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Abstract

Text-video retrieval is a fundamental task with high prac-
tical value in multi-modal research. Inspired by the great
success of pre-trained image-text models with large-scale
data, such as CLIP, many methods are proposed to trans-
fer the strong representation learning capability of CLIP to
text-video retrieval. However, due to the modality differ-
ence between videos and images, how to effectively adapt
CLIP to the video domain is still underexplored. In this pa-
per, we investigate this problem from two aspects. First,
we enhance the transferred image encoder of CLIP for fine-
grained video understanding in a seamless fashion. Second,
we conduct fine-grained contrast between videos and texts
from both model improvement and loss design. Particularly,
we propose a fine-grained contrastive model equipped with
parallel isomeric attention and dynamic routing, namely
PIDRo, for text-video retrieval. The parallel isomeric at-
tention module is used as the video encoder, which consists
of two parallel branches modeling the spatial-temporal in-
formation of videos from both patch and frame levels. The
dynamic routing module is constructed to enhance the text
encoder of CLIP, generating informative word representa-
tions by distributing the fine-grained information to the re-
lated word tokens within a sentence. Such model design
provides us with informative patch, frame and word repre-
sentations. We then conduct token-wise interaction upon
them. With the enhanced encoders and the token-wise loss,
we are able to achieve finer-grained text-video alignment
and more accurate retrieval. PIDRo obtains state-of-the-art
performance over various text-video retrieval benchmarks,
including MSR-VTT, MSVD, LSMDC, DiDeMo and Activi-
tyNet.

*This work was done during an internship at Huawei.
†Corresponding authors: Renjing Pei, Edmund Y. Lam

1. Introduction

The amount of videos on the Internet has significantly
increased recently. Efficiently finding target videos based
on text description, referred to as text-video retrieval, is of
high practical and research value. Over the past few years,
various methods have been proposed for this task [8, 14, 25,
26, 11, 12].

Recently, large-scale contrastive text-image pre-training
has achieved great success in many multi-modal text-vision
understanding tasks [34, 18, 17, 35]. One representative
method is CLIP, which trains a text encoder and an image
encoder with over 400 million image-text pairs. Inspired by
such success, some works directly adapt the pre-trained text
and image encoders to the video domain and achieve great
improvements [29, 15, 16, 13]. However, simply using the
models without considering the differences between images
and videos neglects the characteristics of videos. In this
work, we study CLIP-based text-video retrieval. In spite
of CLIP’s remarkable performance for image classification,
two major issues remain when using it in the video domain.
The first is how to enhance the transferred image encoder
for video understanding in a seamless fashion. The second
lies in how to conduct finer-grained contrast between text
and video.

For the first issue, the image encoder (a transformer) of
CLIP conducts spatial attention within each frame and does
not explore the cross-frame temporal relationship. Current
methods mainly append a temporal transformer to the image
encoder to learn the temporal information [15, 30]. How-
ever, it only conducts temporal attention in the frame-to-
frame fashion and lacks fine-grained temporal modeling.
Building a powerful video encoder is an important topic
for video understanding. FROZEN employs divided space-
time attention to learn the spatial-temporal information [4].
TS2-Net incorporates a token-shift module to enable patch-
level cross-frame interaction [27]. However, these methods
change the internal structure of the image encoder of text-
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image pre-training models and may corrupt the transferred
knowledge.

As for the second issue, fine-grained interaction is ef-
fective for better modality alignment. However, CLIP only
conducts coarse-grained contrast between text and image
with global features. It lacks the capability of capturing
finer-level information. To solve this problem, some meth-
ods conduct fine-grained interaction over token represen-
tations [41, 20]. However, the performance improvement
is limited when the CLIP-based models utilize such fine-
grained contrastive loss for text-video retrieval [30]. This
is because these models are dominated by the encoders of
CLIP, which does not provide informative enough token
representations, such as words and patches, for us to con-
duct effective fine-grained cross-modal interaction. Design-
ing a good loss function alone is not enough, and corre-
spondingly enhancing the encoders is also necessary. How-
ever, systematic fine-grained interaction from both model
enhancement and loss design is rarely explored.

Based on the above analysis, we propose PIDRo, a
CLIP-based model equipped with a novel parallel isomeric
attention module and dynamic routing, for fine-grained text-
video retrieval. Specifically, we design a new architecture
with two parallel branches for comprehensive video mod-
eling. One branch learns frame representations with spa-
tial attention first and temporal attention second. The other
one encodes the video in reverse order to acquire patch rep-
resentations. Each of the two branches consists of a spa-
tial transformer and a temporal transformer, which are ar-
ranged in different orders in the two branches to have dif-
ferent functions, working like isomers. Besides, we pro-
pose a dynamic routing module appended to the text en-
coder to enhance the word representations. Concretely, it
is designed to dig out fine-grained information embedded
in the global feature of the sentence and distribute it to the
corresponding word tokens. These newly designed multi-
modal encoders provide us with informative representations
of words, patches and frames, which allows conducting ef-
fective fine-grained video-text contrast. Meanwhile, we do
not change the internal architectures of CLIP’s encoders,
keeping CLIP’s extendability during transfer. We then de-
sign a contrastive loss to conduct fine-grained video-text
contrast on the learned representations (i.e., word-frame and
word-patch), which calculates token-wise similarity scores
between a text and a video.

By addressing the above two issues, we are able to
smoothly transfer the text-image pre-training model, CLIP,
into text-video retrieval. We conduct comprehensive ex-
periments on several text-video retrieval benchmarks. Our
PIDRo achieves state-of-the-art performance on all bench-
marks and sets new record of retrieval accuracy. The main
contributions of PIDRo are summarized as follows:

1. We propose a parallel isomeric attention module for

better video understanding. It models the temporal depen-
dencies of videos in both frame and patch levels and does
not undermine the original structure of the text-image pre-
trained model.

2. We design a dynamic routing module to yield in-
formative representations for word tokens. It distributes
the fine-grained information related to different words but
buried in the global feature to the corresponding words.

3. Our work leads to a new scheme of conducting ef-
fective fine-grained cross-modal interaction for CLIP-based
methods via both model enhancement and loss design.

4. Extensive experiments on five widely used text-video
retrieval benchmarks demonstrates the superiority of our
method. Ablation studies also illustrate the effectiveness
of our video and text encoders and fine-grained contrast.

2. Related Work
2.1. Text-Video Retrieval

Large-scale text-image pre-training models, such as
CLIP [34], FILIP [41] and ALIGN [19], have demonstrated
success across various downstream tasks. Recently, there
are also some end-to-end trainable models like Frozen [4]
and HiVLP [37] being proposed, which are designed to
take advantage of both large-scale image and video caption-
ing datasets. However, the collection and cleaning of the
pre-training video data cost huge manpower for video pre-
training. Researchers find that text-video retrieval models
extended from the pre-trained model CLIP can also achieve
state-of-the-art simply by transferring CLIP to video-related
tasks. Therefore, a series of CLIP-based methods, such
as CLIP4Clip [29], CLIP2Video [13], X-CLIP [30], TS2-
Net [27], and CLIPPING [32] keep appearing. In order to
maintain the pre-training knowledge of CLIP, those models
are usually constructed on top of CLIP’s encoders with the
similarity calculation to obtain the results of video-text re-
trieval. For example, CLIP4Clip computes sequential simi-
larity and X-CLIP calculates word-frame similarity.

2.2. Fine-Grained Understanding

The core of text-video retrieval models lies in modeling
the semantic information of the two modalities and the in-
teraction between them. Usually, more details and key in-
formation (e.g., description of a small object or insignificant
movement) can improve the final retrieval results. There are
mainly two ways for fine-grained improvement: model ar-
chitecture [5, 3, 28] or loss design [16, 30, 38, 41].

For fine-grained model architectures, existing methods
such as Timesformer [5] and VIVIT [3] forward all spatial-
temporal patches extracted from videos through a trans-
former encoder. Timesformer finds that divided attention
architecture is a good design. It separately applies temporal
attention and spatial attention within each block of the net-
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Figure 1. Diagram of PIDRo. It consists of a text encoder and a video encoder. The text encoder first employs CLIP’s text transformer to
learn a representation for each word token, and then has a dynamic routing module to enhance them by conducting information redistri-
bution within the sentence. The video encoder contains two branches. The S-T frame branch learns frame representations by conducting
spatial attention first and temporal attention across the frames second, while the T-S patch branch performs the two attentions in reverse
order and learns patch cube representations. Fine-grained interaction are performed upon these representations, including a token-wise
interaction between text and frame representations SS−T and another interaction between text and patch representations ST−S .

work. However, when the divided attention architecture is
adapted to a CLIP-based model, we find that it either pro-
vides no performance gain with a small learning rate or in-
creases the loss during training with a large learning rate.

For fine-grained loss design, FILIP [41] uses a token-
wise similarity between visual and textual tokens to guide
the contrastive objective in the pre-training. It successfully
leverages the fine-grained expressiveness between image
patches and words by word-patch alignment. Motivated
by FILIP, X-CLIP [30] introduces token-wise interaction
to CLIP-based text-video retrieval with word-frame align-
ment. However, since CLIP is a text-image pre-training
framework, most textual information converges to the last
token ([sep] token [34]). Therefore, only modifying the
contrastive loss may not be enough for CLIP-based text-
video retrieval. Besides, the word-frame alignment still
lacks fine-grained information compared with the word-
patch alignment. In this paper, we focus on improving
both the model architecture and loss design to leverage fine-
grained effectiveness, and simultaneously transfer the pre-
training knowledge of CLIP to the video domain.

3. Methodology

3.1. Overview

In text-video retrieval, we aim to learn a function which
calculates the similarity between text descriptions and video
clips. This similarity function is expected to give higher
scores to those related video-text pairs and lower scores to
those unrelated. Our PIDRo is a fine-grained contrast model
equipped with parallel isomeric attention and dynamic rout-
ing. The overall framework is depicted in Fig. 1, which is
built upon the pre-trained CLIP model. The parallel iso-
meric attention module serves as the video encoder with two
branches learning frame and patch representations, respec-
tively. Our text encoder is constructed by appending the
dynamic routing module to CLIP’s text encoder (a trans-
former) to acquire informative representations of word to-
kens. Such model design allows us to fully take advantage
of the text-image pre-trained model without changing its in-
ternal structure when transferring it to the video domain.
The encoders provide informative text and video representa-
tions in sequence, from which we can conduct cross-modal
token-wise interaction to achieve fine-grained contrast.
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3.2. Video Encoder

Given a video clip V ∈ RNf×H×W×3 of Nf sampled
frames with spatial size of H × W , each frame of it is di-
vided into Np non-overlapping patches. Those patches are
fed into the video encoder, i.e., the parallel isomeric atten-
tion module with two parallel branches. The first one con-
sists of two cascaded transformers: a spatial and a tempo-
ral. It takes raw frames as the input and generates spatial
frame representations. We call it the S-T frame branch. The
second one has a temporal transformer and a spatial trans-
former. Its input is the patch cubes, each of which contains
patches at the same location of all frames, and it acquires
temporal patch representations. We refer to it as the T-S
patch branch. These two branches both consist of spatial
and temporal transformers, which, however, are in different
orders for different purposes, just like isomers.

3.2.1 Parallel Isomeric Attention

The S-T frame branch first employs a spatial transformer
to encode each frame, which is CLIP’s image encoder. A
[cls] token is prepended to the sequence of the patch to-
kens of each frame. The output corresponding to this to-
ken is used as the representation of this frame. The spa-
tial transformer does not consider temporal dependencies
of the video. Thus, a temporal transformer is appended
to the image encoder for cross-frame temporal correla-
tion. It consists of 4 layers, each of which has 8 heads.
By feeding the representation of each frame to it, we are
able to acquire the final sequential frame representations
F = [f1, f2, · · · , fNf

]⊤ ∈ RNf×d, where d is the dimen-
sionality of the token features.

The S-T frame branch is a generic architecture for CLIP-
based models. However, its exploration of temporal corre-
lation is not enough. To further enhance the understand-
ing of the video, we build another T-S patch branch, which
perceives the video from another view, patch-level temporal
dynamics. Specifically, this branch first employs a temporal
transformer to perform the attention within each patch cube.
It has the same structure as the spatial transformer in the
first branch. To better leverage the pre-trained knowledge,
we also conduct interaction between these two transform-
ers. Except for the last layer, we add the encoding of each
layer in the spatial transformer to the encoding of that same
layer in the temporal transformer (see the supplementary
materials for the details). Such interaction transfers CLIP’s
spatial attention knowledge to the temporal transformer. We
also prepend a [cls] token to the token sequence of each
cube, whose corresponding output serves as the patch cube
representation. The representations capture the patch-level
cross-frame relationship. To further enhance the spatial cor-
relation among the cubes, similar to the S-T frame branch,
we append a spatial transformer to the the temporal one. It

shares the same structure as the temporal transformer in the
S-T frame branch. In this way, we obtain the patch repre-
sentations P = [p1, p2, · · · , pNp

]⊤ ∈ RNp×d. Compared to
the S-T frame branch, T-S has more fine-grained temporal
modeling but coarser spatial modeling. These two branches
complement each other and provide a comprehensive un-
derstanding of videos.

3.2.2 Patch Token Selector

Although the patch representations give more fine details,
the number Np of patches is much larger than the number
Nf of frames. To reduce the computation cost of subse-
quent similarity calculation, we use a patch selector to select
informative patches that contain salient semantics. This is
based on a key observation that, among all the patches, only
a few are related to the text. Specifically, we apply an MLP
followed by a Softmax function to compute the importance
score for each patch, which is formulated as:

S = Softmax(MLP(P )) ∈ RNp . (1)

Based on the K most importance scores, we generate I ∈
{0, 1}K×Np , where each row of I has only one “1” that
corresponds to one of the K importance score, and each
column of I has at most one “1”. Using I , we can select K
patch representations from P :

Ps = IP ∈ RK×d. (2)

To make such top-K selection differentiable, we adopt the
perturbed maximum method proposed in [6]. These K
patch representations are used for the subsequent similar-
ity calculation.

3.3. Text Encoder with Dynamic Routing

The text encoder of CLIP is employed for the textual rep-
resentation learning. It is a transformer with 12 layers and
8 heads with feature dimensionality of 512. Given a text in-
put with Nt word tokens, a [cls] token and a [sep] token are
added to the beginning and end of the word tokens, respec-
tively. This text encoder generates a representation for each
token. Thus, for each sentence, we have a sequence of text
representations T = [t0, t1, · · · , tNt+1]

⊤ ∈ R(Nt+2)×d. In
CLIP’s training, since only tNt+1 is used to represent the
whole sentence, this global representation cannot capture
the fine-grained details of the sentence. To deal with this
problem, we expand it with a dynamic routing module as
shown in Fig. 1. This module can boost the word represen-
tations by achieving the knowledge redistribution within T .
It concatenates the representation of the [sep] token, which
contains rich global information, with the representation of
each word token, which has limited local information. The
concatenated representations are then fed into an MLP to
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dig out the deeply buried information related to each word
from the global feature and integrate it to the correspond-
ing token, by which the word representations are enhanced.
This process for the i-th text token is formulated as:

ti = MLP([ti, tsep]) ∈ Rd, 0 ≤ i ≤ Nt, (3)

where [·] denotes the concatenation operation. Besides, the
representation of the last token stays the same, i.e., tNt+1 =
tNt+1. Finally, we acquire the textual representations T =
[t0, t1, · · · , tNt+1]

⊤.

3.4. Similarity Calculation

Our text and video encoders provide sequential repre-
sentations of fine granularity, which allows conducting fine-
grained contrastive learning for text-video retrieval. We per-
form token-wise similarity calculation between the text and
video modalities. The video encoder has two kinds of repre-
sentations from the two branches, which are interacted with
the text representations separately.

Take the contrast between text and frames as an exam-
ple. Given two sequences of the textual representations T
and the frame representations F , we calculate the similarity
between them as:

SS−T =
1

2

(Nt+1∑
i=0

αi max
1≤j≤Nf

{t⊤i fj}

+

Nf∑
j=1

βj max
0≤i≤Nt+1

{t⊤i fj}
)
,

(4)

where we use SoftMax to obtain the normalized weights

αi =
exp(η·max1≤j≤Nf

{t⊤i fj})∑Nt+1
k=0 exp(η·max1≤j≤Nf

{t⊤k fj})
for the i-th text repre-

sentation and βj =
exp(η·max0≤i≤Nt+1{t⊤i fj})∑Nf

k=1 exp(η·max0≤i≤Nt+1{t⊤i fk})
for the

j-th frame representation, and η is the temperature parame-
ter, which is set to 100 empirically in our experiments. We
compute the similarity between the text and patch cube rep-
resentations ST−S in a similar way. The final similarity
score between the text and the video is defined as:

S = SS−T + λST−S , (5)

where λ is a balancing weight.
Given a training batch of B text-video pairs, we use sym-

metric InfoNCE as the training objective, which is repre-
sented:

Lt2v = − 1

B

B∑
i=1

log
exp(τ · S(Ti, Vi))∑B
j=1 exp(τ · S(Ti, Vj))

, (6)

Lv2t = − 1

B

B∑
i=1

log
exp(τ · S(Ti, Vi))∑B
j=1 exp(τ · S(Tj , Vi))

, (7)

L = (Lt2v + Lv2t)/2, (8)

where S(Ti, Vj) denotes the similarity between the i-th sen-
tence and j-th video in the batch, and τ is another tempera-
ture parameter empirically set to 100 in all the experiments.

4. Experiments
4.1. Datasets

MSR-VTT [40] consists of 10,000 video clips with 20
captions for each clip. We follow the ‘Training-9K’ split,
where 9,000 videos with the corresponding captions are for
training and the left 1,000 pairs for testing.

MSVD [7] contains 1,970 videos, each of which is an-
notated with 40 captions. We use the split of 1200, 100, and
670 videos for training, validation and testing, respectively.

LSMDC [36] consists of 118,081 short videos and cap-
tions. We adopt 109673, 7408 and 1000 for training, vali-
dation and testing, respectively.

DiDeMo [2] dataset is split into training, validation and
testing sets containing 8,395, 1,065 and 1,004 videos, re-
spectively. Following previous works [26, 23, 5], the multi-
ple descriptions of each video are concatenated.

ActivityNet [22] contains 20,000 videos collected from
YouTube. We use the same split as in [14, 29, 39], where
all captions of each video are concatenated.

4.2. Experimental settings

Implementation Details. We train the whole model in
three steps. First, the text transformer and the S-T frame
branch are trained for 5 epochs without the dynamic rout-
ing module and the T-S patch branch. Second, we freeze
the two parts trained in the first step and only optimize the
dynamic routing module for 3 epochs without the T-S patch
branch. In the last step, we fix the parameters of the mod-
ules optimized in the first two steps and only train the T-S
patch branch and the patch selector for another 2 epochs.
The learning rate for the modules of CLIP is set to 1e−7,
while the learning rate for all the other modules is set to
1e−4. We adopt the cosine learning rate schedule with a lin-
ear warm-up in each training step. The spatial transformer
in the S-T frame branch is ViT-B/32 if not specified. The
model is trained by Adam optimizer [21] with a batch size
of 128. The max text and frame lengths are set to 32 and 12
for MSR-VTT, MSVD and LSMDC, and to 64 and 64 for
DiDeMo and ActivityNet, respectively.

Evaluation Metrics. The metrics Recall at rank K
(R@K), mean rank (MnR) and median rank (MdR) are used
for evaluation. Similar to previous works, we set K = 1, 5
and 10 in the experiments.

4.3. Ablation Study

Effect of Dynamic Routing (DR) and T-S Patch
Branch (T-S). In Table 1, we provide the ablation study
of the dynamic routing and T-S patch branch on MSR-VTT.
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Method Text-to-Video (t2v) Video-To-Text (v2t)
R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓

Base model 46.9 73.8 82.8 2.0 13.7 45.9 74.2 83.6 2.0 9.4
Base model + DR 47.5 74.4 82.9 2.0 13.3 46.6 74.4 83.7 2.0 9.1
Base model + T-S 47.9 74.5 83.1 2.0 12.9 46.8 74.5 84.0 2.0 8.8

Base model + DR + T-S 48.2 74.9 83.3 2.0 12.6 47.4 74.8 84.1 2.0 8.7

Table 1. Ablation study of the key components on MSR-VTT. DR: dynamic routing. T-S: T-S patch branch.

Figure 2. R@1 accuracies for text-to-video retrieval with different
numbers of the layers in the temporal transformer of the T-S frame
branch on MSR-VTT.

Figure 3. R@1 accuracies for text-to-video retrieval with different
numbers of selected patch tokens K on MSR-VTT. The number
of the layers of the temporal transformer in the T-S patch branch
is 12.

Figure 4. R@1 accuracies for text-to-video retrieval with different
weights λ on MSR-VTT.

Base model has only the text transformer and the S-T frame
branch. As can be seen, either DR or T-S is helpful, and the
full model equipped with both components gives the best
result. This study shows the effectiveness of the DR and
T-S modules on generating informative word and patch rep-
resentations.

Temporal Transformer in T-S. We analyze the effect of
the layer number Nl of the temporal transformer in the T-S
patch branch. The R@1 accuracies of different layer num-
bers for text-to-video (t2v) retrieval are presented in Fig. 2.
As can be seen, the accuracy usually drops when fewer lay-
ers are employed. However, the drop is slight and the accu-

Method K Nl
Inference Memory Params FLOPs
time (s) (MB) (M) (G)

B - - 22.07 8521 138 53
B + DR - - 22.11 8539 139 54
B + T-S 49 12 25.67 10675 178 66

B + DR + T-S 49 12 25.87 10687 179 67
B + DR + T-S 49 4 23.65 10582 152 58
B + DR + T-S 8 12 25.71 9092 179 67

Table 2. Efficiency study of PIDRo on MSR-VTT. B represents
Base model.

racy is reduced only by 0.4%, even in the worst case, while
is still better than state-of-the-art methods compared later.
This demonstrates that conducting patch-level temporal at-
tention is effective for learning informative patch represen-
tations, while the size of this transformer can be small.

Patch Selector. The patch selector is used to select the
K most informative patch tokens for similarity calculation.
We study the effect of different K. The accuracies of R@1
for text-to-video retrieval are shown in Fig. 3. It is observed
that our model gives the best performance when all patch
tokens are selected. The accuracy decreases only a little
when K = 8. This validates the observation that only a
few tokens are valuable among all the patches and our patch
selector is able to pick them out.

Branch Balancing Weight. We control the contribu-
tions to the final similarity calculation from the S-T frame
branch and T-S patch branch with the branch balancing
weight λ in Eq. 5. We vary λ in the range of [0.1, 0.5] with a
step size of 0.1. As can be seen in Fig. 4, the R@1 accuracy
increases as λ goes from 0.1 to 0.2 and decreases while λ
continues to increase. Too large λ makes the model focus
more on patch representations, and vice versa makes it rely
more on the pre-trained knowledge of CLIP. As a result, we
choose λ = 0.2 for all the following experiments.

Efficiency Study. In Table 2, we give the efficiency
study of our PIDRo. We conduct model inference on MSR-
VTT with a single V100 GPU and a batch size of 128 and
record the inference time and memory consumption. The
parameter numbers and FLOPs are also calculated. It can
be seen that compared with Base model, even with both the
DR and T-S modules, the computational cost and complex-
ity of the full model (fourth row) increase slightly. Besides,
selecting fewer most informative patch tokens K and reduc-
ing the layer number Nl improve the model efficiency, with
the accuracies dropping a little as shown in Figs. 2 and 3.
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Method Text-to-Video Video-To-Text
R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓

HERO [24] 16.8 43.4 57.7 - - - - - - -
MDMMT [12] 38.9 69.0 79.7 2.0 16.5 - - - - -

Support Set [31] 30.1 58.5 69.3 3.0 - 30.1 58.5 69.3 3.0 -
CLIP4Clip [29] 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6

CLIP2Video [13] 45.6 72.6 81.7 2.0 14.6 43.3 72.3 82.1 2.0 10.2
X-CLIP [30] 46.1 73.0 83.1 2.0 13.2 46.8 73.3 84.0 2.0 9.1

CLIP2TV [15] 46.1 72.5 82.9 2.0 15.2 43.9 73 82.8 2.0 11.1
TS2-Net [27] 47.0 74.5 83.8 - 13.0 45.3 74.1 83.7 - 9.2
PIDRo (ours) 48.2 74.9 83.3 2.0 12.6 47.4 74.8 84.1 2.0 8.7

CLIP2TV* [15] 49.3 74.7 83.6 2.0 13.5 46.9 75 85.1 2.0 10
TS2-Net* [27] 49.4 75.6 85.3 - 13.5 46.6 75.9 84.9 - 8.9
PIDRo* (ours) 50.2 77.0 85.4 1.0 12.5 49.4 76.3 84.6 1.0 8.4

CLIP2TV* + DSL [9] 52.9 78.5 86.5 1.0 12.8 54.1 77.4 85.7 1.0 9.0
TS2-Net* + DSL [9] 54.0 79.3 87.4 - - - - - - -

PIDRo* (ours) + DSL [9] 55.9 79.8 87.6 1.0 10.7 54.5 78.3 87.3 1.0 7.5

Table 3. Retrieval results on MSR-VTT-1kA. The methods with and without * use patch sizes of 16 × 16 (ViT-B/16) and 32 × 32 (ViT-
B/32), respectively.

Methods R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
CE [26] 19.8 49.0 63.8 6.0 23.1
Support Set [31] 28.4 60.0 72.9 4 -
Straight-CLIP [33] 37.0 64.1 73.8 3.0 -
Frozen [4] 33.7 64.7 76.3 3.0 -
TeachText-CE+ [10] 25.4 56.9 71.3 4.0 -
CLIP4Clip-meanP [29] 46.2 76.1 84.6 2.0 10.0
CLIP4Clip-seqTransf [29] 45.2 75.5 84.3 2.0 10.3
PIDRo (ours) 47.5 77.5 86.0 2.0 9.2

Table 4. t2v results on the MSVD dataset.

Methods R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
MMT [14] 12.9 29.9 40.1 19.3 75.0
Straight-CLIP [33] 11.3 22.7 29.2 56.5 -
MDMMT [12] 18.8 38.5 47.9 12.3 58.0
CLIP4Clip-meanP [29] 20.7 38.9 47.2 13.0 65.3
CLIP4Clip-seqTransf [29] 22.6 41.0 49.1 11.0 61.0
X-CLIP [30] 23.3 43.0 - - 56.0
TS2-Net [27] 23.4 42.3 50.9 9.0 56.9
PIDRo (ours) 25.4 43.9 54.0 8.0 50.3

Table 5. t2v results on the LSMDC dataset.

Methods R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
CE [26] 20.5 47.7 63.9 6.0 23.1
ClipBERT+ [23] 21.3 49.0 63.5 6.0 -
MMT [14] 28.7 61.4 - 3.3 16.0
Support Set [31] 29.2 61.6 - 3.0 -
HiT [25] 29.6 60.7 - 3.0 -
CLIP4Clip-seqTransf [29] 40.5 72.4 - 2.0 7.5
X-CLIP [30] 44.3 74.1 - - 7.9
TS2-Net [27] 41.0 73.6 84.5 2.0 8.4
PIDRo (ours) 44.9 74.5 86.1 2.0 6.4

Table 6. t2v results on the ActivityNet dataset.

4.4. Comparison with State-of-the-Arts

MSR-VTT-1kA. We compare the proposed PIDRo with
other state-of-the-art methods on the five benchmarks. Ta-
ble 3 presents the results on the MSR-VTT dataset. With the
dynamic routing and T-S patch branch, our model is able to

Methods R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓
CE [26] 16.1 41.1 - 8.3 43.7
ClipBERT [23] 21.1 47.3 61.1 6.3 -
TeachText-CE+ [10] 21.6 48.6 62.9 6.0 -
Frozen [4] 31.0 59.8 72.4 3.0 -
CLIP4Clip-seqLSTM [29] 43.4 69.9 80.2 2.0 17.5
CLIP4Clip-meanP [29] 43.4 70.2 80.6 2.0 17.5
X-CLIP [30] 45.2 74.0 - - 14.6
TS2-Net [27] 41.8 71.6 82.0 2.0 14.8
PIDRo (ours) 48.6 75.9 84.4 2.0 11.8

Table 7. t2v results on the DiDeMo dataset.

capture fine-grained information of texts and videos with
rich semantics, resulting in more accurate retrieval. Our
method achieves t2v R@1 48.2% and v2t R@1 47.4% and
outperforms previous methods significantly as shown in Ta-
ble 3. In addition, by employing ViT-B/16 as the base en-
coder and DSL [9] in inference, our PIDRo yields remark-
able R@1 accuracies of 55.9% and 54.5% for t2v and v2t,
respectively.

Other Benchmarks. Tables 4-7 present the t2v re-
trieval results on the MSVD, LSMDC, ActivityNet and
DiDeMo datasets, respectively, where no post-processing
such as DSL [9] is used. It can be observed that our
method achieves consistent and significant improvements
across different datasets, demonstrating the generalization
and robustness of PIDRo. Besides, the v2t results on these
four datasets are given in the supplemental materials.

4.5. Visualization of Fine-Grained Alignment

In this section, we analyze PIDRo’s capability of captur-
ing fine-grained cross-modal correspondence with the dy-
namic routing and T-S patch branch. We visualize the word-
frame alignment and some retrieval examples.

Word-Frame Alignment with Dynamic Routing. The
word-frame alignment is conducted based on the similarity
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Figure 5. Visualizations of word-frame alignment. The left column
shows the alignment without the dynamic routing and the right
column is with the dynamic routing. (Best viewed on screen.)

between the word and frame tokens. Specifically, for a word
token, we calculate its similarity score to each frame and
then connect it with the frame. The visualization result of
some examples are presented in Fig. 5, where the red lines
indicate large scores and the blue lines small scores, while
other colors denote the scores in between. We also present
the maximum similarity score for each token. As can be
seen, the similarity scores between the key words and re-
lated frames are greatly increased when the dynamic rout-
ing module is used. For example, in Figs. 5 (a) and (b), our
model with the dynamic routing is able to connect the “fry-
ing food” and “sitting on a chair” to the related frames of
the corresponding videos. In addition, in the last example,
the crucial word for retrieving the correct video, ‘baseball’,
is also successfully matched to the related frames when the
model is equipped with the dynamic routing. These visual-
ization results further validate the effectiveness of our dy-
namic routing module on enhancing word representations.

Retrieval with T-S Patch Branch. To show the effect of
the T-S patch branch, we visualize some text-video retrieval
results in Fig. 6. For better observation, we uniformly select
3 frames for each video in the visualization. In the first two
examples, our model with the T-S patch branch is able to
find the correct videos by distinguishing the small objects,
such as ‘monkey’ and ‘open box’. In the last example, with-
out the T-S patch branch, the model does not capture the

Figure 6. Visualizations of text-video retrieval examples with and
without the T-S patch branch. The key words important for video
retrieval are in red. The correct results are in green boxes while
those incorrect are in red boxes.

subtle movement ‘handcuffs’. In comparison, it retrieves
the correct video when the T-S patch branch is used. These
results again verify the effectiveness of this branch on cap-
turing small objects and insignificant movements in videos.

5. Conclusion

In this paper, we present PIDRo, a fine-grained contrast
model that effectively transfers CLIP to the video domain.
We build a parallel isomeric attention module tailored for
video encoding, which uses another branch to learn fine
temporal dynamics of videos. Besides, a dynamic rout-
ing module is designed to enhance the word representa-
tions through fine-grained information redistribution. The
two modules provide informative representations and al-
lows fine-grained cross-domain contrast with token-wise in-
teraction. The experimental results demonstrate the superi-
ority of PIDRo.

11171



Acknowledgements

We gratefully acknowledge the support of Mind-
Spore [1], CANN (Compute Architecture for Neural Net-
works) and Ascend AI Processor used for this research.
This work is also supported in part by the Research Grants
Council of Hong Kong (GRF 17201822) and the University
of Hong Kong (104006536).

References
[1] https://www.mindspore.cn/. 9
[2] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef

Sivic, Trevor Darrell, and Bryan Russell. Localizing mo-
ments in video with natural language. In ICCV, 2017. 5

[3] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
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