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Abstract

Few-shot continual learning is the ability to continually
train a neural network from a sequential stream of few-
shot data. In this paper, we propose a Few-shot Contin-
ual Infomax Learning (FCIL) framework that makes a deep
model to continually/incrementally learn new concepts from
few labeled samples, relieving the catastrophic forgetting
of past knowledge. Specifically, inspired by the theoretical
definition of transfer entropy, we introduce a feature em-
bedding infomax to effectively perform the few-shot learn-
ing, which can transfer the strong encoding capability of the
base network to learn the feature embedding of these novel
classes by maximizing the mutual information of different-
level feature distributions. Further, considering that the
learned knowledge in the human brain is a generalization of
actual information and exists in a certain relational struc-
ture, we perform continual structure infomax learning to
relieve the catastrophic forgetting problem in the continual
learning process. The information structure of this learned
knowledge can be preserved through maximizing the mu-
tual information across these continual-changing relations
of inter-classes. Comprehensive evaluations on CIFAR100,
miniImageNet, and CUB200 datasets demonstrate the supe-
riority of our FCIL when compared against state-of-the-art
methods on the few-shot continual learning task.

1. Introduction

Recent deep learning technologies [23, 30, 13] have
made great progress in many computer vision tasks. The
success of deep neural networks is achieved by employing
a large number of labeled training data. However, it is diffi-
cult to collect large-scale supervised data in advance, while
we would encounter a sequential data stream with unknown
new classes in many realistic situations. This would require
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a neural network with continual learning ability, especially
when some new classes with very few labeled samples of-
ten appear. Therefore, this work focuses on dealing with the
few-shot continual/incremental learning task [28, 26]. They
are two critical challenges in a few-shot continual learn-
ing task: i) how to learn new knowledge with few-shot in-
stances, and ii) how to avoid catastrophic forgetting of the
preceding learned knowledge.

Recently, numerous previous works [31] have been de-
voted to few-shot continual learning from various perspec-
tives. In [31, 35, 8], the topological structure of the knowl-
edge space formed by different classes has been considered
to perform few-shot continual learning by using a neural
gas network or graph model. Cheraghian et al. [8] have
proposed a semantic-aware knowledge distillation method
to solve few-shot class-incremental learning by making use
of word embeddings. Several meta-learning based meth-
ods [7, 18] have been also proposed to enable the model
to preserve old knowledge and adapt to the new classes
for continual learning. By assigning virtual prototypes to
squeeze the embedding of known classes and reserve for
new ones, the forward compatible training method [37] has
efficiently incorporated new classes with forward compati-
bility and meanwhile resists forgetting old ones. Similarly,
the mixture of subspaces and synthesized features [6] have
been used to alleviate the forgetting and over-fitting prob-
lem in the few-shot continual learning process. In [38],
the self-promoted prototype learning scheme has been pro-
posed to explicitly learn the feature representation under
the few-shot learning situation and thus facilitated subse-
quent incremental tasks. The self-supervised strategy has
been also used to enhance the feature extraction ability of
the model by adding self-supervised loss function assis-
tance during the training process [20, 26]. Moreover, to
minimize over-fitting and the catastrophic forgetting prob-
lem, Mazumder et al. [26] have selected very few unimpor-
tant model parameters to perform few-shot learning on new
classes. In [11], mutual information (MI) maximization has
been first used as a solution method to deal with the catas-
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trophic forgetting problem in the online continual learning
task, but it cannot well consider how to perform continual
infomax learning from the perspective of information en-
tropy, especially in the few-shot regime.

In this work, we propose a novel Few-shot Continual
Infomax Learning (FCIL) framework that makes a deep
model to continually learn from a stream of few-shot la-
beled data. In general, the continual learning model would
be trained with a large amount of labeled data in the initial
learning stage, while few-shot samples of some unknown
classes would be encountered in the continual learning pro-
cess. Here we attempt to address the few-shot continual
learning task from two aspects. First, inspired by the the-
oretical definition of transfer entropy, we attempt to trans-
fer the strong encoding capability of the base network to
promote few-shot continual learning. Specifically, we pro-
pose a feature embedding infomax learning to new con-
cepts from a few labeled samples through maximizing the
mutual information between different level feature distribu-
tions, where the convolutional representations and the fea-
ture embedding of new classes are encoded with these fixed
convolution layers of the base network and newly increased
parameters of fully-connected layer, respectively. Second,
considering that the learned knowledge in the human brain
is a generalization or abstraction of the actual information
learned from these seen samples [10], we wish the contin-
ual learning model with a stable information structure that
can be updated incrementally. Thus we propose a contin-
ual structure infomax learning mechanism to alleviate the
catastrophic forgetting problem during the continual learn-
ing process. The structure relation of this learned informa-
tion can be preserved through maximizing the mutual infor-
mation across these continual-changing structure relations
of inter-classes.

In summary, our primary contributions can be summa-
rized as follows: i) We propose a Few-shot Continual Info-
max Learning (FCIL) framework that makes a deep model
to incrementally learn new concepts from few labeled sam-
ples, relieving the catastrophic forgetting problem of pre-
viously learned ones. ii) Two specially-designed infomax
learning mechanisms are proposed to address the few-shot
continual learning problem with the help of mutual informa-
tion maximization, including feature embedding infomax
and continual structure infomax. iii) We validate the ef-
fectiveness of our proposed FCIL on three benchmarks (in-
cluding CIFAR100, CUB200, and miniImageNet), and also
demonstrate the superiority of our proposed FCIL when
compared with existing state-of-the-art methods.

2. Related work
Few-shot continual learning: Few-shot continual

learning, which has recently attracted growing attention,
aims to enable a model to perform continual/incremental

learning with a stream of few-shot labeled data. A number
of related works have been proposed to address the few-shot
continual learning task. For example, Tao et al. [31] em-
ployed neural gas networks to perform incrementally learn-
ing for a series of new classes with few-shot data, with
the goal of avoiding forgetting previously learned classes.
Zhang et al. [35] proposed an evolving classifier based on
graph attention networks that propagated information be-
tween classifiers by adding graph models. Also, pseudo-
incremental training was proposed to optimize the graph
module. The forward compatible training (FACT) [37]
was proposed to effectively incorporate novel classes into
forward compatible by generating virtual classes, where
knowledge of old classes can be also maintained to re-
duce the catastrophic forgetting problem. A bi-level meta-
learning-based optimization [7] was proposed to directly
optimize the model towards forgetting alleviation of learned
knowledge and adaptation of the new classes. In [20], a self-
supervised stochastic classifier was proposed to deal with
the few-shot class incremental learning task with the help of
a self-supervision mechanism. Zhu et al. [38] proposed an
incremental prototype learning scheme to perform contin-
ual learning, which was used to constrain the prototypes of
new classes through the dynamic model and then achieved a
reduction in catastrophic forgetting of knowledge. In order
to offer a trade-off between accuracy and compute-memory
cost of learning novel classes, the hyper-dimensional em-
bedding was used to continually learn many more classes
than the fixed dimensions in the feature space [14]. Further,
few-shot lifelong learning was proposed to perform contin-
ual learning with only updating very few parameters of the
model [26] or semantic-aware knowledge distillation [5].

Mutual information: Mutual Information as a quan-
tity is used to measure the degree of interdependence be-
tween two random variables [21]. As it is difficult to
exactly compute the mutual information between second-
dimensional random variables, mutual information neu-
ral estimator (MINE) [2] can be achieved by employing
the dual representations of the Kullback-Leibler divergence
(KL) [9]. Subsequently, the Jensen-Shannon divergence
(JSD) [27] and noise-contrastive estimation (NCE) [12]
were used to estimate the mutual information with a learned
network [16], and then the mutual information maximiza-
tion method was used to improve the deep representation
in an unsupervised learning way. The second-order deep
multiplex infomax method [19] further extended the mutual
information estimation to a three-variable calculation and
was applied across multiple networks. The deep mutual in-
formation maximin method [25] was used to address the
cross-modal clustering task by maximally preserving the
shared information of multiple modalities and eliminating
the superfluous information of individual modalities. In [1],
mutual information networks are applied to unsupervised
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classification tasks with excellent results. In the online con-
tinual learning task, Guo et al. [11] first used mutual in-
formation estimation to learn more robust features and pre-
serve the past model learned from the previous task. Dif-
ferent from these previous methods, we perform continual
infomax learning from the perspective of information en-
tropy in the few-shot setting.

3. The Proposed Method

3.1. Problem Definition

Few-shot continual learning aims to train a model for
new tasks sequentially from a stream of few-shot labeled
data, relieving the forgetting of knowledge learned from
the old tasks, where the data in the old tasks are not avail-
able anymore during learning a new set of few-shot tasks.
Formally, we define X , Y , and Z as the training set, la-
bel set, and test set, respectively. Our task is to train the
model with a continuous stream of labeled training sets
X1, X2, . . . , XT , where Xt denotes the t-th training set, Yt
is the corresponding label set, and T refers to the number of
continual learning sessions. In the continual learning pro-
cess, each training set is with no repetition of class labels,
i.e., ∀i, j and i 6= j, Yi ∩ Yj = ∅. Usually, when t = 1,
the training set X1 is with large-scale samples for training
the base network; when t > 1, Xt refers to the few-shot
training set of new classes in the incremental learning stage
(i.e., |X1| � |Xt|, t = 2, 3, . . . , T ). For example, under
the 5-way 10-shot setting, each incremental/continual pro-
cess (i.e., t > 1) contains five new classes, each of which
has only ten training samples. The test set Z is used to eval-
uate the classification performance at each stage t, and its
corresponding classes may be from all training label sets,
i.e., {Y1 ∪ Y2 · · · ∪ YT }.

In the few-shot continual learning task, there are two crit-
ical problems we need to consider: i) New classes are with a
small amount of training data, which makes it hard to learn
the feature embeddings for these new classes. ii) Catas-
trophic forgetting should be well relieved to preserve this
learned knowledge in the continual learning process. In this
work, we attempt to address them from two aspects. First,
we start from the transfer entropy perspective [3] to obtain
new knowledge from few-shot samples, where the strong
encoding capability of the base network can be transferred
to learn feature embeddings of these new classes. Sec-
ond, considering that the learned knowledge in the human
brain is not isolated, but exists in a certain relational struc-
ture [10], we wish to preserve the structure information of
this learned knowledge to relieve the catastrophic forget-
ting problem during the continual learning process. With
the help of the recently-developed mutual information esti-
mation method [2, 16, 36], we achieve these above goals by
performing continual infomax learning.
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Figure 1. The pipeline of our few-shot continual infomax learn-
ing, where t refers to the t-th session in the continual learning
process (t > 1). To transfer the strong encoding capability of the
base network into the subsequent continual learning sessions, we
first propose the feature embedding infomax to learn new knowl-
edge with few-shot labeled data in the t-th session. Here we max-
imize the mutual information between multi-level convolutional
representations Fconv(xi) and full-connected feature embedding
Ffc(xi) of each input sample, which are encoded with these fixed
convolution layers of the base network Θbase

conv and updated fully-
connected layer Θt

fc, respectively. To address the catastrophic
forgetting problem in the continual learning process, we further
perform the continual structure infomax learning by maximizing
the mutual information between current and previous inter-class
knowledge structures (i.e., S(At, Rt) and S(At−1, Rt−1)).

3.2. FCIL Paradigm

The proposed few-shot continual infomax learning
(FCIL) framework is shown in Fig. 1. Generally, the base
network Θbase, which is a large-scale set of training sam-
ples X1, can optimize with the classic cross-entropy loss.
For further improving the deep representation capability of
the base network, we also employ self-supervised mutual
information mechanism. Here the mutual information es-
timated network ϑMI can be well optimized in the initial
stage (i.e., t = 1), which contributes to the subsequent con-
tinual learning sessions. In the next continual learning ses-
sions (i.e., t > 1), a stream of few-shot labeled data with
new classes would be gradually fed into the network, and
we would perform few-shot continual infomax learning for
capturing new knowledge, without forgetting these learned
ones. To improve the feature embedding capability of these
new classes, we attempt to transfer the strong representation
capability of the base network Θbase into the next continual
learning sessions. Specifically, we introduce the feature em-
bedding infomax learning to optimize these fully-connected
parameters Θt

fc of new classes. Given an input image xi
from the few-shot set Dt, we use the convolutional net opti-
mized in the base stage to extract multi-level convolutional
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features Fconv(xi), and get the feature embeddings from
new full-connected layer Ffc(xi). We maximize the mutual
information between the convolutional and full-connected
feature distributions for each input sample (i.e., Fconv(xi)
and Ffc(xi)), and thus the feature embedding of the novel
classes can well inherit the powerful feature representation
capability of the base network (i.e., max TΘbase→Θt

fc
). Fur-

ther, to alleviate the catastrophic forgetting problem of this
learned knowledge during the subsequent continual learn-
ing sessions, we introduce a continual structure infomax
learning (i.e., maxDS) to maintain/preserve the relations
of intra-classes across one or more learning sessions. At
each learning session t, we can obtain the first-order at-
tributes and the second-order structure information of this
learned knowledge, which refer to the class-wise feature
embeddings and the relations among different classes, re-
spectively. We then maximize the mutual information be-
tween the current information structure S(At, Rt) and this
previous information S(At′ , Rt′) (t′ = t−1, t−2, . . . , t−K
and t −K > 1) of these old classes. With the help of fea-
ture embedding infomax and continual structure infomax,
the deep model can be well worked in the few-shot con-
tinual learning process. See the supplementary materia for
more details.

3.2.1 Feature Embedding Infomax

When the base network Θbase faces unknown new classes, it
is difficult to learn new concepts with only few-shot labeled
samples. Inspired by the classic transfer entropy method
which is a non-parametric measure of directed, asymmet-
ric information transfer between two processes [3], we at-
tempt to migrate the powerful feature representation capa-
bility of the base network to capture the feature embedding
of the novel classes. Given few-shot training samples of
new classes in the t-continual learning stage (i.e., t > 1), the
transfer entropy from the base network Θbase to the feature
embedding layer of novel classes Θt

fc (i.e., fully-connected
model parameters) can be formulated as:

TΘbase→Θt
fc

=

|Xt|∑
i=1

(H(Zfc)−H(Zfc|Zconv)), (1)

where Xt = {x1, x2, . . . , x|Xt|} is the training set of few-
shot data in the t-th continual learning session; Fconv(xi)
is the convolution representations of the training sample
xi with the base encoding network Θbase. Ffc(xi) is the
feature embedding of xi with the fully-connected parame-
ters Θt

fc of the t-th continual learning stage. Let Zconv =
Fconv(xi) and Zfc = Ffc(xi), H(Zfc) refers to the Shan-
non entropy information of fully-connected feature of xi,
and the conditional entropy H(Zfc|Zconv) is the entropy
of Zconv conditioned on Zfc. To facilitate the calculation
of Eqn. (1), the transfer entropy TΘbase→Θt

fc
can be further

expressed as the conditional mutual information of different
level features with the corresponding network parameters in
the condition:

TΘbase→Θ t
fc

=

|Xt|∑
i=1

L∑
l=1

I((Zfc;Z
l
conv)),

≥
|Xt|∑
i=1

L∑
l=1

Î((Zfc;Z
l
conv), ϑMI),

(2)

here, we directly maximize the mutual information between
multi-level convolutional features and fully-connected fea-
ture embedding, which can better transfer the strong en-
coding capability of the base network Θbase to the fully-
connected layer Θt

fc. With the support of the Kullback-
Leibler divergence [9] and the learned mutual information
estimation network ϑMI , the transfer entropy process can
be approximately formulated as:

LT =

|Xt|∑
i=1

L∑
l=1

E(F((Zfc;Z
l
conv), ϑMI))

− logE(eF((Zfc;Zl
conv),ϑMI)).

(3)

where F(·) is a discriminant function between features of
different layers. Here this transfer entropy process can help
to capture the feature embeddings of these few-shot train-
ing samples in the continual learning stages, thus we name
it as “feature embedding infomax” learning process. The
final learning objective to optimize the t-th continual fully-
connected layer Θt

fc is defined as: LFEI = LCE − αLT ,
where LCE is the classic cross-entropy loss and α is a
hyper-parameter.

3.2.2 Continual Structure Infomax

Another critical problem for a continual learning model is
exiting the catastrophic forgetting this learned knowledge
when discarding old samples. An obvious solution is that
continual learning must have a strategy to preserve the in-
formation related to these old training samples. Usually,
the information preserved in a continual learning system
is a generalization or abstraction of the actual informa-
tion embedded in the learned samples. The knowledge we
learn in the human brain [10] does not exist in isolation;
there is some kind of relational structure between different
pieces of knowledge that maintains the connection between
knowledge. In order to possess an information structure
that would be updated incrementally along the continual
learning process, we can preserve useful information from
learned samples as much as possible so that the subsequent
continual learning process can be guided by this informa-
tion. Therefore, we propose a continual structure infomax
learning to conserve both first-order and second-order in-
formation in the continual learning process, which can be

19227



related to class-wise individual attributions and intra-class
relations, respectively. In the t-th continual learning ses-
sion, the continual structure infomax can be performed un-
der the guidance of these previous information structures:

DS =

K∑
k=1

H(At)−H(At|At−k)︸ ︷︷ ︸
first-order

+H(Rt)−H(Rt|Rt−k)︸ ︷︷ ︸
second-order

(4)
whereK is the number of previous sessions with t−K ≥ 1.
At and At−k refer to the feature embeddings of all learned
classes ct, e.g., At= [e1, e2, . . . , ec, . . . , ect ]. Due to the
fact that the mean value of each class is approximate to the
parameter weights of the last fully-connected layer, ec is
achieved by the weight parameters of the last classification
layer corresponding to the c-th class. Their corresponding
information entropyAt andAt−k are represented asH(At)
andH(At|At−k). Rt ∈ Rct×ct andRt−k ∈ Rct−k×ct−k re-
fer to the inter-class relation matrices of all learned classes
in the t-th and (t − k)-th stages. H(Rt) and H(Rt|Rt−k)
represent the second-order information entropy concerning
the relation among different classes. Through maximiz-
ing the first-order and second-order mutual information be-
tween different learning stages, the network parameters of
the last fully-connected layer Θfc can be incrementally up-
dated along the continual learning process, formally,

DS =

K∑
k=1

I(At;At−k)︸ ︷︷ ︸
first-order

+ I(Rt;Rt−k)︸ ︷︷ ︸
second-order

,

≥
K∑

k=1

Î((At;At−k), ϑMI)︸ ︷︷ ︸
first-order

+ Î((Rt;Rt−k), ϑMI)︸ ︷︷ ︸
second-order

,

(5)
Similar to the feature embedding infomax, we also use

mutual information to measure the amount of information
shared by different sessions, and this continual structure in-
fomax process can be further formulated as:

LS =

K∑
k=1

E(F((At;At−k), ϑMI))− logE(eF((At;At−k),ϑMI)

+E(F((Rt;Rt−k), ϑMI))− logE(eF((Rt;Rt−k),ϑMI),
(6)

where k refers to the k-th session with 1 6 k 6 K. We em-
ploy both LS and LCE to optimize the fully-connected pa-
rameters Θt

fc to adapt new classes without forgetting these
learned ones. In the structure continual infomax process,
the corresponding loss is defined as LCSI = LCE − γLS ,
where γ is a balance factor.

4. Experiments
4.1. Experimental Setup

Datasets: We evaluate our FCIL on three public
datasets, including CIFAR100 [22], miniImageNet [29],

and CUB200 [33]. For CIFAR100 [22] and miniIma-
geNet [29], we use all the training data of the 60 base classes
to train a base network, and the 40 new classes are used to
perform eight 5-way 5-shot continual learning tasks. We di-
vide the 200 classes of CUB200 [33] into 100 base classes
and 100 new classes. The 100 new classes are used to per-
form ten 10-way 5-shot continual learning tasks. We follow
the same split setting of FSCIL [31] as other methods in the
three datasets for a fair comparison. See the supplementary
materia for more details.

Implementation Details: Following FSCIL [31], we
use ResNet20 as the backbone on CIFAR100 [22] and
ResNet18 is used as the backbone on miniImageNet [29]
and CUB200 [33]. The network ϑMI consists of a convo-
lution branch and a linear branch, where the former con-
sists of three convolution layers whose kernel sizes are 1,
5, and 7, and the latter is one linear layer. In the CSI mod-
ule, the convolution branch and the linear branch separately
take F l

conv(xi) and Ffc(xi) as inputs, and their outputs are
used to compute LT . In the CSI module, the linear layer
of ϑMI separately take At and At−k as inputs, and we use
the outputs to compute Ls. In the base learning stage, we
train the base network and the mutual information network
with the first training set. The parameters of the convo-
lutional layers Θbase and the mutual information network
ϑMI are frozen in the continual learning sessions to per-
form mutual information estimation in both the proposed
feature embedding infomax. For all datasets, we set α and γ
as 0.015 and 0.03, respectively. Random cropping, random
scaling, and random horizontal flipping are used for training
data. We use to evaluate our proposed method from differ-
ent perspectives. “Acct” represents to the Top-1 accuracy in
the t-th continual session. “Avg” represents for an average
score, i.e.,

∑T
t=1 Acct/T . “∆Final” represents the differ-

ence value of Acct between our method and the compared
method in the final state. “KR” is the knowledge retention
rate, i.e., AccT /Acc1. All the experiments are conducted
with the Pytorch framework on one Geforce 2080Ti GPU.

4.2. Comparison with state-of-the-art methods

We first compare our proposed FCIL with other
state-of-the-art methods on the challenging miniImageNet
dataset [29]. The detailed results have been listed in Table 1,
and the accuracy changing curves with growing continual
sessions are plotted in Fig. 2 (a). Our proposed FCIL out-
performs all other compared methods by a great margin and
sets new state-of-the-art. In particular, our FCIL achieves
the best score among all the methods. Considering that in
the first continual session, very little data are available and it
requires borrowing the learning capability of the base stage
into this session to promote the classifier accuracy. In ad-
dition, as to the overall performance in the final continual
session, our FCIL also surpasses the second best method C-
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Table 1. Few-shot continual classification performance of state-of-the-art methods and our FCIL on the miniImageNet dataset [29]. The
results with * are obtained from the authors’ published code. See the supplementary materia for results of other datasets.

Methods Accuracy in each session (%) ↑ KR↑ ∆Final↑ Avg↑1 2 3 4 5 6 7 8 9
Ft-CNN 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.60 1.40 2.28 +51.36 13.44
iCaRL [28] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 28.07 +35.55 33.29
EEIL [4] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58 31.93 +33.18 34.97
TOPIC [31] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.83 +28.34 39.65
NCM [17] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 23.11 +38.59 30.83
Decoupled-NegCosine [24] 71.68 66.64 62.57 58.82 55.91 52.88 49.41 47.50 45.81 63.90 +6.95 56.80
Decoupled-Cosine [32] 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63 64.84 +7.13 55.99
Decoupled-DeepEMD [34] 69.77 64.59 60.21 56.63 53.16 50.13 47.79 45.42 43.41 62.21 +9.35 54.57
MateFSCIL [7] 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 68.28 +3.57 58.85
C-FSCIL Mode1 (d=512) [15] 76.37 70.94 66.36 62.64 59.31 56.02 53.14 51.04 48.87 63.99 +3.89 60.52
C-FSCIL Mode2 (d=512) [15] 76.45 71.23 66.71 63.01 60.09 56.73 53.94 52.01 50.08 65.50 +2.68 61.14
C-FSCIL Mode3 (d=512) [15] 76.40 71.14 66.46 63.29 60.42 57.46 54.78 53.11 51.41 67.29 +1.35 61.61
FACT* [37] 75.68 70.65 66.53 62.75 59.39 56.19 53.26 51.10 49.48 65.38 +3.28 60.56
FACT* + FCIL 76.21 70.92 66.69 63.23 60.73 57.88 54.08 52.17 50.34 66.05 +2.42 61.36
CEC [35] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 66.15 +5.13 57.75
CEC + FCIL 72.87 68.23 64.46 60.64 57.71 55.12 52.79 50.65 48.62 66.72 +4.14 59.01
FCIL (Ours) 76.34 71.40 67.10 64.08 61.30 58.51 55.72 54.08 52.76 69.11 - 62.37
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Figure 2. The accuracy changing curves with growing continual sessions of different methods on the three datasets.

FSCIL Mode3 (d=512) [15] by a non-trivial gap of 1.35%.
It shows that our FCIL could keep great learning capabil-
ity when performing the continual learning process, and we
owe the superiority to the strong capability borrowed from
the base network by the proposed feature embedding info-
max module. Further, our method also achieves the best
performance on Avg, outperforming the compared meth-
ods by at least 0.76%. It indicates that our FCIL could
always obtain better performance during all the continual
sessions, further demonstrating the strong learning capabil-
ity borrowed from the base network. Overall, the superior
performances of our FCIL in terms of Avg and ∆Final suffi-
ciently verify the effectiveness of our proposed feature em-
bedding infomax module on enhancing the learning capa-
bility of new classes. Besides, we integrate our proposed
FCIL mechanisms into the FACT [37] and CEC [35] frame-
works (i.e., FACT+FCIL and CEC+FCIL), and the com-
pared results show that we can lead to significant improve-
ments of 0.99% and 0.86% on the ∆Final metric. It further
verifies the superiority of our FCIL framework in learning
new knowledge and alleviating catastrophic forgetting.

Our FCIL achieves the best performance on the KR met-

ric, with a promotion of at least 0.83%. Since KR repre-
sents the accuracy ratio of the final continual session and
the base stage, a larger KR value means that less learned
knowledge is forgotten. Compared with previous methods
such as CEC [35], FACT [37], C-FSCIL [15] which also
freeze the base classifier as our FCIL to avoid catastrophic
forgetting, our FCIL still outperforms them by a consider-
able margin. It means that the relationship preserving capa-
bility brought by the proposed continual structure infomax
module could better preserve the previously learned knowl-
edge. It clearly validates the effectiveness of our proposed
continual structure infomax module in mitigating the catas-
trophic forgetting problem. As a whole, the superior perfor-
mance clearly verifies the superiority of our proposed FCIL
in learning novel class knowledge as well as mitigating the
catastrophic forgetting problem. The accuracy changing
curves with growing continual sessions in Fig. 2(a) further
visually show the superiority of our FCIL. We further plot
the accuracy changing curves on the CIFAR100 [22] and
CUB200 [33] datasets separately in Fig. 2(b) and Fig. 2(c).
It could be observed that our proposed FCIL also achieves
the best performances on the two datasets, and it further ver-
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Table 2. Overall ablation study of the proposed method on the miniImageNet dataset. Feature embedding infomax (FEI) and continual
structure infomax (CSI) are the two functional modules we proposed.

Base FEI CSI Accuracy in each session (%) ↑ KR Avg1 2 3 4 5 6 7 8 9
X 75.87 70.22 65.92 62.64 59.96 57.11 54.58 52.66 51.49 67.86 61.16
X X 76.34 71.18 67.16 63.85 61.05 58.23 55.33 53.67 52.32 68.54 62.13
X X 75.87 70.16 65.76 63.76 60.34 57.52 54.96 53.06 52.06 68.61 61.39
X X X 76.34 71.40 67.10 64.08 61.30 58.51 55.72 54.08 52.76 69.11 62.37
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(a) FCIL (b) Baseline
Figure 3. Confusion matrix of the final classification results on the
miniImageNet dataset [29]. (a) Baseline. (b) Our FCIL. We use
red lines to partition the region of the base class and the new class.
Our method improves the predictive power of the network which
reduces the scattered confusion matrix.

ifies the superiority of our proposed feature embedding in-
fomax and continual structure infomax modules in learning
novel class knowledge and meantime mitigating the catas-
trophic forgetting problem.

4.3. Ablation study

All ablation studies are performed on the miniImageNet
dataset [29] to evaluate the effectiveness of our proposed
modules as well as some experimental settings.

Effectiveness of the proposed modules: We first
conduct experiments to analyze the effectiveness of our
proposed feature embedding infomax (FEI) and continual
structure infomax (CSI) modules. The detailed results are
listed in Table 2. In continual learning sessions (t > 1),
the feature embedding infomax module is added to maxi-
mize the mutual information between the convolutional fea-
tures produced by the fixed base backbone and the embed-
ding features from the newly updated classifier. The per-
formance improves over the baseline by 0.97% and 0.68%
on Avg and KR, demonstrating that the proposed feature
embedding infomax module could well transfer the strong
learning capability of the base network into the following
continual sessions to enhance the learning capability of the
model on novel classes. It verifies the effectiveness of our
proposed feature embedding the infomax module. The con-
tinual structure infomax learning module is conducted to
maximize the mutual information between the current infor-
mation structure and the previous ones. The performance
promotion of the CSI model seems not significant in the
early stages, since CSI is designed to alleviate catastrophic

forgetting, and in the early stages (i.e., t=2,3,4) the few new
classes only pose limited influence on the learned knowl-
edge. Further, with new classes increased in the later stages,
the performance gain of CSI greatly increases. It achieves
performance promotions of 0.75% and 0.23% separately on
KR and Avg, which are clearly non-trivial. It shows that our
proposed continual structure infomax module could well
preserve the learned knowledge of the previous classes to
mitigate the catastrophic forgetting issue. We believe it is
because the attributes and class relationships could be well
preserved during the continual sessions, and it verifies the
effectiveness of the proposed continual structure infomax
module. Finally, when both modules are applied, the perfor-
mances could be further boosted to form a new state-of-the-
art performance, quantitatively verifying the effectiveness
of our proposed FCIL framework.

We further plot the confusion matrix of the baseline and
our FCIL in Fig. 3. It could be observed that in the new
classes, the diagonal of our FCIL has a darker color than
the baseline model, vividly showing that the proposed FCIL
is more powerful at learning new classes. In addition, it
also indicates that the prediction distribution of FCIL on
new classes is more concentrated than the baseline model,
and it visually demonstrates the superiority of our FCIL in
preserving learned knowledge.

Different methods for MI estimation and relation
construction: The mutual information (MI) estimation
ways can be adopted with the support of JSD [27] or KL [9],
i.e., “MIJSD” and “MIKL”. We achieve the information re-
lated in the continual structure infomax module with KNN
or Cosine distance, named: “RKNN” and “RCos”. The FCIL
results with the above different methods are listed in Ta-
ble 3, and it could be observed that the performance of the
four variants changes little. It means that it is the proposed
structure preserve mechanism rather than the specifically
chosen functions that mitigate the catastrophic forgetting
problem. Therefore, we adopt KL to estimate the mutual
information and use the Cosine distance to build the rela-
tionship between different classes in our work.

The level of convolutional Feature L: When perform-
ing the feature embedding infomax learning, we can esti-
mate mutual information by using more layers of convolu-
tional features F l

conv(xi). To study the effect of different
level sets, we construct three variants of FCIL by separately
setting L as {1, 2},{1, 3}, and {1, 2, 3}. The correspond-
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Table 3. The results with different methods for MI estimation and relation construction on the miniImageNet dataset.
Accuracy in each session (%) ↑ KR Avg1 2 3 4 5 6 7 8 9

MIKL + RKNN 76.34 71.40 67.07 64.05 61.29 58.51 55.73 54.07 52.74 68.08 62.35
MIKL + RCos 76.34 71.40 67.10 64.08 61.30 58.51 55.72 54.08 52.76 69.11 62.37
MIJSD + RKNN 76.34 71.34 67.03 64.0 61.28 58.52 55.7 54.03 52.7 69.03 62.32
MIJSD + RCos 76.34 71.26 66.99 64.03 61.24 58.46 55.65 53.98 52.63 68.94 62.28

Table 4. The comparison results between our FCIL and the open-source methods FACT [37] and CEC [35] by fixing the performance of
the base classes on the miniImageNet dataset [29].

Methods Accuracy in each session (%) ↑ KR↑ ∆Final↑ Avg↑1 2 3 4 5 6 7 8 9
CEC [35] 72.57 66.48 62.74 59.46 56.67 53.68 51.12 49.23 47.58 65.56 +1.16 57.73
FACT [37] 72.73 67.73 63.77 60.29 57.25 54.07 51.17 49.31 47.91 65.87 +0.83 58.25
FCIL(Ours) 72.63 67.71 63.70 60.67 57.61 54.73 52.09 50.26 48.74 66.94 58.71
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Figure 4. Performance comparison bars with
different levels of convolutional features.
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the different shot numbers.
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Figure 6. Performance comparison with
different number of K.

ing accuracy changing bars are plotted in Fig. 4. It can be
observed that the three variants change make little perfor-
mance change. Further, it is worth noting that when em-
ploying all the levels of features (i.e., L = {1, 2, 3}), it
could obtain better results than the other two variants, and
all three convolutional features have been used. It means
that our proposed feature embedding infomax module is
able to continually transfer more useful encoding capabil-
ities from multi-level convolutional features. It sufficiently
validates the strong power of the feature embedding info-
max module on transferring the encoding capability of the
base network to the newly learned classifiers.

The shot number in the continual learning: We plot
the accuracy changing curves with different shot numbers
in Fig. 5. It shows that more sample shots could result in
better few-shot continual classification performance. The
reason is more shots could bring better class attribute distri-
bution as well as more accurate class relations to benefit the
learned new knowledge. Further, when the shot number is
more than 15, the performance promotion becomes trivial.
It shows that we only need a proper number of newly la-
beled samples to achieve satisfactory performances, verify-
ing the effectiveness of our FCIL framework in addressing
the few-shot continual classification task.

Different number of K: In the continual structure in-
fomax learning module, we can use the different number
of these previous information structures K to constrain the
structure of learned knowledge in the continual stage. As

K increases, there is a slight but smaller growth in the KR
results, indicating that the structural information of the ad-
jacent stages is adequately constrained for the current stage.
This result can clearly show that it is possible to better
mitigate catastrophic forgetting by imposing structural con-
straints on learned knowledge, but the demand for computa-
tional complexity and memory would increase significantly.
Therefore, considering the performance and complexity of
our method, we set K equal to 2 in our work.

Different methods with similar starting performance:
As shown in Table 4, we give the comparison results of
the FCIL, FACT [37], and CEC [35] methods with simi-
lar performance in the initial/base stage. We can observe
that the three metrics of the FCIL framework are superior
to the other methods, which indicates that the FCIL frame-
work can retain the learned knowledge better, and the im-
provement is not because of the base model performance
but our introduced FCIL. It clearly verifies the superiority
of the proposed FCIL framework in effectively learning new
knowledge and mitigating catastrophic forgetting.

5. Conclusion
In this paper, we propose a Few-show Continual In-

formal Learning (FCIL) framework to address the few-
shot class continual learning task. Our FCIL enables a
deep model to continually/incrementally learn new con-
cepts from a few labeled samples and meantime prevent
the model from forgetting the previously learned knowl-
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edge. Inspired by the transfer entropy concept, a feature
embedding infomax module is proposed by maximizing the
mutual information between different level feature distribu-
tions and then grants the model to transfer the strong encod-
ing capability of the base network into the new classes. Fur-
ther, a continual structure infomax module is proposed to
maximize the mutual information across these continually
changing relations of the classes to resemble the continual
learning progress, so that catastrophic forgetting could be
well mitigated.
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