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Figure 1: A “transformerized” view of Human Mesh Recovery. We describe HMR 2.0, a fully transformer-based approach for 3D
human pose and shape reconstruction from a single image. Besides impressive performance across a wide variety of poses and viewpoints,
HMR 2.0 also acts as the backbone of an improved system for jointly reconstructing and tracking Humans in 4D (4DHumans). Here, we
see output reconstructions from HMR 2.0 for each 2D detection in the left image.

Abstract

We present an approach to reconstruct humans and track
them over time. At the core of our approach, we propose
a fully “transformerized” version of a network for human
mesh recovery. This network, HMR 2.0, advances the state
of the art and shows the capability to analyze unusual poses
that have in the past been difficult to reconstruct from sin-
gle images. To analyze video, we use 3D reconstructions
from HMR 2.0 as input to a tracking system that operates
in 3D. This enables us to deal with multiple people and
maintain identities through occlusion events. Our complete
approach, 4DHumans, achieves state-of-the-art results for
tracking people from monocular video. Furthermore, we
demonstrate the effectiveness of HMR 2.0 on the down-
stream task of action recognition, achieving significant im-
provements over previous pose-based action recognition
approaches. Our code and models are available on the
project website: https://shubham-goel.github.
io/4dhumans/.

1. Introduction

In this paper, we present a fully transformer-based ap-
proach for recovering 3D meshes of human bodies from sin-
gle images, and tracking them over time in video. We obtain
unprecedented accuracy in our single-image 3D reconstruc-
tions (see Figure 1) even for unusual poses where previous
approaches struggle. In video, we link these reconstructions
over time by 3D tracking, in the process bridging gaps due
to occlusion or detection failures. These 4D reconstructions
can be seen on the project webpage.

Our problem formulation and approach can be conceived
as the “transformerization” of previous work on human
mesh recovery, HMR [30] and 3D tracking, PHALP [65].
Since the pioneering ViT paper [15], the process of “trans-
formerization”, i.e., converting models from CNNs or
LSTMs to transformer backbones, has advanced rapidly
across multiple computer vision tasks, e.g., [8, 16, 24, 40,
61, 77]. Specifically for 2D pose (2D body keypoints) this
has already been done by ViTPose [81]. We take that as a
starting point and we develop a new version of HMR, which
we call HMR 2.0 to acknowledge its antecedent.
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We use HMR 2.0 to build a system that can simultane-
ously reconstruct and track humans from videos. We rely
on the recent 3D tracking system, PHALP [65], which we
simplify and improve using our pose recovery. This system
can reconstruct Humans in 4D, which gives the name to our
method, 4DHumans. 4DHumans can be deployed on any
video and can jointly track and reconstruct people in video.
The functionality of creating a tracking entity for every per-
son is fundamental towards analyzing and understanding
humans in video. Besides achieving state-of-the-art results
for tracking on the PoseTrack dataset [1], we also apply
HMR 2.0 on the downstream application of action recogni-
tion. We follow the system design of recent work, [63], and
we show that the use of HMR 2.0 can achieve impressive
improvements upon the state of the art on action recogni-
tion on the AVA v2.2 dataset.

This paper is unabashedly a systems paper. We make
design choices that lead to the best systems for 3D human
reconstruction and tracking in the wild. Our model is pub-
licly available on the project webpage. There is an emerg-
ing trend, in computer vision as in natural language pro-
cessing, of large pretrained models which find widespread
downstream applications and thus justify the scaling ef-
fort. HMR 2.0 is such a large pre-trained model which
could potentially be useful not just in computer vision, but
also in robotics [54, 62, 73], computer graphics [76], bio-
mechanics [60], and other fields where analysis of the hu-
man figure and its movement from images or videos is
needed.

Our contributions can be summarized as follows:

1. We propose an end-to-end “transformerized” architec-
ture for human mesh recovery, HMR 2.0. Without re-
lying on domain-specific designs, we outperform ex-
isting approaches for 3D body pose reconstruction.

2. Building on HMR 2.0, we design 4DHumans that can
jointly reconstruct and track humans in video, achiev-
ing state-of-the-art results for tracking.

3. We show that better 3D poses from HMR 2.0 result in
better performance on the downstream task of action
recognition, finally contributing to the state-of-the-art
result (42.3 mAP) on the AVA benchmark.

2. Related Work
Human Mesh Recovery from a Single Image. Although,
there have been many approaches that estimate 3D human
pose and shape relying on iterative optimization, e.g., SM-
PLify [7] and variants [22, 38, 56, 66, 72, 85], for this
analysis we will focus on approaches that directly regress
the body shape from a single image input. In this case,
the canonical example is HMR [30], which uses a CNN
to regress SMPL [45] parameters. Since its introduction,

many improvements have been proposed for the original
method. Notably, many works have proposed alternative
methods for pseudo-ground truth generation, including us-
ing temporal information [3], multiple views [39], or itera-
tive optimization [35, 29, 57]. SPIN [35] proposed an in-
the-loop optimization that incorporated SMPLify [7] in the
HMR training. Here, we also rely on pseudo-ground truth
fits for training, and we use [37] for the offline fitting.

More recently, there have been works that propose more
specialized designs for the HMR architecture. PyMAF [89,
88] incorporates a mesh alignment module for the regres-
sion of the SMPL parameters. PARE [34] proposes a
body-part-guided attention mechanism for better occlusion
handling. HKMR [20] performs a prediction that is in-
formed by the known hierarchical structure of SMPL. Holo-
Pose [23] proposes a pooling strategy that follows the 2D
locations of each body joints. Instead, we follow a design
without any domain-specific decisions and we show that it
outperforms all previous approaches.

Many related approaches are making non-parametric
predictions, i.e., instead of estimating the parameters of
the SMPL model, they explicitly regress the vertices of the
mesh. GraphCMR [36] uses a graph neural network for the
prediction, METRO [42] and FastMETRO [10] use a trans-
former, while Mesh Graphormer [43] adopts a hybrid be-
tween the two. Since we regress the SMPL model param-
eters, instead of the locations of mesh vertices, we are not
directly comparable to these. However, we show how we
can use a fully “transformerized” design for HMR.
Human Mesh & Motion Recovery from Video. To ex-
tend Human Mesh Recovery over time, most methods use
the basic backbone of HMR [30] and propose designs for
the temporal encoder that fuses the per-frame features.
HMMR [31] uses a convolutional encoder on features ex-
tracted from HMR [30]. VIBE [33], MEVA [48] and
TCMR [11] use a recurrent temporal encoder. DSD [71]
combines convolutional and self-attention layers, while
MAED [75] and t-HMMR [57] employ a transformer-based
temporal encoder. Baradel et al. [5, 4] also used a trans-
former for temporal pose prediction, while operating di-
rectly on SMPL poses. One key limitation of these ap-
proaches is that they often operate in scenarios where track-
ing is simple [31, 90], e.g., videos with a single person
or minimal occlusions. In contrast to that, our complete
4DHumans approach is also solving the tracking problem.
Tracking People in Video. Recently, there have been ap-
proaches that demonstrate state-of-the-art performance for
tracking by relying on 3D human reconstruction from HMR
models, i.e., T3DP [64] and PHALP [65]. In these meth-
ods, every person detection is lifted to 3D using an HMR
network [57] and then tracking is performed using the 3D
representations from lifting [64] and prediction [65] to track
people in video. Empirical results show that PHALP works
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Figure 2: Overview of our approach. Left: HMR 2.0 is a fully “transformerized” version of a network for Human Mesh Recovery. Right:
We use HMR 2.0 as the backbone of our 4DHumans system, that builds on PHALP [65], to jointly reconstruct and track humans in 4D.

very well on multiple tracking benchmarks (the main re-
quirement is that the images have enough spatial resolution
to permit lifting of the people to 3D). We use these track-
ing pipelines, and particularly PHALP, as a task to evaluate
methods for human mesh recovery.
Action Recognition. Action recognition is typically per-
formed using appearance features from raw video input.
Canonical examples in this category include SlowFast [18]
and MViT [16]. Simultaneously, there are approaches that
use features extracted from body pose information, e.g., Po-
Tion [12] and JMRN [68]. A recent approach, LART [63],
demonstrates state-of-the-art performance for action recog-
nition by fusing video-based features with features from 3D
human pose estimates. We use the pipeline of this approach
and employ action recognition as a downstream task to eval-
uate human mesh recovery methods.

3. Reconstructing People

3.1. Preliminaries

Body Model. The SMPL model [46] is a low-dimensional
parametric model of the human body. Given input parame-
ters for pose (θ ∈ R24×3×3) and shape (β ∈ R10), it outputs
a mesh M ∈ R3×N with N = 6890 vertices. The body
joints X ∈ R3×k are defined as a linear combination of
the vertices and can be computed as X = MW with fixed
weights W ∈ RN×k. Note that pose parameters θ include
the body pose parameters θb ∈ R23×3×3 and the global ori-
entation θg ∈ R3×3.
Camera. We use a perspective camera model with fixed
focal length and intrinsics K. Each camera π = (R, t)
consists of a global orientation R ∈ R3×3 and transla-
tion t ∈ R3. Given these parameters, points in the SMPL

space (e.g., joints X) can be projected to the image as
x = π(X) = Π(K(RX+t)), where Π is a perspective pro-
jection with camera intrinsics K. Since θ already includes a
global orientation, in practice we assume R as identity and
only predict camera translation t.
HMR. The goal of the human mesh reconstruction (HMR)
task is to learn a predictor f(I) that given a single im-
age I, reconstructs the person in the image by predicting
their 3D pose and shape parameters. Following the typi-
cal parametric approaches [30, 35], we model f to predict
Θ = [θ, β, π] = f(I) where θ and β are the SMPL pose
and shape parameters and π is the camera translation.

3.2. Architecture

We re-imagine HMR [30] as an end-to-end transformer
architecture that uses no domain specific design choices.
Yet, it outperforms all existing approaches that have heav-
ily customized architectures and elaborate design decisions.
As shown in Figure 2, we use (i) a ViT [15] to extract image
tokens, and (ii) a standard transformer decoder that cross-
attends to image tokens to output Θ.
ViT. The Vision Transformer, or ViT [15] is a trans-
former [74] that has been modified to operate on an im-
age. The input image is first patchified into input tokens
and passed through the transformer to get output tokens.
The output tokens are then passed to the transformer de-
coder. We use a ViT-H/16, the “Huge” variant with 16× 16
input patch size. Please see SupMat for more details.
Transformer decoder. We use a standard transformer de-
coder [74] with multi-head self-attention. It processes a sin-
gle (zero) input token by cross-attending to the output image
tokens and ends with a linear readout of Θ. We follow [35]
and regress 3D rotations using the representation of [91].
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3.3. Losses

Following best practices in the HMR literature [30, 35],
we train our predictor f with a combination of 2D losses,
3D losses, and a discriminator. Since we train with a mix-
ture of datasets, each having different kinds of annotations,
we employ a subset of these losses for each image in a mini-
batch. We use the same losses even with pseudo-ground
truth annotations. Given an input image I , the model pre-
dicts Θ = [θ, β, π] = f(I). Whenever we have access to
the ground-truth SMPL pose parameters θ∗ and shape pa-
rameters β∗, we bootstrap the model predictions using an
MSE loss:

Lsmpl = ||θ − θ∗||22 + ||β − β∗||22.

When the image has accurate ground-truth 3D keypoint an-
notations X∗, we additionally supervise the predicted 3D
keypoints X with an L1 loss:

Lkp3D = ||X −X∗||1.

When the image has 2D keypoints annotations x∗, we su-
pervise projections of predicted 3D keypoints π(X) using
an L1 loss:

Lkp2D = ||π(X)− x∗||1.

Furthermore, we want to ensure that our model predicts
valid 3D poses and use the adversarial prior in HMR [30]. It
factorizes the model parameters into: (i) body pose param-
eters θb, (ii) shape parameters β, and (iii) per-part relative
rotations θi, which is one 3D rotation for each of the 23
joints of the SMPL model. We train a discriminator Dk for
each factor of the body model, and the generator loss can be
expressed as:

Ladv =
∑
k

(Dk(θb, β)− 1)2.

3.4. Pseudo-Ground Truth fitting

We scale to unlabelled datasets (i.e., InstaVariety [31],
AVA [21], AI Challenger [78]) by computing pseudo-
ground truth annotations. Given any image, we first use
an off-the-shelf detector [40] and a body keypoints estima-
tor [81] to get bounding boxes and corresponding 2D key-
points. We then fit a SMPL mesh to these 2D keypoints
using ProHMR [37] to get pseudo-ground truth SMPL pa-
rameters θ∗ and β∗ with camera π∗.

4. Tracking People
In videos with multiple people, we need the ability to as-

sociate people across time, i.e., perform tracking. For this
we build upon PHALP [65], a state-of-the-art tracker based
on features derived from HMR-style 3D reconstructions.
The basic idea is to detect people in individual frames, and

Pose Predictor

Mask
Token

Mask
Token

Mask
Token

Past Future

Figure 3: Pose prediction: We train a BERT-style [13] trans-
former model on over 1 million tracks obtained from [63]. This al-
low us to make future predictions and amodal completion of miss-
ing detections using the same model. To predict future poses (t+1,
t+2, ...), we query the model with a mask-token using correspond-
ing positional embeddings. Similarly for amodal completion, we
replace missing detections with a masked token.

“lift” them to 3D, extracting their 3D pose, location in 3D
space (derived from the estimated camera), and 3D appear-
ance (derived from the texture map). A tracklet represen-
tation is incrementally built up for each individual person
over time. The recursion step is to predict for each track-
let, the pose, location and appearance of the person in the
next frame, all in 3D, and then find best matches between
these top-down predictions and the bottom-up detections of
people in that frame after lifting them to 3D. The state rep-
resented by each tracklet is then updated by the incoming
observation, and the process is iterated. It is possible to
track through occlusions because the 3D representation of a
tracklet continues to be updated based on past history.

We believe that a robust pose predictor should also per-
form well, when evaluated on this downstream task of track-
ing, so we use the tracking metrics as a proxy to evaluate the
quality of 3D reconstructions. But first we needed to mod-
ify the PHALP framework to allow for fair comparison of
different pose prediction models. Originally, PHALP used
pose features based on the last layer of the HMR network,
i.e., a 2048-dimensional embedding space. This limits the
ability of PHALP to be used with different pose models
(e.g., HMR 2.0, PARE, PyMAF etc.). To create a more
generic version of PHALP, we perform the modification of
representing pose in terms of SMPL pose parameters, and
we accordingly optimize the PHALP cost function to utilize
the new pose distance. Similarly, we adapt the pose pre-
dictor to operate on the space of SMPL parameters. More
specifically, we train a vanilla transformer model [74] by
masking random pose tokens as shown in the Fig 3. This
allows us to predict future poses in time, as well as amodal
completion of missing detections. With these modifications,
we can plug in any mesh recovery methods and run them on
any videos. We call this modified version PHALP′.
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4DHumans. Our final tracking system, 4DHumans, uses a
sampling-based parameter-free appearance head and a new
pose predictor (Figure 3). To model appearance, we texture
visible points on the mesh by projecting them onto the input
image and sampling color from the corresponding pixels.

To track people in videos, previous approaches relied on
off-the-shelf tracking approaches and used their output to
reconstruct humans in videos (e.g., take the bounding boxes
from tracking output and reconstruct people). For example,
PHD [90], HMMR [31] can run on videos with only single
person in the scene. In this work, we combine reconstruc-
tion and tracking into a single system and show that better
pose reconstructions result in better tracking and this com-
bined system can now run on any videos in the wild.

5. Experiments
In this section, we evaluate our reconstruction and track-

ing system qualitatively and quantitatively. First, we show
that HMR 2.0 outperforms previous methods on standard
2D and 3D pose accuracy metrics (Section 5.2). Second, we
show 4DHumans is a versatile tracker, achieving state-of-
the-art performance (Section 5.3). Third, we further demon-
strate the robustness and accuracy of our recovered poses
via superior performance on the downstream application of
action recognition (Section 5.4). Finally, we discuss the ex-
perimental investigation when designing HMR 2.0 and ab-
late a series of design choices (Section 5.5).

5.1. Setup

Datasets. Following previous work, we use the typi-
cal datasets for training, i.e., Human3.6M [27], MPI-INF-
3DHP [49], COCO [44] and MPII [2]. Additionally, we use
InstaVariety [31], AVA [21] and AI Challenger [78] as extra
data where we generate pseudo-ground truth fits.
Baselines. We report performance on benchmarks that we
can compare with many previous works (Section 5.2), but
we also perform a more detailed comparison with recent
state-of-the-art methods, i.e., PyMAF [89], CLIFF [41],
HMAR [65], PARE [34], and PyMAF-X [88]. For fairness,
we only evaluate the body-only performance of PyMAF-X.

5.2. Pose Accuracy

3D Metrics. For 3D pose accuracy, we follow the typical
protocols of prior work, e.g., [35], and we present results
on the 3DPW test split and on the Human3.6M val split,
reporting MPJPE, and PA-MPJPE in Table 1. Please no-
tice that we only compare with methods that do not use the
training set of 3DPW for training, similar to us. We observe
that with our HMR 2.0a model, which trains only on the
typical datasets, we can outperform all previous baselines
across all metrics. However, we believe that these bench-
marks are very saturated and these smaller differences in
pose metrics tend to not be very significant. In fact, we

Method
3DPW Human3.6M

MPJPE PA-MPJPE MPJPE PA-MPJPE

Te
m

po
ra

l

Kanazawa et al. [31] 116.5 72.6 - 56.9
Doersch et al. [14] - 74.7 - -
Arnab et al. [3] - 72.2 77.8 54.3
DSD [71] - 69.5 59.1 42.4
VIBE [33] 93.5 56.5 65.9 41.5

Fr
am

e-
ba

se
d

Pavlakos et al. [59] - - - 75.9
HMR [30] 130.0 76.7 88.0 56.8
NBF [53] - - 59.9
GraphCMR [36] - 70.2 - 50.1
HoloPose [23] - - 60.3 46.5
DenseRaC [82] - - 76.8 48.0
SPIN [35] 96.9 59.2 62.5 41.1
DecoMR [86] - 61.7† - 39.3†

DaNet [87] - 56.9 61.5 48.6
Song et al. [69] - 55.9 - 56.4
I2L-MeshNet [51] 100.0 60.0 55.7† 41.1†

HKMR [20] - - 59.6 43.2
PyMAF [89] 92.8 58.9 57.7 40.5
PARE [34] 82.0 50.9 76.8 50.6
PyMAF-X [88] 78.0 47.1 54.2 37.2
HMR 2.0a 70.0 44.5 44.8 33.6
HMR 2.0b 81.3 54.3 50.0 32.4

Table 1: Reconstructions evaluated in 3D: Reconstruction errors
(in mm) on the 3DPW and Human3.6M datasets. † denotes the
numbers evaluated on non-parametric results. Lower ↓ is better.
Please see the text for details.

Method
LSP-Extended COCO PoseTrack
@0.05 @0.1 @0.05 @0.1 @0.05 @0.1

PyMAF [89] - - 0.68 0.86 0.77 0.92
CLIFF [41] 0.32 0.66 0.64 0.88 0.75 0.92
PARE [34] 0.27 0.60 0.72 0.91 0.79 0.93
PyMAF-X [88] - - 0.79 0.93 0.85 0.95
HMR 2.0a 0.38 0.72 0.79 0.95 0.86 0.97
HMR 2.0b 0.53 0.82 0.86 0.96 0.90 0.98

Table 2: Reconstructions evaluated in 2D. PCK scores of pro-
jected keypoints at different thresholds on the LSP-Extended,
COCO, and PoseTrack datasets. Higher ↑ is better.

observe that by a small compromise of the performance on
3DPW, our HMR 2.0b model, which trains for longer on
more data (AVA [21], AI Challenger [78], and InstaVari-
ety [31]), achieves results that perform better on more un-
usual poses than what can be found in Human3.6M and
3DPW. We observe this qualitatively and from performance
evaluated on 2D pose reprojection (Table 2). Furthermore,
we observe that HMR 2.0b is a more robust model and use
it for evaluation in the rest of the paper.
2D Metrics. We evaluate 2D image alignment of the gen-
erated poses by reporting PCK of reprojected keypoints
at different thresholds on LSP-Extended [28], COCO val-
idation set [44], and Posetrack validation set [1]. Since
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PyMAF(-X) [89, 88] were trained using LSP-Extended, we
do not report numbers for that part of the table. Notice in
Table 2, that HMR 2.0b consistently outperforms all pre-
vious approaches. On LSP-Extended, which contains un-
usual poses, HMR 2.0b achieves PCK@0.05 of 0.53, which
is 1.6× better than the second best (CLIFF) with 0.32. For
PCK@0.05 on easier datasets like COCO and PoseTrack
with less extreme poses, HMR 2.0b still outperforms the
second-best approaches but by narrower margins of 9% and
6% respectively. HMR 2.0a also outperforms all baselines,
but is worse than HMR 2.0b, especially on harder poses in
LSP-Extended.
Qualitative Results. We show qualitative results of
HMR 2.0 in Figure 4. We are robust to extreme poses
and partial occlusions. Our reconstructions are well-aligned
with the image and are valid when seen from a novel view.
Moreover, we compare with our closest competitors in Fig-
ure 5. We observe that PyMAF-X and particularly PARE
often struggle with more unusual poses, while HMR 2.0 re-
turns more faithful reconstructions.

5.3. Tracking

For tracking, we first demonstrate the versatility of
the modifications introduced by PHALP′, which allow us
to evaluate 3D pose estimators on the downstream task
of tracking. Then, we evaluate our complete system,
4DHumans, with respect to the state of the art.

Evaluation Setting. Following previous work [64, 65],
we report results based on IDs (ID switches), MOTA [32],
IDF1 [67], and HOTA [47] on the Posetrack validation set
using the protocol of [65], with detections from Mask R-
CNN [25].
Versatility of PHALP′. With the modifications of
PHALP′, we abandon the model-specific latent space
of [65] and instead, we operate in the SMPL space, which
is shared across most mesh recovery systems. This makes
PHALP′ more versatile and allows us to plug in different
3D pose estimators and compare them based on their per-
formance on the downstream task of tracking. We perform
this comparison in Table 3 where we use pose and loca-
tion cues from state-of-the-art 3D pose estimators (while
still using appearance from HMAR [65]). We observe that
HMR 2.0 performs the best and PARE [34], HMAR [65],
and PyMAF-X [88] closely follow on the Posetrack dataset,
with minor differences between them. Note that tracking is
often most susceptible to errors in predicted 3D locations
with body pose having a smaller effect in performance [65].
This means that good tracking performance can indicate
robustness to occlusions, so it is helpful to consider this
metric, but it is less helpful to distinguish fine-grained dif-
ferences in pose. As a result, the competitive results of
PARE [34], HMAR [65], and PyMAF-X [88] indicate that
they handle occlusions gracefully, but their pose estimation

Tracker Pose Engine Posetrack
HOTA↑ IDs↓ MOTA↑ IDF1↑

PHALP′

PARE [34] 53.6 510 59.4 76.8
PyMAF-X [88] 53.7 472 59.2 76.9
CLIFF [41] 53.5 551 58.7 76.5
PyMAF [89] 53.0 623 58.6 76.1
HMAR [65] 53.6 482 59.3 77.1
HMR 2.0 54.1 456 59.4 77.4

Table 3: Tracking with different 3D pose estimators. With
the modifications of PHALP′, we have a versatile tracker that al-
lows different 3D pose estimators to be plugged into it. HMR 2.0,
PARE, and PyMAF-X perform the best in this setting.

Method Posetrack
HOTA↑ IDs↓ MOTA↑ IDF1↑

Trackformer [50] 46.7 1263 33.7 64.0
Tracktor [6] 38.5 702 42.4 65.2
AlphaPose [17] 37.6 2220 36.9 66.9
Pose Flow [79] 38.0 1047 15.4 64.2
T3DP [64] 50.6 655 55.8 73.4
PHALP [65] 52.9 541 58.9 76.4
4DHumans 54.3 421 59.8 77.9

4DHumans + ViTDet 57.8 382 61.4 79.1

Table 4: Comparison of 4DHumans with the state of the art on
the Posetrack dataset. 4DHumans achieve state-of-the-art track-
ing performance for all metrics. Incorporating a better detection
system [40] leads to further performance improvements.

might still be less accurate (as observed from Table 2). See
also Figure 5 and SupMat for more qualitative comparisons.
4DHumans. Table 4 evaluates tracking performance
of our complete system, 4DHumans, on the PoseTrack
dataset. Using the same bounding box detector as [64, 65],
4DHumans outperforms existing approaches on all metrics,
improving ID Switches by 22%. Using the improved ViT-
Det detector [40] can improve performance further. As a by-
product of our temporal prediction model (Figure 3), we can
perform amodal completion and attribute a pose to missing
detections. We show examples of this in the SupMat.

5.4. Action Recognition

Evaluation setting. The approach of [63] is the state of the
art for action recognition in videos. Given a video as input,
the authors propose using per-frame 3D pose and location
estimates (using off-the-shelf HMR models [65]) as an ad-
ditional feature for predicting action labels. They also show
results for a “pose-only” baseline that predicts action labels
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Front viewInput Side view Top view Front viewInput Side view Top view

Figure 4: Qualitative evaluation of HMR 2.0. For each example we show: a) the input image, b) the reconstruction overlay, c) a side
view, d) the top view. To demonstrate the robustness of HMR 2.0, we visualize results for a variety of settings - for unusual poses (rows
1-4), for unusual viewpoints (row 5) and for images with poor visibility, extreme truncations and extreme occlusions (rows 6-8).

using only 3D pose and location estimates. We use this
setting to compare our model with baselines on the down-
stream task of action recognition on the AVA dataset [21].
In [63], the authors train a transformer that takes SMPL
poses as input and predicts action labels. Following their
setup, we train a separate action classification transformer
for each baseline.

Comparisons. Comparing results in Table 5, we observe
that HMR 2.0 outperforms baselines on the different class
categories (OM, PI, PM) and overall. It achieves an mAP
of 22.3 on the AVA test set, which is 14% better than the
second-best baseline. Since accurate action recognition
from poses needs fine-grained pose estimation, this is strong
evidence that HMR 2.0 predicts more accurate poses than
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Figure 5: Qualitative comparison of state-of-the-art mesh recovery methods. HMR 2.0 returns more faithful reconstructions for unusual
poses compared to the closest competitors, PyMAF-X [88] and PARE [34].
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Figure 6: Qualitative tracking results of 4DHumans. We use head masks (frame number is on the top left). First row: We track people
skating on ice with challenging poses and heavy occlusions, in a minute long video without switching identities. Second row: The main
person is tracked through multiple interactions with other players. Third row: The person of interest is tracked through long occlusions.

Action Pose OM PI PM mAPModel Engine

[63]

PyMAF [89] 7.3 16.9 34.7 15.4
CLIFF [41] 9.2 20.0 40.3 18.6
HMAR [65] 8.7 20.1 40.3 18.3
PARE [34] 9.2 20.7 41.5 19.1
PyMAF-X [88] 10.2 21.4 40.8 19.6
HMR 2.0 11.9 24.6 45.8 22.3

Table 5: Action recognition results on the AVA dataset. We
benchmark different mesh recovery methods on the downstream
task of pose-based action recognition. Here, OM : Object Manip-
ulation, PI : Person Interactions, and PM : Person Movement.

existing approaches. In fact, when combined with appear-
ance features, [63] shows that HMR 2.0 achieves the state
of the art of 42.3 mAP on AVA action recognition, which is
7% better than the second-best of 39.5 mAP.

5.5. HMR 2.0 Model Design

In the process of developing HMR 2.0, we investigated
a series of design decisions. Figure 7 briefly illustrates this
exploration. We experimented with over 100 settings and
we visualize the performance of 100 checkpoints for each
run. For the visualization, we use the performance of each
checkpoint on the 3DPW and the LSP-Extended dataset.

Our investigation focused on some specific aspects of
the model, which we document here as a series of “lessons
learnt” for future research. In the following paragraphs, we
will regularly refer to Table 6, which evaluates these aspects
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Figure 7: Extensive model search. With each dot, we visualize
the performance of a checkpoint when evaluated on 3DPW and
LSP-Extended. Colors indicate different runs. We explore more
than 100 settings, and visualize ∼100 checkpoints from each run.

on 3D and 2D metrics, using the 3DPW, Human3.6M, and
LSP-Extended datasets.
Effect of backbone. Unlike the majority of the previous
work on Human Mesh Recovery that uses a ResNet back-
bone, our HMR 2.0 method relies on a ViT backbone. For
a direct comparison of the effect of the backbone, Model
B1 implements HMR with a ResNet-50 backbone and an
MLP-based head implementing IEF (Iterative Error Feed-
back [9, 30]). In contrast, Model B2 uses a transformer
backbone (ViT-H) while keeping the other design decisions
the same. By updating the backbone, we observe a signif-
icant improvement across the 3D and 2D metrics, which
justifies the “transformerization” step.
Effect of training data. Besides the architecture, we also
investigated the effect of training data. Model D1 trains
on the typical datasets (H3.6M, MPII, COCO, MPI-INF)
that most of the previous works are leveraging. In com-
parison, model D2 adds AVA in the training set, follow-
ing [21]. Eventually, we also train using AI-Challenger and
Insta-Variety (model B2), to further expand the training set.
As we can see, adding more training data leads to improve-
ments across the board for the reported metrics, but the ben-
efit is smaller compared to the backbone update.
ViT pretraining. Another factor that had significant ef-
fect on the performance of our model was the pretraining
of the ViT backbone. Starting with randomly initialized
weights (model P1) results in slow convergence and poor
performance. Results improve if our backbone is pretrained
with MAE [24] on Imagenet (P2). Eventually, our model
of choice (HMR 2.0b), which is first pretrained with MAE
on ImageNet and then on the task of 2D keypoint predic-
tion [81], achieves the best performance.
SMPL head. We also investigate the effect of the architec-
ture for the head that predicts the SMPL parameters. Our
proposed transformer decoder (HMR 2.0b) improves per-
formance when it comes to the image-model alignment (i.e.,
2D metrics) compared to the traditional MLP-based head
with IEF steps (B2).
Dataset quality. Similar to previous work, e.g., [35], it was
crucial to keep the quality of the training data high; we filter

Models
3DPW Human3.6M LSP-Extended

MPJPE PA-MPJPE MPJPE PA-MPJPE PCK@0.05 PCK@0.1

HMR 2.0b 81.3 54.3 50.0 32.4 0.53 0.82

B1 85.2 56.8 58.9 41.4 0.35 0.66
B2 79.7 53.4 51.4 34.4 0.48 0.81

D1 84.1 54.8 54.5 35.1 0.45 0.79
D2 80.2 53.3 52.4 34.9 0.46 0.79

P1 98.9 61.7 89.9 58.7 0.24 0.52
P2 82.7 55.6 49.3 32.4 0.52 0.81

Table 6: Ablations: Evaluation for different model designs on the
3DPW, Human3.6M, and LSP-Extended datasets.

out low quality pseudo-ground truth fits (high fitting error)
and prune images with low-confidence 2D detections.

6. Conclusion
We study the problem of reconstructing and tracking hu-

mans from images and video. First, we propose HMR 2.0,
a fully “transformerized” version of a network for the prob-
lem of Human Mesh Recovery [30]. HMR 2.0 achieves
strong performance on the usual 2D/3D pose metrics, while
also acting as the backbone for our improved video tracker.
The full system, 4DHumans, jointly reconstructs and tracks
people in video and achieves state-of-the-art results for
tracking. To further illustrate the benefit of our 3D pose
estimator, HMR 2.0, we apply it to the task of action recog-
nition, where we demonstrate strong improvements upon
previous pose-based baselines.

Our work pushes the boundary of the videos that can be
analyzed with techniques for 3D human reconstruction. At
the same time, the improved results also demonstrate the
type of limitations that need to be addressed in the future.
For example, the use of the SMPL model [45] creates cer-
tain limitations, and leveraging improved models would al-
low us to model hand pose and facial expressions [56], or
even capture greater age variation, e.g., infants [26] and
kids [55, 70]. Moreover, since we consider each person in-
dependently, our reconstructions are less successful at cap-
turing the fine-grained nature of people in close proxim-
ity, e.g., contact [19, 52]. Besides this, our reconstructions
“live” in the camera frame, so for proper understanding of
the action in a video, we need to consider everyone in a
common world coordinate frame, by reasoning about the
camera motion too [58, 83, 84]. Finally, lower input reso-
lution can affect the quality of our reconstructions, which
could be addressed by resolution augmentations [80].
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