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Abstract

With the rapid development of AI hardware accelerators,
applying deep learning-based algorithms to solve various
low-level vision tasks on mobile devices has gradually be-
come possible. However, two main problems still need to
be solved: task-specific algorithms make it difficult to inte-
grate them into a single neural network architecture, and
large amounts of parameters make it difficult to achieve
real-time inference. To tackle these problems, we propose
a novel network, SYENet, with only 6K parameters, to han-
dle multiple low-level vision tasks on mobile devices in a
real-time manner. The SYENet consists of two asymmet-
rical branches with simple building blocks. To effectively
connect the results by asymmetrical branches, a Quadratic
Connection Unit(QCU) is proposed. Furthermore, to im-
prove performance, a new Outlier-Aware Loss is proposed
to process the image. The proposed method proves its su-
perior performance with the best PSNR as compared with
other networks in real-time applications such as Image Sig-
nal Processing(ISP), Low-Light Enhancement(LLE), and
Super-Resolution(SR) with 2K60FPS throughput on Qual-
comm 8 Gen 1 mobile SoC(System-on-Chip). Particularly,
for ISP task, SYENet got the highest score in MAI 2022
Learned Smartphone ISP challenge.

1. Introduction
In recent years, with the thriving development of AI ac-

celerators [54, 77], such as Neural Processor Units(NPUs)

or Graphic Processor Units(GPUs), AI algorithms can be

deployed on mobile devices and achieved great success

∗These authors contributed equally to this work.
†Corresponding author: Ke Xu(xu.kevin@sanechips.com.cn)

[65, 73, 94, 99]. Many mobile SoCs, especially those de-

signed for smartphone, tablet, and in-vehicle infotainment

systems, require superior visual quality processing, which

cannot be achieved without leveraging deep networks such

as ISP [43, 46], LLE [7], and SR [8, 11, 14]. However, due

to the tight hardware constraints such as power and com-

puting resources, deploying these algorithms on mobile de-

vices still has several issues as follows.

The first issue concerns real-time processing. Usually,

these low-level vision tasks require a 2K60FPS or even

higher real-time performance to satisfy the viewer’s needs.

Although the State-of-the-Arts(SOTAs) [8, 14, 46, 90] deal-

ing with similar tasks have boosted the performance, they

increased the numbers of parameters and computational

cost drastically, which cannot satisfy real-time inference

deployment even on powerful hardware such as server-

level processors. Moreover, compared with high-level tasks

[94, 99], where the input images could be resized into a

lower resolution such as 128 × 128 or 256 × 256 with-

out noticeable effects, low-level vision tasks cannot do the

same thing as their preliminary goal is to improve the hu-

man visual quality. A more detailed discussion about the

constraints of low-level vision tasks is in Appendix G.

The second issue is related to hardware resources on

mobile devices such as Qualcomm’s Snapdragon. As

compared with server-level Central Processing Unit(CPU)

or GPU, mobile SoC usually has limited computing re-

sources such as multiplication-and-accumulation units, lim-

ited memory bandwidth, and limited power consumption

budget. Unfortunately, most low-level vision algorithms are

task-specific [7, 14, 46, 62] and independent to each other,

which makes it difficult to merge into a single architec-

ture. To make things worse, many advanced operators, such

as deformable convolution [106] and 3D-convolution [68],

cannot be directly applied on mobile devices, which further
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(a) ISP

(b) SR with scale factor ×4

Figure 1: Comparison about different issues (a)ISP

(b)SR×4 upon comprehensive score versus quantitative

measurements by SOTA models. The size of the model rep-

resents the inference speed. The Score equation is in Eq.

9 by the MAI Challenge [43]. Our method shows superior

comprehensive performance upon image quality, inference

speed, and the score involving both factors.

leads to performance degradation. Therefore, as already

proved in high-level vision tasks and NLP [4, 10, 31, 33],

building a simple yet unified network architecture is the

best choice for low-level vision tasks running on limited

computing resources. Although there are excellent multi-

ple low-level vision works like [8, 9, 60], they are not feasi-

ble for deployment on mobile devices due to their hardware

complexity.

Several lightweight models [2, 57, 64, 89] were already

proposed with a relatively small number of parameters to

achieve a reasonable performance. Unfortunately, their im-

plementations cannot satisfy real-time requirements such as

2K60FPS. To the best of our knowledge, there is still no

prior work for the multiple low-level vision tasks in a single

network architecture.

In this paper, we propose a new architecture SYENet,

which can solve multiple low-level vision tasks with

2K60FPS on a mobile device such as Qualcomm’s 8 Gen 1.

We first decompose the low-level vision into two sub-tasks,

which are texture generation and pattern classification. We

then leverage two asymmetric branches to handle each task

and a Quadratic Connection Unit(QCU) to connect the out-

puts to enlarge the representational power. Furthermore,

the network replaces ordinary convolution with revised re-

parameterized convolution to boost the performance with-

out increasing inference time, and Channel Attention(CA)

is utilized for enhancement by global information. In ad-

dition, we propose Outlier-Aware Loss by involving global

information and putting more focus on the outliers of the

prediction for improving the performance. The proposed

network achieves SOTA performance, as compared with

other methods on low-level tasks. The comprehensive per-

formance evaluation of SR, LLE and ISP tasks are shown in

Table 1, 2, and 3, respectively.

The contributions of this paper can be summarized in

three aspects:

1. We propose that asymmetric branches fused with

Quadratic Connections Unit(QCU) is an effective

method for solving multiple low-level vision tasks due

to its ability to enlarge the representation power with

modicum parameter count. Building upon this struc-

ture, we introduce SYENet, which incorporates re-

vised reparameterized convolutions and channel atten-

tion to enhance performance without sacrificing speed.

2. A new loss function termed Outlier-Aware Loss is

proposed for better training by leveraging global infor-

mation and prioritizing outliers, the poorly predicted

pixels.

3. Compared with other studies, our network has a supe-

rior performance according to the evaluation metrics

in MAI Challenge [40], which reflects both the image

quality and efficiency as shown in Fig. 1.

2. Related work
2.1. Low-level vision

Low-level vision techniques are generally required in a

variety of applications to improve image and video quality.

It could be defined as finding the best mapping between in-

put and output images. In this section, we mainly discuss

three widely used low-level vision tasks, which are super-

resolution SR, end-to-end image signal processing ISP, and

low-light enhancement LLE.

Super resolution: Convolution Neural Network(CNN)

are widely used in SR algorithms. From the very first model
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SRCNN [18] to EDSR [62], ESPCN [76], FEQE [83] and

VDSR [52] .etc, CNNs significantly improve [14, 70, 102]

SR performance and try to reduce the computational com-

plexity. Special building blocks such as residual block

[14, 34, 101] and deformable convolution [53, 88] are also

used to improve visual quality. Transformer-based SR mod-

els such as SwinSR [60] and IPT [8] show significant im-

provements compared to traditional CNN-based models.

End-to-end ISP: HighEr-Resolution Network(HERN)

[69] employs a two-branch structure to combine features

of different scales to help conduct the tasks of demosaic-

ing and image enhancement. PyNet [46] achieves similar

performance as compared with the most sophisticated tra-

ditional ISP pipelines. AWNet [13] introduces attention

mechanism, and wavelet transform for learning-based ISP

network, which significantly improves image quality due to

a large receptive field. Focusing on the color inconsistency

issue that exists between input raw and output sRGB im-

ages, Zhang [105] designs a joint learning network. Sim-

ilarly, from the perspective of solving noise discrepancy,

Cao [5] introduces a pseudo-ISP, utilizing unpaired learn-

ing algorithm.

Low-light enhancement: Some end-to-end RAW-to-

RGB LLE methods [23, 30, 75] employ the color shuffle

operator in the front of the network. In the sRGB domain,

with the advantage of being interpretable, many researchers

focus on the decomposition method for LLE task, enhanc-

ing neural network designs and additional regularization as

used in de-haze and de-noise [58, 61, 74, 86, 103]. Based

on the non-local evaluation, normal light output can be ob-

tained through a global awareness or generation method

[49, 85, 87].

2.2. Mobile devices implementation

The SOTA networks for solving low-level vision prob-

lems show increasingly good performance. However, most

of them are too computationally expensive, and hence it

is tough to implement those algorithms in mobile devices

without a powerful GPU. Meanwhile, some research about

compact and effective network were carried out. Wang

[89] proposed a lightweight U-shape network to support

denoising operations on mobile platforms. MobiSR [57]

with model compression methods applies two networks

focusing on latency as well as quality to guarantee effi-

ciency. SplitSR [64] reached 5 times faster inference using

lightweight residual block, and XLSR [2] applies deep roots

module [47] into SISR issue demonstrating the same per-

formance of VDSR [52] using 30 times fewer parameters.

Unfortunately, however, lightweight networks still preserve

millions of parameters, which is far from the real-time ap-

plication of 2K60FPS in mobile devices.

2.3. Re-parameterization

Re-parameterization is the approach for structural sim-

plification using re-parameterized blocks, which is compli-

cated during training but simplified during inference with

the equivalent forward results. ACNet [16] inspired by

the idea of convolution factorization, introduces asymmet-

ric convolution block(ACB), which slightly improves per-

formance and significantly reduces the computational cost.

RepVGG [17] which is inspired by ResNet [35] applies

RepVGG block with skip connections to replace the normal

single convolution block. Later on, RepOptVGG [15] pro-

posed to use the re-parameterized optimizer to replace the

re-parameterized network architecture, which could even

additionally dismiss the complexity in the training phase

compared with RepVGG. In this study, the technique of re-

parameterization shall be utilized to help SYENet to accel-

erate the inference.

3. Method
As the target platform for SYENet is mobile device,

which has very limited hardware resources compared to

cloud computing, each building block of SYENet should be

carefully designed to reduce computation complexity while

retaining the desired performance.

3.1. Texture generation and pattern selection

To reconstruct the desired images from the degraded in-

put, texture and pixel pattern, which are compact represen-

tations and useful features, should be extracted and pro-

cessed. The texture feature is the base for pixel prediction

in SYENet. Pattern information reflected by color provides

each pixel with classification information and is utilized to

guide pixel prediction. Apparently, extracting the texture

features as the regression task requires a deeper network

for a larger receptive field than that of pattern information

extraction as the classification task. Therefore, we use the

asymmetric module with two branches for these tasks. The

texture generation branch is designed to have two layers of

convolutions, while the pattern selection branch only has

one. For the same reason, the second asymmetric block is

designed to have two branches with a 3×3 and 1×1 kernel

convolution, respectively. The output of the two branches is

shown in Fig. 3, and more examples can be found in Ap-

pendix K.

3.2. Quadratic Connection Unit (QCU): improving
the capability of fitting arbitrary models

Typically, in the previous multi-branch networks, the fu-

sion of outputs by different branches could be done by con-

catenation [2,78] or element-wise addition followed by acti-

vation function [16,24]. In this study, in order to effectively

improve the representational power, a Quadratic Connec-
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(a) Overall Architecture of SYENet: two � operations are element-wise multiplications and ⊗ operation is channel-wise multiplication (*

means some tasks may not require a head block to process). After the reparameterization, SYENet consists of 6 convolutions with only 5K

parameters, excluding head and tail blocks.

CONV5×5 CONV5×5 CONV1×1 CONV1×1 CONV3×3 CONV3×3 CONV3×1 CONV3×1 CONV1×3 CONV1×3

BN BN BN BN BN

CONCAT

CONV1×1

CONV5×5

(b) ConvRep block during training(left) and inference(right) phase, the training branches can be specifically designed for different require-

ments and applications.

Figure 2: Architecture of SYENet and the structure of ConvRep block in training (left) as well as inference (right) phase

Figure 3: Complex texture feature with many details, sim-

ple pattern classification focusing on labeling and clustering

pixels, fused results, and the ground truth

tion Unit (QCU), as Eq. 1 where � is an element-wise mul-

tiplication and ⊕ is element-wise addition, is employed for

the fusion of the results by two branches F1 and F2. In big

models with numerous channels, employing QCU may not

make a difference because big models already have power-

ful expressiveness. However, for small models like SYENet

this revision is rather vital.

QCU(F1, F2) = (F1 � F2)⊕ B (1)

The formulation of F1 and F2 after re-parameterization

Figure 4: Faster convergence and higher PSNR by

QCU compared with various fusion methods (addi-

tion(ADD), concatenation(CAT), multiplication(MUL)) in

training SYENet for LLE task in LoL dataset. The QCU

reaches higher PSNR and lower loss during the training.

shall be represented as linear form KX+B due to convolu-

tion being linear transformation, so that the multiplied out-

put should be in the quadratic form as (K̂X+B̂)(K̃X+B̃).
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In addition, NAFNet [9] revealed that activation could be re-

placed by multiplication in terms of providing nonlinearity

towards the network.

However, we find that there exists the constraint or draw-

back of the above quadratic form by pure multiplication

that the function must pass through two fixed position sets

(−B̂/K̂, 0) and (−B̃/K̃, 0). Meanwhile, multiplication

rather than addition could more easily enhance the influence

of perturbations, which impairs robustness. To fix the two

issues mentioned above, we add an element-wise learnable

bias B to the fused output, which can impressively convert

the expression to a more general form as K2X
2+K1X+B.

3.3. Outlier-Aware Loss: putting more focus on er-
roneously predicted pixels

In this study, applying the idea of Focal Loss [63] to re-

gression problem, we propose a new loss function termed

Outlier-Aware Loss LOA, as shown in Eq. 3, involving

global information and putting more focus on the pixels that

are badly predicted as the outliers. In Eq. 2, Δ is the differ-

ence between ground truth IGT and the output by SYENet

ISY E in matrix form, and δi,j is the value of Δ in position

(i, j). In Eq. 3, H and W are the output height and width.

μ and σ2, as the global information, are the mean and vari-

ance of Δ. b is the scale parameter defined by 2b2 = σ2.

α is a tunable hyperparameter assigned by the user. Com-

pared with L1 loss, the loss in pixel (i, j) is multiplied by a

weight Wi,j = 1 − e−α|δi,j−μ|p/b. Wi,j is proportional to

|δi,j−μ| and allows the model to focus on hard, erroneously

predicted pixels. p is the norm number and is normally set

to be 1 in low-level vision tasks implying the original loss

to be optimized by W is L1 loss. Moreover, as shown in Ta-

ble 4, Fig. 5, Fig. 6, and Fig. 7, Outlier-Aware Loss could

improve the PSNR of the output images. A more detailed

discussion of LOA is in Appendix A.

Δ = ISY E − IGT = {δi,j |i ∈ [0, H − 1], j ∈ [0,W − 1]}
(2)

LOA =
1

HW

H−1∑
i=0

W−1∑
j=0

[
|δi,j |p ×

(
1− e−α|δi,j−μ|p/b

)]

(3)

3.4. Revised re-parameterization with enhance-
ment by 1× 1 convolution

All the convolution layers in SYENet shall be re-

parameterized as Fig. 2b for inference. The convolution

block in the training phase is expressed as Eq. 4.

I(out)=CONV1×1

(
CAT

({CONVΦ(I
(in))|Φ})

)
(4)

After the re-parameterization, the complex concatena-

tion of several convolutions, half followed by batch normal-

ization layers, shall be converted back to a single convolu-

tion layer as Eq. 5 for accelerating inference.

I(out) = CONV5×5(I
(in)) (5)

Compared with the previous re-parameterization tech-

niques, in SYENet, an improvement by one extra convo-

lution layer with the kernel size of 1× 1 is implemented af-

ter the concatenation to score the importance of each chan-

nel. Meanwhile, this structure can be re-parameterized like

addition fusion. Compared with RepVGG block [17], our

revised ConvRep block with 1× 1 convolution, which sim-

ulates the function of channel attention, could improve the

PSNR by 2.1932dB as shown in Table 4.

3.5. Simple Yet Effective (SYE) Network

The SYENet consists of 5 parts: head block, the first and

second asymmetrical block, channel attention block, and

tail block, which are assigned as H, A1, A2, CA and T.

The head block is arranged for the preference of different

tasks. The asymmetrical blocks are utilized to generate tex-

ture features and pattern information, which afterward shall

be fused using multiplication. With the network input as

I(in), the output of the first asymmetrical block I(a1) and

second I(a2) are expressed as below, in which the subscript

(c) and (s) represent the complex and the simple asymmet-

ric branch respectively.

I(a1) = QCU
(
A

(c)
1

(
H(I(in))

)
,A

(s)
1

(
H(I(in))

))
(6)

I(a2) = QCU
(
A

(c)
2 (I(a1)),A

(s)
2 (I(a1))

)
(7)

The squeeze-and-excitation block is adopted and em-

ployed as the channel attention block, enhancing the expres-

siveness using global information to compensate for the dis-

advantage of the small receptive field. Hence the output of

SYENet is expressed as Eq. 8, in which ⊗ is channel-wise

multiplication.

I(out) = T
(
CONV

(
CA(I(a2))⊗ I(a2)

))
(8)

4. Experiments
The experiments include sophisticated comparisons be-

tween SOTA methods with SYENet in (a)ISP, (b)SR, and

(c)LLE issues and ablation studies. The evaluation metrics

include PSNR and SSIM, but in order to assess the compre-

hensive performance of models considering both the image

quality and efficiency, the comprehensive score Eq. 9 by
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Method Scale #P Avg latency(ms) FPS(2K) Set5 Set14 BSD100 BSD100 Score Urban100 Urban100 Score

CISR [26] ×2 9.60M 1K+ <1 28.94/0.8160 26.78/0.7080 26.08/0.6590 - 24.93/0.7270 -

VSDR [52] ×2 0.65M 1K+ <1 37.53/0.9587 33.03/0.9124 31.90/0.8960 - 30.76/0.9140 -

DBPN [29] ×2 5.95M 1K+ <1 38.09/0.9600 33.85/0.9190 32.27/0.9000 - 32.55/0.9324 -

RDN [102] ×2 22.12M 1K+ <1 38.24/0.9614 34.01/0.9212 32.34/0.9017 - 32.89/0.9353 -

RCAN [101] ×2 12.47M 1K+ <1 38.27/0.9614 34.12/0.9216 32.41/0.9027 - 33.34/0.9384 -

HAN [72] ×2 64.61M 1K+ <1 38.27/0.9614 34.16/0.9217 32.41/0.9027 - 33.35/0.9385 -

DRLN [1] ×2 34.43M 1K+ <1 38.27/0.9616 34.28/0.9231 32.44/0.9028 - 33.37/0.9390 -

IPT [8] ×2 64.27M 1K+ <1 38.37/- 34.43/- 32.48/- - 33.76/- -

ESPCN [76](D0S3) ×2 0.191K 6.0 166 29.76/0.9190 28.96/0.8810 28.69/0.8650 1.737 26.38/0.8530 0.508

EDSR [62] ×2 1.37M 852.0 1 38.11/0.9601 33.92/0.9195 32.32/0.9013 1.874 32.93/0.9351 31.438

SRCNN [18] ×2 19.6K 168.0 5 36.66/0.9542 32.42/0.9063 31.36/0.8879 2.512 29.50/0.8946 1.373

eSR [71](C6D3S15) ×2 7.13K 119.0 8 36.58/0.9530 32.38/0.9050 31.25/0.8850 3.045 29.26/0.8910 1.389

SCSRN [42] ×2 50.0K 101.0 10 36.90/0.9565 32.59/0.9087 31.42/0.8904 4.541 29.63/0.8992 2.734

ABPN [20] ×2 33.5K 86.6 12 36.72/0.9556 32.49/0.9076 31.33/0.8891 4.675 29.39/0.8955 2.286

FSRCNN [19](D56S12M4) ×2 15.44K 87.6 11 36.74/0.9541 32.45/0.9070 31.34/0.8870 4.686 29.42/0.8950 2.356

HOPN [42] ×2 32.2K 61.7 16 36.27/0.9534 32.19/0.9049 31.11/0.8865 4.836 28.90/0.8885 1.627

TPSR-D2 [56] ×2 60.8K 105.0 10 37.18/0.9578 32.84/0.9112 31.64/0.8935 5.925 30.24/0.9073 6.126

FSRCNN [19](D32S6M4) ×2 5.78K 48.9 20 36.29/0.9510 32.20/0.9040 31.10/0.8840 6.018 28.91/0.8860 2.081

ESPCN [76](D64S32) ×2 24.48K 54.8 18 36.64/0.9530 32.46/0.9070 31.32/0.8870 7.286 29.37/0.8930 3.514

eSR [71](K3C1) ×2 0.105K 3.5 282 33.15/0.9280 30.16/0.8820 29.66/0.8620 11.422 26.94/0.8570 1.873

ESPCN [76](D22S32) ×2 9.2K 31.0 32 36.70/0.9530 32.47/0.9070 31.35/0.8870 13.426 29.44/0.8940 6.845

Compiler-Aware NAS [93] ×2 11K 31.6 27 37.19/0.9572 32.80/0.9099 31.60/0.8919 15.654 30.15/0.9054 15.100

FSRCNN [19](D6S3M1) ×2 1.08K 8.3 121 35.36/0.9430 31.52/0.8980 30.64/0.8780 18.740 28.01/0.8700 3.542

SYENet (Ours) ×2 4.932K 16.5 60 36.84/0.9564 32.62/0.9079 31.52/0.8907 31.928 30.37/0.9029 46.681
CISR [26] ×4 9.93M 1K+ <1 25.03/0.7020 23.88/0.5960 23.83/0.6590 - 21.86/0.5820 -

VSDR [52] ×4 0.65M 1K+ <1 31.35/0.8838 28.01/0.7674 27.29/0.7261 - 25.18/0.7524 -

RDN [102] ×4 22.27M 1K+ <1 32.47/0.8990 28.81/0.7871 27.72/0.7419 - 26.61/0.8028 -

RCAN [101] ×4 12.61M 1K+ <1 32.63/0.9002 28.87/0.7889 27.77/0.7436 - 26.82/0.8087 -

HAN [72] ×4 64.20M 1K+ <1 32.64/0.9002 28.90/0.7890 27.80/0.7442 - 26.85/0.8094 -

DBPN [29] ×4 10.43M 1K+ <1 32.47/0.8980 28.82/0.7860 27.72/0.7400 - 26.38/0.7946 -

IPT [8] ×4 64.41M 1K+ <1 32.64/- 29.01/- 27.82/- - 27.26/- -

DRLN [1] ×4 34.58M 1K+ <1 32.63/0.9002 28.94/0.7900 27.83/0.7444 - 26.98/0.8119 -

SRCNN [18] ×4 67.6K 167.0 5 30.48/0.8628 27.49/0.7503 26.90/0.7101 0.939 24.52/0.7221 0.990

EDSR [62] ×4 1.52M 418.0 2 32.46/0.8968 28.80/0.7876 27.71/0.7420 1.153 26.64/0.8033 7.475

eSR [71](C8D9S6) ×4 15.0K 131.0 7 30.62/0.8060 27.48/0.7510 26.93/0.7140 1.248 24.42/0.7180 1.099

ABPN [20] ×4 62K 50.1 20 30.61/0.8684 27.61/0.7578 26.94/0.7160 3.310 24.53/0.7275 3.347

SCSRN [42] ×4 73.9K 31.0 32 30.75/0.8719 27.75/0.7616 27.02/0.7188 5.955 24.69/0.7343 6.730

TPSR-D2 [56] ×4 61K 31.7 32 30.99/0.8761 27.85/0.7639 27.08/0.7211 6.349 24.81/0.7393 7.798

HOPN [42] ×4 41.3K 20.8 48 30.25/0.8598 27.35/0.7515 26.80/0.7115 6.564 24.27/0.7159 5.622

ESPCN [76](D64S32) ×4 27.3K 19.5 51 30.57/0.8580 27.50/0.7520 26.92/0.7150 8.268 24.42/0.7180 7.382

FSRCNN [19](D32S6M1) ×4 5.78K 11.8 84 30.16/0.8450 27.19/0.7420 26.74/0.7070 10.646 24.09/0.7020 7.21

ESPCN [76](D1S3) ×4 0.541K 5.65 176 28.93/0.8200 26.49/0.7250 26.25/0.6940 11.273 23.56/0.6800 7.803

FSRCNN [19](D44S12M4) ×4 13.26K 13.1 76 30.61/0.8610 27.52/0.7530 26.94/0.7160 12.654 24.44/0.7210 11.298

FSRCNN [19](D6S1M1) ×4 0.953K 5.7 125 29.31/0.8230 26.62/0.7300 26.41/0.6990 13.949 23.62/0.6830 8.331

eSR [71](K3C2) ×4 0.844K 3.68 271 28.64/0.8060 26.12/0.7120 26.13/0.6840 14.655 23.28/0.6680 8.011

ESPCN [76](D16S32) ×4 10.48K 11.3 88 30.59/0.8590 27.53/0.7530 26.95/0.7150 14.874 24.43/0.7190 12.918

SYENet (Ours) ×4 5.268K 9.92 100 30.33/0.8646 27.43/0.7532 27.02/0.7214 18.670 24.91/0.7299 28.682

Table 1: Comparison on super-resolution issue between the results by PSNR(dB), SSIM, and comprehensive score with

SOTA: The methods are classified into big models with latency larger than 1K(ms) and small models. Big models are ranked

by PSNR on BSD100 dataset, and small models are ranked by score in Eq. 9 on BSD100 dataset.

MAI Challenge [40] is introduced, in which constant C is

employed for normalization.

Score = 22×PSNR/(C × Latency) (9)

4.1. Implementation details

Training Setting. For SR task, the inputs are 128× 128
patches with random augmentation of flips and rotations.

The Adam optimizer with β1 = 0.9 and β2 = 0.999 and

cosine annealing decay policy are utilized. Moreover, for

ISP task, the input is preprocessed as Bayer Pattern with

256× 256 resolution. Before the official training, an MAE-

like [32] unsupervised warming-up phase is deployed to up-

grade robustness as described in Appendix B. The LLE task

follows the settings of the SR task except for the LoL [92]

dataset.

Inference Setting. We use the Qualcomm Snapdragon

8 Gen 1 mobile SoC as our target runtime evaluation plat-

form. The application we use to test the model runtime is AI

benchmark [41, 44], which allows to load any custom Ten-

sorFlow Lite model [55] and run it on any Android device

with all supported acceleration options. In our approach, we

transform our Pytroch model into tflite model.

Datasets. The dataset for ISP task is MAI21 [43] ad-

justed using conversion by classical algorithm and warping

by PDC-Net [81]. For the SR task, we use the DIV2K [80]

for training and set5 [3], set14 [97], BSD100 [66], and Ur-

ban100 [37] for testing. For the LLE task, we use LoL [92].

4.2. Comparison with SOTA

In this study, we compare our proposed model with a va-

riety of SOTA methods, from models with extreme com-
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Figure 5: Low-light enhancement Comparison: The results reveal that our method could competitively recover the illumi-

nance information. More comparisons of qualitative results are presented in the Appendix I.

Figure 6: ×2 and ×4 SR comparisons with SOTA models: It is observed that our efficient model could generate output

images with a similar quality compared with other large models. It is recommended to zoom in to observe the details.

plexity and distinct image quality to lightweight models

with excellent efficiency and reasonably good output qual-

ity.

Super Resolution. As illustrated in Fig. 1b, and Ta-

ble 1, SYENet achieves a competitive performance, which

is roughly only 2dB lower than the highest PSNR but with

only 0.17% of its parameters, as well as x100 times faster

for inference. SYENet outperforms other lightweight mod-

els by 1 to 7dB, and as indicated by Table 1, SYENet gets

far better scores than other lightweight models. The com-
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Figure 7: Image signal processing comparisons with models from participators of MAI 2022 Challenge: Our model shows

competitive performance compared with other efficient small networks, and the detailed quantitative comparisons are in Table

3. Even though the PSNR of our method is not the highest, the comprehensive performance measured by score (Eq. 9) is the

highest. More comparisons of qualitative results are presented in the Appendix J.

Method #P(M) Mobile GPU latency(ms) PSNR SSIM

ZeroDCE [27] 0.08 858 14.83 0.531

UFormer [91] 5.29 - 16.27 0.771

3D-LUT [96] 0.60 - 16.35 0.585

Kind++ [100] 8.28 - 16.36 0.820

LIME [79] - - 16.76 0.650

RetiNexNet [92] 0.84 - 17.90 0.562

DRBN [95] 0.58 - 19.55 0.746

MBLLEN [22] 20.47 - 20.86 0.702

KIND [104] 8.16 - 21.30 0.790

Night Enhancement [48] 40.39 - 21.52 0.765

IPT [8] 115.63 - 22.67 0.504

IAT [12] 0.09 668 23.38 0.809

RCT [51] - - 23.43 0.788

MIRNet [28] - - 24.14 0.830

HWMNet [21] 66.56 - 24.14 0.930
MAXIM [82] 14.14 - 24.24 0.863

LLFlow [90] 17.42 - 25.19 0.850

SYENet (Ours) 0.005 33.4 22.59 0.807

Table 2: Comparison on low-light enhancement issue be-

tween the results by PSNR(dB) and SSIM with SOTA: The

’-’ mark in the Mobile GPU latency column refers that the

latency of that model is larger than 1000ms.

parison between images by SYENet and other SOTA mod-

els with scale factors of ×2 and ×4 is shown in Fig. 6.

Low-light Enhancement. The enhanced low-light im-

ages obtained by a variety of models are shown in Fig. 5,

and it is indicated that the images by SYENet could al-

most reach the objective quality of those by SOTA methods.

More photos for comparison can be found in Appendix I. Fi-

Method Model Size(MB) PSNR SSIM GPU Runtime(ms) Score

DANN-ISP 29.4 23.10 0.8648 583 0.13

MiAlgo 117 23.65 0.8673 1164 0.14

CASIA 1st 205 24.09 0.8840 1044 0.28

rainbow 1.0 21.66 0.8399 28 0.36

JMU-CVLab 0.041 23.22 0.8281 182 0.48

HITZST01 1.2 24.09 0.8667 482 0.60

ENERZAi 4.5 24.08 0.8778 212 1.35

MINCHO 0.067 23.65 0.8658 41.5 3.80

HITZST01 0.060 23.89 0.8666 34.3 6.41

ENERZAi 0.077 23.8 0.8652 18.9 10.27

MiAlgo 0.014 23.33 0.8516 6.8 14.87

SYENet(Ours) 0.029 23.96 0.8543 11.4 21.24

Table 3: Comparison on ISP performance by PSNR(dB)

and SSIM with algorithms of MAI2022 ISP Challenge [45]:

even though the PSNR of our method is not the highest,

the comprehensive performance of our method measured by

score (Eq. 9) is the highest.

nally, the objective measurements of SOTA algorithms and

SYENet are shown in Table 2, which refers that SYENet

achieves a competitive image quality at a rather faster speed

using roughly only 0.01% of the size by the latest SOTA

models.

Image Signal Processing. The comparison of perfor-

mance and comprehensive scores by SYENet and the al-

gorithms of MAI ISP Challenge participants is shown in

Fig. 1a and Table 3. It is indicated that the comprehensive

score by SYENet is significantly higher than the challenge-

winning algorithm.
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LOA ConvRep CA QCU Two-branch PSNR ΔPSNR

L1
√ √ √ √

24.7200 +0.1532√
RepVGGBlock [17]

√ √ √
22.6797 +2.1932√ × √ √ √
24.6778 +0.1954√ √ × √ √
24.0936 +0.7796√ √ √

ADD
√

24.5252 +0.3480√ √ √
CAT+CONV

√
24.5427 +0.3305√ √ √

MUL
√

24.7971 +0.0761√ √ √ √ × 24.5510 +0.3222√ √ √ √ √
24.8732 -

Table 4: Ablation study towards LOA(Outlier-Aware

Loss) by L1(L1 loss), our re-parameterized convolu-

tion(ConvRep) by RepVGGBlock [17], CA(channel atten-

tion) by no CA, QCU(Quadratic Connection Unit) feature

fusion by ADD(element-wise addition), MUL(element-

wise multiplication), and CAT+CONV(concatenation fol-

lowed by convolution) feature fusion, and two-branch

asymmetric re-parameterized block by single branch re-

parameterized block. The ablation study is conducted on

ISP task.

Models SYENet(ISP)

Metric PSNR ↑ LPIPS ↓ FID ↓ KID ↓
L1 Loss L1 24.7200 0.1681 28.0420 0.0095

Outlier-Aware Loss(Ours) LOA 24.8732 0.1664 27.2182 0.0086

Table 5: The performance of SYENet trained by two loss

functions measured by different metrics: Outlier-Aware

Loss improves PSNR as well as visual quality reflected by

LPIPS, FID, and KID.

4.3. Ablation study

In the ablation study, the Outlier-Aware Loss LOA, Con-

vRep block as Fig. 2b, channel attention, QCU, and asym-

metric branch block are degraded to be L1 loss L1, RepVG-

GBlock [16], no channel attention, three fusion meth-

ods (element-wise addition, concatenation plus convolu-

tion, and element-wise multiplication), and single branch

block respectively. It shows that those components or meth-

ods indeed improve the PSNR. In addition, LOA could im-

prove the visual quality as Table 5.

5. Conclusion and Future Work

In this paper, we proposed SYENet, a novel and end-

to-end mobile network for multiple low-level vision tasks

with two asymmetric branches, QCU, revised re-parameter

convolution, and channel attention. We also developed the

Outlier-Aware Loss for better training. With these simple

yet effective methods, SYENet is able to achieve 2K60FPS

real-time performance on mobile devices for ISP, SR, and

LLE tasks with the best visual quality.

While these initial results are promising, many chal-

lenges still remain. The most critical one is that the pro-

posed network cannot handle all the low-level vision tasks,

such as denoise and video SR. There’s still room to improve

the run-time efficiency by better utilization of limited hard-

ware resources. In the future, we will focus on a more uni-

versal network architecture with reduced computation com-

plexity.
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