiple learned context aggregation
methods for matching that operates on SuperPoint, in-
cluding PointCN [52], OANet [53] and SuperGlue. For
detector-free dense methods, we consider DRC-Net [27]
and LoFTR. We include two versions of LoFTR: one trained
on MegaDepth with optimal transport post-processing and
one trained on ScanNet.
Results. As summarized in Tab. 5, SiLK significantly out-
performs D2-Net (+12.7) and SuperPoint (+8.6) when using
mutual nearest neighbor matching. In addition, SiLK out-
performs the previous SOTA sparse method SuperGlue, de-
spite its simpler design without context aggregation. SiLK
performs similarly to LoFTR trained with MegaDepth.
SiLK is only outperformed by LoFTR trained on ScanNet,
the same as evaluation data.

4.4.2 Pairwise 3D point-cloud registration

Baselines. We consider three main types of baselines.
(i) Sparse Features + RANSAC We extract sparse key-
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points and their features from off-the-shelf models, and
use RANSAC to estimate alignment. This includes SIFT
and SuperPoint, and 3D geometry model FCGF [10]. (ii)
Dense Feature Matching We follow the [18] and select
high-quality corresponding pairs using the ratio test, and
then solve a weighted Procustes problem [9, 23] to pro-
duce alignment. We add a dense version of SuperPoint by
discarding the keypoint prediction. We include the current
state-of-the-art URR [18] that learns invariant point descrip-
tors through cross-view synthesis. By ignoring the keypoint
scoring prediction, SiLK also belongs to this category. The
goal is to evaluate the quality of the dense point features.
(iii) Pose/Geometry Supervised We consider methods that
use groundtruth poses to supervise, which are not required
in (i) and (ii). These include LoFTR, DGR [9] and 3D
MV Registration [19]. For LoFTR, we include only the
MegaDepth model, since it performed better in this task.
Results. As shown in Tab. 6, SiLK achieves new SOTA
across all metrics (except rotation accuracy at 45◦). In par-
ticular, SiLK achieves very high accuracy at small thresh-
olds (5◦ angular, 5cm translation and 1cm for chamfer),
validating SiLK’s pixel-level precision. Comparing with
DGR, 3D MV Reg and LoFTR that use groundtruth cam-
era poses during training, SiLK significantly outperforms,
indicating that groundtruth 3D supervision is not necessary
to train good keypoint features. We did not include the
chamfer results for LoFTR as the provided positions do not
match the required resolution for correct chamfer evalua-
tion. SiLK also achieves superior performance vs previ-
ous SOTA URR. We note that URR requires two different
frames sampled from the same scene during training, and
is supervised by a differentiable cross-view rendering pro-
cess. In contrast, SiLK only requires a single 2D image and
is trained with a simple point matching loss. Finally, we
observe that SuperPoint performs competitively when eval-
uated in this dense fashion; this is an important difference
from the results reported in URR using sparse features.

4.5. Discussion. What makes SiLK perform ?

Multiple factors contribute to SiLK’s performance. In
particular, the cycle-consistent loss and the dense pre-
dictions. First, the cycle-consistent loss (Fig. 2, sup-
plementary) enforces the natural properties of keypoints:
distinctiveness & robustness to viewpoint / photometric
changes, while existing methods rely on proxy objectives
or additional complexity (i.e. ”corners” in SuperPoint[16]
/ SuperGlue[42], ”peakiness” in R2D2[39], ”keypoint
weighting scheme” in D2-Net[17], ”RL cycle-consistent re-
ward” in DISK[50]). Removing unnecessary complexity
helps the model focus its learning on the essentials, and is
supported by consistent, strong results across benchmarks
and metrics (Tab. 2, Tab. 3, Tab. 4, Tab. 5, Tab. 6). Second,
SiLK produces dense, pixel-accurate keypoints, while all

existing methods have structural constraints (downsampling
layers, cell-based schemes, and NMS, c.f. Tab. 1). This
leads to more robust contrastive learning (i.e. more nega-
tive pairs), allows producing more keypoints matches and
boosts results in the accurate regime (ϵ = 1 in Tab. 2).

4.6. What makes good keypoint detectors?

Leveraging SiLK’s flexibility (Sec. 3), we comprehen-
sively ablate a large pool of design choices such as model
architecture and image resolution. Surprisingly, we found
that reducing architecture size, compute cost, and train-
ing input size only mildly impact model performance on
homography estimation, camera pose estimation and point
cloud registration. This benefits many important applica-
tions, such as on-device inference.

Here we discuss the key findings. We use the met-
rics Repeatability@1 (R), Homography Estimation Accu-
racy@1 (HA), Mean Matching Accuracy@1 (MMA) for
HPatches, and Rotation Accuracy@5◦ (RA), Translation
Accuracy@5cm (TA) and Chamfer@1 (C) for ScanNet, all
at lowest error thresholds. Additional results and analysis
are included in supplementary.
Agnostic to backbone. Existing methods use various back-
bones (Tab. 1); the effects on keypoint models are not well
understood. We consider FPN from LoFTR and UNet from
DISK; both are modern compared to SiLK’s VGGnp [45]
backbone. We find no empirical performance gain despite
far greater parameter counts (Tab. 7). This questions the
need for high-capacity models for these keypoint problems.

Next we reduce the complexity of the original Super-
Point backbone VGG-4. Max-pooling and up-sampling
layers are removed. Our VGGnp-4 contains four convo-
lution blocks, each with two convolution layers followed
by ReLU. We discard convolution blocks from VGGnp-4
to obtain VGGnp-3, VGGnp-2 and VGGnp-1. On top of
VGGnp-1, we reduce channel and descriptor sizes to 64
and 32 respectively and obtain an ultra-lightweight model,
VGGnp-µ. Results on all metrics (except MMA) only
drop mildly as we shrink the model. In particular, SiLK
(VGGnp-µ in Tab. 7) achieves very competitive perfor-
mance (Tab. 2&Tab. 6). On the other hand, matching scores
(MMA) drop signficantly. We suggest two possible reasons:
first, pointwise matching may benefit from the larger recep-
tive field of deeper models. Second, homography estima-
tion aggregates numerous pointwise measurements; homo-
graphies will improve if the noises cancel out, or if the out-
liers are removed by RANSAC.
Fast training on tiny images. By default, SiLK uses
146x146 descriptor map resolution during training. Higher
resolution provides more points, which benefits the con-
trastive loss with more negatives, but also increases train-
ing time and GPU memory usage. Surprisingly, perfor-
mance changes very little when varying resolution during
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Rotation Translation Chamfer
Accuracy ↑ Error ↓ Accuracy ↑ Error ↓ Accuracy ↑ Error ↓

5◦ 10◦ 45◦ Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.
Sparse Features + RANSAC
SIFT [31] 55.2 75.7 89.2 18.6 4.3 17.7 44.5 79.8 26.5 11.2 38.1 70.6 78.3 42.6 1.7
SuperPoint [16] 65.5 86.9 96.6 8.9 3.6 21.2 51.7 88.0 16.1 9.7 45.7 81.1 88.2 19.2 1.2
FCGF [10] 70.2 87.7 96.2 9.5 3.3 27.5 58.3 82.9 23.6 8.3 52.0 78.0 83.7 24.4 0.9
Pose/Geometry Supervised
DGR [9] 81.1 89.3 94.8 9.4 1.8 54.5 76.2 88.7 18.4 4.5 70.5 85.5 89.0 13.7 0.4
3D MV Reg [19] 87.7 93.2 97.0 6.0 1.2 69.0 83.1 91.8 11.7 2.9 78.9 89.2 91.8 10.2 0.2
LoFTR(MegaDepth) [47] 91.7 96.8 99.4 2.8 1.2 65.9 85.2 97.1 6.0 3.3 - - - - -
Dense feature matching
SuperPoint [16] 93.0 98.4 99.8 2.5 1.6 56.8 84.7 98.2 6.5 4.3 77.3 96.1 98.4 4.5 0.3
URR [18] 92.7 95.8 98.5 3.4 0.8 77.2 89.6 96.1 7.3 2.3 86.0 94.6 96.1 5.9 0.1
SiLK (VGGnp-4) 98.1 99.0 99.6 1.7 0.8 82.9 94.8 99.0 4.1 2.1 92.8 98.3 99.1 4.3 0.1

Table 6. SiLK achieves state-of-the-art on camera pose estimation and point cloud registration on ScanNet.

HPatches ScanNet Model
R HAc MMA RA TA C Param FPS GFLOP

VGGnp-4 0.62 0.62 0.59 98.1 82.9 92.8 942k 12.2 370
VGGnp-3 0.63 0.61 0.58 98.0 84.2 93.5 868k 12.5 330
VGGnp-2 0.63 0.57 0.55 97.3 83.5 92.4 757k 14.3 268
VGGnp-1 0.63 0.57 0.44 94.6 82.1 90.0 461k 18.9 90
VGGnp-µ 0.64 0.56 0.40 93.5 81.1 89.0 76k 36.5 23
FPN [47] 0.58 0.55 0.52 - - - 6.6M 17.5 298
UNet [50] 0.60 0.41 0.58 - - - 1.3M 25.9 198

Table 7. SiLK is backbone agnostic. Backbones from existing
methods are trained and evaluated. Low-capacity model perform
well on all metrics except MMA. FPS and GFLOPs measured on
480×640 images with NVIDIA Quadro GP100 GPU.

HPatches ScanNet
Size Time R HAc MMA RA TA C
822 1.7h 0.60 0.58 0.56 98.1 83.5 92.5
1142 2.7h 0.62 0.62 0.59 98.1 82.9 92.8
1462 5h 0.63 0.59 0.59 98.2 83.3 92.9
1782 9.5h 0.63 0.62 0.59 98.1 83.5 92.9
2102 18h 0.63 0.61 0.60 98.1 83.4 92.8

Table 8. Decreasing training image size has minimal impact.
SiLK can be trained under 3h, with little performance drop.

training (Tab. 8), especially on ScanNet. Tiny feature maps
(82x82) remain competitive on both HPatches and ScanNet,
and trains in 1.7 hours on two GPUs. This enables appli-
cations like test-time finetuning, on-device finetuning, and
rapid experimental iteration.
Robustness to training data. Existing methods use various
training sets (Tab. 1); empirically we observe cases of poor
generalization across datasets. For example, LoFTR[47],
trained on indoor ScanNet data, drops significantly vs
LoFTR trained on outdoor MegaDepth data (Tab. 3) and
vice-versa (Tab. 5). This overfitting may be exacerbated
by the high-capacity machinery used by these methods, e.g.
LoFTR’s Transformer contexualizer. We measure SiLK’s
robustness on training data choices, by using different im-
ages from COCO[29], ImageNet[15], MegaDepth[28] and
ScanNet[12]. We also combine them to formulate a diversi-
fied set of training data.

SiLK is quite robust to change in training set, with the

HPatches ScanNet
R HAc MMA RA TA C

COCO 0.62 0.62 0.59 98.1 82.9 92.8
ImageNet 0.63 0.6 0.59 98.1 83.5 93.0
MegaDep. 0.62 0.61 0.57 97.9 83.5 92.9
ScanNet 0.60 0.55 0.48 97.6 82.8 92.7
C+I+M+S 0.61 0.59 0.54 97.7 83.0 92.6
C+I+M 0.64 0.6 0.59 98.0 82.9 92.8

Table 9. SiLK is robust to different training sets. A noticeable
drop is observed only when training on ScanNet.

exception of ScanNet (Tab. 9). We hypothesize this is due
to the significant amount of uniform surfaces (e.g. walls,
doors) present in ScanNet. These featureless areas contain
few keypoints to learn from. SiLK’s drop agrees direction-
ally with LoFTR’s drop observed in Tab. 3, but the magni-
tude is smaller. This may be because SiLK’s VGGnp back-
bone has lower capacity than LoFTR (FPN+Transformer),
and hence is less susceptible to overfitting. Finally, we re-
mark that SiLK trained with COCO is used for comparisons
in Sec. 4.2, Sec. 4.3 and Sec. 4.4 for HPatches, IMC and
ScanNet, whereas LoFTR requires different training data
(MegaDepth or ScanNet) to achieve strong performance.

5. Conclusion

This paper presents SiLK, a simple and flexible frame-
work for keypoint detection and descriptors. SiLK is de-
signed from the principles of distinctiveness and invariance,
and achieves or advances SOTA on key low-level tasks for
3D visual perception. SiLK’s simplicity questions the need
for complex machinery for good keypoint detection in low-
level applications. In addition, extensive ablations reveal
SiLK’s robustness to backbone, training data and training
input size. These findings lead to a tiny version of SiLK
that is lightweight, accurate, and trains quickly. We view
this “tiny and learned” regime as very promising for appli-
cations where runtime and/or power consumption is critical.
We hope SiLK can draw attention to the field and facilitate
stronger solutions.
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