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Figure 1: DeLiRa augments volumetric view synthesis with the multi-view photometric objective, as a regularizer to
improve novel view and depth synthesis in the limited viewpoint setting. We use this implicit representation to jointly learn
depth, light, and radiance fields from a shared latent space in a synergistic way.

Abstract

Differentiable volumetric rendering is a powerful
paradigm for 3D reconstruction and novel view synthesis.
However, standard volume rendering approaches struggle
with degenerate geometries in the case of limited viewpoint
diversity, a common scenario in robotics applications. In
this work, we propose to use the multi-view photometric ob-
jective from the self-supervised depth estimation literature
as a geometric regularizer for volumetric rendering, sig-
nificantly improving novel view synthesis without requiring
additional information. Building upon this insight, we ex-
plore the explicit modeling of scene geometry using a gen-
eralist Transformer, jointly learning a radiance field as well
as depth and light fields with a set of shared latent codes.
We demonstrate that sharing geometric information across
tasks is mutually beneficial, leading to improvements over
single-task learning without an increase in network com-
plexity. Our DeLiRa architecture achieves state-of-the-art
results on the ScanNet benchmark, enabling high quality
volumetric rendering as well as real-time novel view and
depth synthesis in the limited viewpoint diversity setting.
Our project page is https://sites.google.com/view/tri-delira.

1. Introduction

Inferring 3D geometry from 2D images is a cornerstone
capability in computer vision and computer graphics. In
recent years, the state of the art has significantly advanced

due to the development of neural fields [47], which param-
eterize continuous functions in 3D space using neural net-
works, and differentiable rendering [40, 23, 36], which en-
ables learning these functions directly from images. How-
ever, recovering 3D geometry from 2D information is an ill-
posed problem: there is an inherent ambiguity of shape and
radiance (i.e. the shape-radiance ambiguity [54]). These
representations thus require a large number of diverse cam-
era viewpoints in order to converge to the correct geome-
try. Alternatively, methods that explicitly leverage geomet-
ric priors at training time, via the self-supervised multi-view
photometric objective, have achieved great success for tasks
such as depth [6, 9, 45, 8], ego-motion [38, 37], camera ge-
ometry [41, 4, 7], optical flow [10], and scene flow [10, 14].

In this work, we combine these two paradigms and in-
troduce the multi-view photometric loss as a complement
to the view synthesis objective. Specifically, we use depth
inferred via volumetric rendering to warp images, with the
photometric consistency between synthesized and original
images serving as a self-supervisory regularizer to scene
structure. We show through experiments that this explicit
regularization facilitates the recovery of accurate geometry
in the case of low viewpoint diversity, without requiring ad-
ditional data. Because the multi-view photometric objective
is unable to model view-dependent effects (since it assumes
a Lambertian scene), we propose an attenuation schedule
that gradually removes it from the optimization, and show
that our learned scene geometry is stable, leading to further
improvements in view and depth synthesis.
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We take advantage of this accurate learned geometry
and propose DeLiRa, an auto-decoder architecture inspired
by [16] that jointly estimates Depth [12], Light [35], and
Radiance [23] fields. We maintain a shared latent repre-
sentation across task-specific decoders, and show that this
increases the expressiveness of learned features and is ben-
eficial for all considered tasks, improving performance over
single-task networks without additional complexity. Fur-
thermore, we explore other synergies between these repre-
sentations: volumetric predictions are used as pseudo-labels
for the depth and light fields, improving viewpoint gener-
alization; and depth field predictions are used as guidance
for volumetric sampling, significantly improving efficiency
without sacrificing performance.

To summarize, our contributions are as follows. In
our first contribution, we show that the multi-view pho-
tometric objective is an effective regularization tool for
volumetric rendering, as a way to mitigate the shape-
radiance ambiguity. To further leverage this geometrically-
consistent implicit representation, in our second contribu-
tion we propose a novel architecture for the joint learn-
ing of depth, light, and radiance fields, decoded from a
set of shared latent codes. We show that jointly model-
ing these three fields leads to improvements over single-
task networks, without requiring additional complexity in
the form of regularization or image-space priors. As a re-
sult, our proposed method achieves state-of-the-art view
synthesis and depth estimation results on the ScanNet
benchmark, outperforming methods that require explicit
supervision from ground truth or pre-trained networks.

2. Related Work

2.1. Implicit Representations for View Synthesis

Our method falls in the category of auto-decoder archi-
tectures for neural rendering [27, 47], which directly op-
timize a latent code. Building on top of DeepSDF [27],
SRN [36] adds a differentiable ray marching algorithm to
regress color, enabling training from a set of posed images.
The vastly popular NeRF [23] family regresses color and
density, using volumetric rendering to achieve state-of-the-
art free view synthesis. CodeNeRF[18] learns instead the
variation of object shapes and textures, and does not require
knowledge of camera poses at test time.

Despite recent improvements, efficiency remains one of
the main drawbacks of volumetric approaches, since ren-
dering each pixel requires many network calls. To alleviate
this, some methods have proposed better sampling strate-
gies [13, 43]. This is usually achieved using depth pri-
ors, either from other sensors [29], sparse COLMAP [32]
predictions [3], or pre-trained depth networks [46, 31, 25].
Other methods have moved away from volumetric render-
ing altogether and instead generate predictions with a single

forward pass [35, 12, 42]. While much more efficient, these
methods require substantial viewpoint diversity to achieve
the multi-view consistency inherent to volumetric render-
ing. Light field networks [35] map an oriented ray directly
to color, relying on generalization to learn a multi-view con-
sistency prior. DeFiNe [12] learns depth field networks, us-
ing ground truth to generate virtual views via explicit pro-
jection. R2L [42] uses a pre-trained volumetric model, that
is distilled into a residual light field network.

Our proposed method combines these two directions
into a single framework. Differently from DeFiNe and
R2L, it does not require ground truth depth maps or a pre-
trained volumetric model for distillation. Instead, we pro-
pose to jointly learn self-supervised depth, light, and radi-
ance fields, decoded from the same latent space. A radiance
decoder generates volumetric predictions that serve as ad-
ditional multi-view supervision for light and depth field de-
coders. At the same time, predictions from the depth field
decoder serve as priors to improve sampling for volumetric
rendering, decreasing the amount of required network calls.

2.2. Self-Supervised Depth Estimation

The work of Godard et al. [5] introduced self-
supervision to the task of depth estimation, by framing it
as a view synthesis problem: given a target and context im-
ages, we can use predicted depth and relative transformation
to warp information between viewpoints. By minimizing a
photometric objective between target and synthesized im-
ages, depth and relative transformation are learned as proxy
tasks. Further improvements to this original framework, in
terms of losses [6, 33, 11], camera modeling [7, 41, 19, 4]
and network architectures [9, 8, 50], have led to perfor-
mance comparable to or even better than supervised meth-
ods. We extend this self-supervised learning paradigm to
the volumetric rendering setting, introducing it as an ad-
ditional source of regularization to the single-frame view
synthesis objective. Our argument is that, by enforcing ex-
plicit multi-view photometric consistency in addition to im-
plicit density-based volumetric rendering, we avoid degen-
erate geometries during the learning process.

2.3. Structure Priors for Volumetric Rendering

A few works have recently started exploring how to in-
corporate depth and structure priors in the volumetric ren-
dering setting [25, 3, 46, 31]. Most use structure-from-
motion (e.g., COLMAP [32]) pointclouds, predicted jointly
with camera poses, as “free” supervision to regularize volu-
metric depth estimates. However, because these pointclouds
are noisy and very sparse (< 0.1% of valid projected pix-
els), substantial post-processing is required. RegNeRF [26]
uses a normalizing-flow-based likelihood model over image
patches to regularize predictions from unobserved views.
DS-NeRF [3] uses reprojection error as a measure of uncer-
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(a) Geometric embeddings, including camera center tt, viewing rays
rij , and sampled 3D points xk from each viewing ray.

(b) Multi-task depth, light, and radiance decoding. Geometric embeddings
are used as queries Q, and cross-attended with keys K and values V from S.

Figure 2: Diagram of our proposed DeLiRa architecture. In (a) we show how the various geometric embeddings are
calculated from camera information, and in (b) we show depth, light, and radiance decoding from the same latent space S.

tainty, and minimizes the KL-divergence between volumet-
ric and predicted depth. NerfingMVS [46] trains a separate
depth prediction network, used for depth-guided sampling.
DDP-NeRF [31] goes further and trains a separate depth
completion network, that takes SfM pointclouds as addi-
tional input to generate dense depth maps for supervision
and sampling guidance. SinNeRF [48] uses a single RGB-
D image to learn a radiance field. Like our method, they
use multi-view photometric warping as additional supervi-
sion, but crucially they rely on ground truth depth, and thus
the two objectives (volume rendering and warp-based view
synthesis) are decoupled. MonoSDF [53] uses a pre-trained
depth network to supervise SDF-based volume rendering,
achieving impressive improvements in depth estimation, al-
beit at the expense of novel view synthesis performance.

Importantly, all these methods require additional data
to train their separate networks, in order to generate the
depth priors used for volumetric rendering. NerfingMVS
uses a network pre-trained on 170K samples from 4690
COLMAP-annotated sequences [20]. DDP-NeRF uses a
network trained on 94K RGB-D in-domain samples (i.e.,
from the same dataset used for evaluation). In these two
methods (and several others [2, 51]), supervision comes
from “free” noisy COLMAP pointclouds. Drawing from
the self-supervised depth estimation literature, we posit that
geometric priors learned with a multi-view photometric ob-
jective are a stronger source of “free” supervision.

3. Methodology

Our goal is to learn an implicit 3D representation from
a collection of RGB images {Ii}N−1

i=0 . For each cam-
era, we assume known intrinsics Ki ∈ R3×3 and extrin-
sics Ti ∈ R4×4, obtained as a pre-processing step [32].
Note that we assume neither ground-truth [25] nor pseudo-
ground truth [25, 46, 3, 31] depth supervision.

3.1. Shared Latent Representation

Our architecture for the joint learning of depth, light,
and radiance fields (DeLiRa) stores scene-specific infor-
mation as a latent space S ∈ RNl×Cl , composed of Nl

vectors with dimensionality Cl. Cross-attention layers are
used to decode queries, containing geometric embeddings
(Fig. 2a), into task-specific predictions. To self-supervise
these predictions, we combine the view synthesis objective
on RGB estimates and the multi-view photometric objec-
tive on depth estimates. We also explore other cross-task
synergies, namely how volumetric predictions can be used
to increase viewpoint diversity for light and depth field es-
timates, and how depth field predictions can serve as priors
for volumetric importance sampling. A diagram of DeLiRa
is shown in Fig. 2b, and below we describe each of its com-
ponents.

3.2. Geometric Embeddings

We use geometric embeddings to process camera infor-
mation, that serve as queries to decode from the latent space
S. Let uij = (u, v) be an image coordinate in target cam-
era t, with assumed known pinhole intrinsics Kt, resolution
H ×W , and extrinsics Tt =

[
R t
0 1

]
relative to camera T0.

Its origin ot and direction rij vectors are given by:

ot = −Rttt , rij =
(
KtRt

)−1
[uij , vij , 1]

T (1)

Note that direction vectors are normalized to unitary val-
ues r̄ij =

rij
||rij || before further processing. For volumetric

rendering, we sample K times along the viewing ray to gen-
erate 3D points xk = (x, y, z) given depth values zk:

xk
ij = ot + zk r̄ij (2)

In practice, zk values are linearly sampled between a
[dmin, dmax] range. These vectors, ot, r̄ij and xk

ij , are then
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Fourier-encoded [52] to produce geometric embeddings Eo,
Er and Ex, with a mapping of:

x 7→ [x, sin(f1πx), cos(f1πx), . . . , sin(fMπx), cos(fMπx)]
(3)

where M is the number of Fourier frequencies used (Mo for
camera origin, Mr for viewing ray, and Mx for 3D point),
equally spaced in the interval [1, µ

2 ]. Here, µ is a maximum
frequency parameter shared across all dimensions. These
embeddings are concatenated to be used as queries by the
cross-attention decoders described below. Ray embeddings
are defined as Eray = Eo ⊕ Er and volumetric embeddings
as Evol = Eo ⊕ Ex, where ⊕ denotes concatenation.

3.3. Cross-Attention Decoders

We use task-specific decoders, with one cross-attention
layer between the Nq × Cq queries and the Nl × Cl latent
space S followed by an MLP that produces a Nq×Co output
(more details in the supplementary material). This output is
processed to generate estimates as described below.
The radiance head HR decodes volumetric embeddings
Evol as a 4-dimensional vector (c, σ), where c = (r, g, b)
are colors and σ is density. A sigmoid is used to normal-
ize colors between [0, 1], and a ReLU truncates densities to
positive values. To generate per-pixel predictions, we com-
posite K predictions along its viewing ray [23], using sam-
pled depth values Zij = {zk}K−1

k=0 . The resulting per-pixel
predicted color ĉij and depth d̂ij is given by:

ĉij =

K∑
k=1

wk ĉk , d̂ij =

K∑
k=1

wkzk (4)

Per-point weights wk and accumulated densities Tk, given
intervals δk = zk+1 − zk, are defined as:

wk = Tk

(
1− exp(−σkδk)

)
(5)

Tk = exp
(
−

K∑
k′=1

σk′δk′

)
(6)

The light field head HL decodes ray embeddings Eray as a
3-dimensional vector ĉij = (r, g, b) containing pixel colors.
These values are normalized between [0, 1] with a sigmoid.
The depth field head HD decodes ray embeddings Eray as
a scalar value d̂ij representing predicted pixel depth. This
value is normalized between a [dmin, dmax] range.

3.4. Self-Supervised Losses

We combine the traditional volumetric rendering view
synthesis loss Ls (Sec. 3.4.1) with the multi-view photo-
metric loss Lp (Sec. 3.4.2), using αp as a weight coefficient:

L = Ls + αpLp (7)

3.4.1 Single-View Volumetric Rendering

We use Mean Squared Error (MSE) to supervise the pre-
dicted image Ît (where Ît(i, j) = ĉij , see Eq. 4), relative to
the target image It.

Ls = ||Ît − It||2 (8)

This is the standard objective for radiance-based reconstruc-
tion [23]. Importantly, this is a single-view objective, since
it directly compares prediction and ground truth without
considering additional viewpoints. Therefore, multi-view
consistency must be learned implicitly by observing the
same scene from multiple viewpoints. When such infor-
mation is not available (e.g., forward-facing datasets with
limited viewpoint diversity), it may lead to degenerate ge-
ometries that do not properly model the observed 3D space.

3.4.2 Multi-View Photometric Warping

To address this limitation, we introduce the self-supervised
multi-view photometric objective [6, 9] as an additional
source of self-supervision in the volumetric rendering set-
ting. For each pixel (u, v) in target image It, with predicted
depth d̂ (e.g., see Eq. 4), we obtain the projected coordinates
(u′, v′) with predicted depth d̂′ in a context image Ic via a
warping operation, defined as:

d̂′

u′

v′

1

 = KcRt→c

K−1
t

uv
1

 d̂+ tt→c

 (9)

To produce a synthesized target image, we use grid sam-
pling with bilinear interpolation [15] to place information
from the context image onto each target pixel, given their
corresponding warped coordinates. The photometric re-
projection loss between target It and synthesized Ît im-
ages consists of a weighted sum with a structure similarity
(SSIM) term [44] and an L1 loss term:

Lp(It, Ît) = α
1− SSIM(It, Ît)

2
+ (1− α) ∥It − Ît∥ (10)

Strided ray sampling Due to the large amount of network
calls required for volumetric rendering, it is customary to
randomly sample rays at training time [23]. This is pos-
sible because the volumetric view synthesis loss (Eq. 8)
can be calculated at a per-pixel basis. The photometric
loss (Eq. 10), however, requires a dense image, and thus
is incompatible with random sampling. To circumvent this,
while maintaining reasonable training times and memory
usage, we use strided ray sampling. Fixed horizontal sw
and vertical sh strides are used, and random horizontal
ow ∈ [0, sw − 1] and vertical oh ∈ [0, sh − 1] offsets are
selected to determine the starting point of the sampling pro-
cess, resulting in sh × sw combinations. The rays can be
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Ground Truth Baseline (radiance field) DeLiRa (radiance field) DeLiRa (depth and light fields)

Figure 3: Qualitative depth and view synthesis results from unseen viewpoints, using different DeLiRa decoders. As
a baseline, we show predictions obtained from a model trained without our contributions, leading to a degenerate learned
geometry due to shape-radiance ambiguity (i.e., accurate view synthesis with poor depth predictions).

arranged to produce a downsampled image I ′t of resolution
⌊H−oh

sh
⌋×⌊W−ow

sw
⌋, with corresponding predicted image Î ′t

and depth map D̂′
t. Note that the target intrinsics K′ have to

be adjusted accordingly, and context images do not need to
be downsampled.

3.5. Light and Depth Field Decoding

We take advantage of the general nature of our frame-
work to produce novel view synthesis and depth estimates
in two different ways: indirectly, by compositing predic-
tions from a volumetric decoder (Eq. 4); and directly, as the
output of light and depth field decoders. Because light and
depth field predictions [12] lack the multi-view consistency
inherent to volumetric rendering [12, 42, 35], we augment
the amount of available training data by including virtual
supervision from volumetric predictions.

This is achieved by randomly sampling virtual cameras
from novel viewpoints at training time, and using volumet-
ric predictions as pseudo-labels to supervise the light and
depth field predictions. Virtual cameras are generated by
adding translation noise ϵv = [ϵx, ϵy, ϵz]v ∼ N (0, σv) to
the pose of an available camera, selected randomly from the
training dataset. The viewing angle is set to point towards
the center of the original camera, at a distance of dmax,
which is also disturbed by ϵc = [ϵx, ϵy, ϵz]c ∼ N (0, σv).
We can use information from this virtual camera to decode
a predicted volumetric image Îv and depth map D̂v , as well
as a predicted image Îl and depth map D̂d from the light
and depth field decoders. We use the MSE loss (Sec. 3.4.1)
to supervise Îl relative to Îv , as well as the L1-log loss to
supervise D̂d relative to D̂v , resulting in the virtual loss:

Lv =
∥∥∥log(D̂r)− log(D̂d)

∥∥∥
1
+

(
Îr − Îl

)2

(11)

Note that the self-supervised losses from Sec. 3.4 are also
applied to the original light and depth field predictions.

3.6. Depth Field Volumetric Guidance

In the previous section we described how volumetric pre-
dictions can be used to improve light and depth field es-
timates, by introducing additional supervision in the form
of virtual cameras. Here, we show how depth field predic-
tions can be used to improve the efficiency of volumetric

estimates, by sampling from areas near the observed sur-
face. Although more involved strategies have been pro-
posed [3, 31, 25], we found that sampling from a Gaus-
sian distribution N (D̂d, σg), centered around D̂d with stan-
dard deviation σg , provided optimal results. Importantly,
all these strategies require additional information from pre-
trained depth networks or sparse supervision, whereas ours
use predictions generated by the same network, learned
from scratch and decoded from the same representation.

3.7. Training Schedule

Since all predictions are learned jointly, we use a train-
ing schedule such that depth field estimates can reach a rea-
sonable level of performance before serving as guidance for
volumetric sampling. In the first 400 epochs (10% of the to-
tal number of steps), we consider K ray samples, and depth
field guidance (DFG) is not used. Afterwards, Kg samples
are relocated to DFG, and drawn instead from N (D̂d, σg).
After another 400 epochs, we once again reduce the amount
of ray samples by Kg , but this time without increasing the
number of depth field samples, which decreases the total
number of samples used for volumetric rendering. This pro-
cess is repeated every 400 epochs, and at K = 0 ray sam-
pling is no longer performed, only DFG with Kg samples.

Moreover, we note that the multi-view photometric ob-
jective is unable to model view-dependent artifacts, since
it relies on explicit image warping. Thus, we gradually re-
move this regularization, so that our network can first con-
verge to the proper implicit scene geometry, and then use
it to further improve novel view synthesis. In practice, af-
ter every 400 epochs we decay Lp by a factor of 0.8, and
completely remove it in the final 800 epochs.

4. Experimental Results
4.1. Dataset

The primary goal of DeLiRa is to enable novel view
synthesis in the limited viewpoint diversity setting, which
is very challenging for implicit representations (prior work
on few-shot NeRF [17, 26] is limited to synthetic or table-
top settings). Thus, following standard protocol [3, 46, 31]
we use the ScanNet dataset [1] as our evaluation bench-
mark. This is a challenging benchmark, composed of real-
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Method

Su
pe

rv
. Lower is better Higher is better

Abs.Rel. Sq.Rel. RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

COLMAP [32] – 0.462 0.631 1.012 1.734 0.481 0.514 0.533

ACMP [49] D 0.194 0.171 0.455 0.306 0.731 0.881 0.942
DELTAS [34] D 0.100 0.032 0.207 0.128 0.862 0.992 0.999
DeepV2D [39] D 0.082 0.023 0.171 0.109 0.941 0.991 0.998
Atlas [24] D 0.078 0.063 0.244 0.269 0.929 0.954 0.959

NeRF [23] – 0.393 1.485 1.090 0.521 0.489 0.732 0.828
CVD [22] – 0.099 0.030 0.194 0.127 0.901 0.988 0.997
NerfingMVS [46] (w/o filter) C 0.063 0.014 0.145 0.094 0.954 0.991 0.999
NerfingMVS [46] (w/ filter) C 0.061 0.014 0.134 0.086 0.960 0.995 0.999

DeLiRa R – 0.055 0.014 0.131 0.082 0.970 0.994 0.999
D – 0.054 0.028 0.138 0.088 0.966 0.992 1.000

Table 1: Average depth synthesis results on ScanNet-Frontal. Superv. indicates the source of depth supervision: D for
ground truth, and C for COLMAP predictions. DeLiRa outperforms all other methods, despite not requiring supervision.
Moreover, our depth field results (D) are on par with radiance predictions (R), and can be generated with a single query.

Method
Scene 0000 Scene 0079 Scene 0158 Scene 0316 Scene 0521 Scene 0553 Scene 0616 Scene 0653

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
NSVF [21] 23.36 0.823 26.88 0.887 31.98 0.951 22.29 0.917 27.73 0.892 31.15 0.947 15.71 0.704 28.95 0.929
SVS [30] 21.39 0.914 25.18 0.923 29.43 0.953 20.63 0.941 27.97 0.924 30.95 0.968 21.38 0.899 27.91 0.965
NeRF [23] 18.75 0.751 25.48 0.896 29.19 0.928 17.09 0.828 24.41 0.871 30.76 0.950 15.76 0.699 30.89 0.953
NerfingMVS [46] 22.10 0.880 27.27 0.916 30.55 0.948 20.88 0.899 28.07 0.901 32.56 0.965 18.07 0.748 31.43 0.964

DeLiRa R 25.88 0.919 28.01 0.916 34.68 0.969 23.31 0.948 28.97 0.909 36.32 0.981 20.27 0.851 33.70 0.967
L 25.34 0.907 28.48 0.920 35.77 0.980 23.18 0.937 29.22 0.916 35.94 0.974 19.18 0.832 34.63 0.973

Table 2: Per-scene view synthesis results, on ScanNet-Frontal. DeLiRa improves view synthesis results (PSNR) in all
considered scenes (+9.8%± 4.1%), relative to the previous state of the art [46].

Method

Su
pe

rv
. Depth View Synthesis

RMSE↓ PSNR↑ SSIM↑ LPIPS↓
NeRF [23] - 1.163 19.03 0.670 0.398
DS-NeRF [3] C 0.423 20.94 0.721 0.330
NerfingMVS [46]† C 0.469 16.45 0.641 0.488
DDP-NeRF [31]† C 0.504 20.71 0.719 0.337
DDP-NeRF [31]† D+C 0.229 21.02 0.742 0.289

DeLiRa R - 0.215 21.64 0.761 0.302
DL - 0.213 21.26 0.748 0.305

Table 3: Depth and view synthesis results on ScanNet-
Rooms. The superv. column indicates the source of depth
supervision: D denotes ground-truth depth maps, and C de-
notes COLMAP predictions. The symbol † indicates the use
of separate depth networks, pre-trained on additional data.

world room-scale scenes subject to motion blur and noisy
calibration [31]. For a fair comparison with other meth-
ods, we consider two different training and testing splits:
ScanNet-Frontal [46], composed of 8 scenes, and ScanNet-
Rooms [31], composed of 3 scenes. For more details, please
refer to the supplementary material.

4.2. Volumetric Depth and View Synthesis

First, we evaluate the performance of DeLiRa focusing
on volumetric predictions. Improvements in depth syn-
thesis are expected to lead to improvements in view syn-
thesis, which we validate in the following section. In

Tab. 1 we compare our depth synthesis results on ScanNet-
Frontal with several classical methods [49, 34, 39, 24],
all of which require ground-truth depth maps as a source
of supervision. We also consider NeRF [23], that only
optimizes for volumetric rendering, as well as CVD [22]
and NerfingMVS[46], that use a pre-trained depth network
fine-tuned on in-domain sparse information. Even though
DeLiRa operates in the same setting as NeRF (i.e., only
posed images), it still achieves substantial improvements
over all other methods. In particular, DeLiRa improves
upon NeRF by 86.3% in absolute relative error (AbsRel)
and 88.0% in root mean square error (RMSE), as well as
improving upon the previous state of the art [46] by 14.2%
in Abs.Rel. and 9.6% in RMSE. Similar trends are also
observed for view synthesis, where DeLiRa improves upon
[46] in PSNR by 11.1%, as shown in Tab. 2. We attribute
this to the fact that our regularization leverages dense direct
self-supervision from the environment, rather than relying
on sparse noisy samples to fine-tune a pre-trained network.

In Tab. 3 we show a similar evaluation on ScanNet-
Rooms, which constitutes a more challenging setting due
to a larger area coverage (an entire room, as opposed to
a local region). In fact, as shown in [31], most meth-
ods struggle in this setting: NeRF [23] generates “floaters”
due to limited viewpoint diversity, DS-NeRF [3] is prone
to errors in sparse depth input, and the error map calcula-
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Version

D
ec

od
er Depth↓ View Synth.↑

AbsRel RMSE PSNR SSIM
A Monodepth (self-sup.) - 0.096 0.268 — —
B COLMAP sup. R 0.134 0.401 26.17 0.862

C DeLiRa (w/o self-sup.) R 0.245 0.570 27.64 0.895
D MLP (w/o self-sup.) R 0.238 0.546 27.50 0.882
E MLP (self-sup.) R 0.068 0.163 27.51 0.887
F DeLiRa (1-MLP) DL 0.057 0.133 27.34 0.889

G Volumetric-only R 0.059 0.142 27.87 0.891
H Depth / Light-only DL 0.123 0.344 23.56 0.757
I Distilled (separate SDL) DL 0.063 0.152 27.52 0.881
J Distilled (shared SR) DL 0.066 0.169 27.33 0.868
K Distilled (shared SR,VCA) DL 0.076 0.181 26.16 0.849

R 0.058 0.140 28.04 0.898L Separate SR and SDL DL 0.061 0.152 27.77 0.892
R 0.077 0.210 27.74 0.877M Without VCA DL 0.079 0.227 27.25 0.855
R 0.059 0.145 28.27 0.908N Without DFG DL 0.055 0.139 28.73 0.924
R 0.056 0.135 28.59 0.922O Without vanishing Lp DL 0.055 0.144 28.74 0.918

R 0.055 0.131 28.98 0.934DeLiRa DL 0.054 0.138 29.10 0.932

Table 4: Ablative analysis of the various components of
our proposed DeLiRa method, on ScanNet-Frontal. R, D,
and L indicate radiance, depth, and light field predictions.

tion of NerfingMVS [46] fails when applied to larger areas.
DDP-NeRF [31] circumvents these issues by using an addi-
tional uncertainty-aware depth completion network, trained
on RGB-D data from the same domain. Even so, our sim-
pler approach of regularizing the volumetric depth using a
multi-view photometric objective leads to a new state of the
art, both in depth and novel view synthesis.

4.3. Light and Depth Field Performance

In addition to volumetric rendering, DeLiRa also gener-
ates light and depth field predictions, that can be efficiently
decoded with a single network forward pass. We report
these results in the same benchmarks, achieving state-of-
the-art performance comparable to their corresponding vol-
umetric predictions. In the supplementary material we ex-
plore the impact of using different decoder architectures,
noticing that deeper networks yield significant improve-
ments in view synthesis, which is in agreement with [42].
Interestingly, we did not observe similar improvements in
depth synthesis, which we attribute to the lack of higher
frequency details in this task.

4.4. Ablative Analysis

Here we analyse the various components and design
choices of DeLiRa, to evaluate the impact of our contribu-
tions in the reported results. Our findings are summarized
in Tab. 4, with qualitative results in Figs. 3 and 4.
Multi-view Photometric Objective. Firstly, we ablate the
multi-view photometric loss, used as additional regulariza-
tion to the single-frame view synthesis loss. By remov-

Radiance field Depth and light fields

Figure 4: Reconstructed pointclouds from novel views,
using color and depth predictions from different decoders.

ing this regularization (C), we observe significantly worse
depth results (0.245 vs 0.054 AbsRel), as well as some view
synthesis degradation (27.64 vs 28.96 PSNR). This is evi-
dence that volumetric rendering is unable to properly learn
scene geometry with low viewpoint diversity, and that accu-
rate view synthesis can be obtained with degenerate geome-
tries. Alternatively, we trained a self-supervised monoc-
ular depth network [6] using the same data, and achieved
substantially better performance than volumetric rendering
(A), however still worse than DeLiRa (0.096 vs 0.054 Ab-
sRel, with qualitative results in the supplementary material).
These indicate that our hybrid approach improves over any
single objective: photometric warping explicitly enforces
multi-view consistency, while volumetric rendering implic-
itly learns 3D geometry. We also experimented with replac-
ing the multi-view photometric objective with COLMAP
supervision (B). As pointed out in other works [46, 3, 31],
these predictions are too sparse and noisy to be used without
pre-trained priors, leading to worse results (0.134 vs 0.054
AbsRel, 26.17 vs 28.96 PSNR).
Architecture. Next, we compare our auto-decoder ar-
chitecture with a standard NeRF-style MLP [23] (D). In-
stead of decoding from the latent space, we map volumetric
embeddings Evol directly into (c, σ) estimates (Sec. 3.3).
As we can see, this approach leads to worse results in
depth synthesis (0.068 vs 0.054 AbsRel) and view synthe-
sis (27.50 vs 28.96 PSNR), however it still benefits from
photometric regularization (0.068 vs 0.238 AbsRel when re-
moved) (E). This is in accordance with [28], in which, for
radiance and light field networks, an auto-decoder with a
learned latent representation outperformed MLP baselines.

Moreover, replacing our residual light field decoder [42]
with a single MLP (F) degrades novel view synthesis (27.34
vs 28.96 PSNR), due to a lack of high frequency details.
Joint decoding. Here we consider the joint learning of
depth, light, and radiance field predictions from the same
latent space. We evaluate models capable of only volu-
metric rendering (G), or only light and depth field synthe-
sis (H). As expected, depth and light field-only predictions
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Version

D
ec

od
er Inference

Speed (FPS) Memory (GB)
NeRF - 0.35 36.54

DeLiRa (w/o DFG) R 0.82 29.98
DeLiRa (1-MLP) L 351.1 4.34

DeLiRa
D 378.4 4.21
L 118.2 6.88
R 37.3 11.75

Table 5: Efficiency analysis for different DeLiRa decoders,
at inference time (with 192 × 320 resolution). w/o DFG
indicates the removal of depth field guidance, and 1-MLP
indicates a single linear layer in the light field decoder.

greatly degrade without the view diversity from virtual cam-
eras, that leads to overfitting (0.123 vs 0.054 AbsRel, 23.56
vs 28.96 PSNR). Interestingly, volumetric-only predictions
also degraded, which we attribute to the use of a shared la-
tent space, that is optimized to store both representations.
Distillation. We also investigated augmenting a pre-trained
volumetric representation to also decode depth and light
field predictions. Three scenarios were considered: separate
latent spaces (I), and shared latent spaces with (J) and with-
out (K) virtual camera augmentation (VCA). When separate
latent spaces are used, we observe a substantial improve-
ment in depth and light field performance over single-task
learning (0.123 vs 0.063 AbsRel, 27.52 vs 28.96 PSNR).
We attribute this behavior to VCA, since this is the only way
these two representations interact with each other. Interest-
ingly, a similar performance is achieved using shared latent
spaces (0.066 vs 0.063 AbsRel, 27.52 vs 27.33 PSNR), even
though SR is no longer optimized. This is an indication that
the radiance latent space can be repurposed for depth and
light field decoding without further training. Moreover, re-
moving VCA in this setting did not degrade performance
nearly as much as when separate latent spaces were used
(0.076 vs 0.123 AbsRel, 26.16 vs 23.56 PSNR). This is fur-
ther evidence that radiance representation provides mean-
ingful features for depth and light field decoding, including
the preservation of implicit multi-view consistency.
Joint training. Here we evaluate the benefits of jointly
training volumetric, depth, and light fields under different
conditions. Three settings were considered: the use of sep-
arate latent spaces SR and SDL (L), as well as the removal
of VCA (M) or depth field guidance (DFG) (N). A key re-
sult is that the use of a shared latent space improves results
(0.061 vs 0.054 AbsRel, 27.77 vs 28.96 PSNR), as further
evidence that both representations produce similar learned
features. Moreover, the removal of VCA or DFG leads to
overall degradation. Finally, we show that vanishing Lp

(Sec. 3.7) improves novel view synthesis, by enabling the
proper modeling of view-dependent artifacts (O). Interest-
ingly, it does not degrade depth synthesis, indicating that
our learned geometry is stable and will not degrade if the

photometric regularization is removed. However, it is fun-
damental in the initial stages of training, as shown in (C)
when it is removed altogether (0.245 vs 0.054 AbsRel).

4.5. Computational Efficiency

In Tab. 5 we report inference times and memory require-
ments using different DeLiRa decoders and variations (for
hardware details please refer to the supplementary mate-
rial). Two different components are ablated: depth field
guidance (DFG), as described in the Sec. 3.6, and the num-
ber of MLP layers in the light field decoder. As expected,
depth and light field predictions are substantially faster than
volumetric predictions. Furthermore, volumetric prediction
efficiency can be greatly improved using DFG (0.82 to 37.3
FPS) to decrease the number of required ray samples (note
that this improvement includes the additional cost of eval-
uating the depth field decoder). Interestingly, even without
DFG our auto-decoder architecture is roughly 2 times faster
than a traditional NeRF-style MLP [23]. Moreover, using a
single MLP layer for light field decoding speeds up infer-
ence by roughly 3 times (118.2 to 378.4 FPS), at the cost of
some degradation in novel view synthesis (Tab. 4, F).

5. Limitations
Our method still operates on a scene-specific setting, and

thus has to be retrained for new scenes. Our method also
does not address other traditional limitations of NeRF-like
approaches, such as extrapolation to unseen areas and un-
bounded outdoor scenes. However, our contributions (i.e.,
the shared latent representation and photometric regulariza-
tion) can be directly used to augment methods that focus on
such scenarios. Finally, DeLiRa requires overlap between
images to enable multi-view photometric self-supervision,
and thus is not suitable for very sparse views.

6. Conclusion
This paper introduces the multi-view photometric ob-

jective as regularization for volume rendering, to miti-
gate shape-radiance ambiguity and promote the learning
of geometrically-consistent representations in cases of low
viewpoint diversity. To further leverage the geometric
properties of this learned latent representation, we propose
DeLiRa, a novel transformer architecture for the joint learn-
ing of depth, light, and radiance fields. We show that these
three tasks can be encoded into the same shared latent rep-
resentation, leading to an overall increase in performance
over single-task learning without additional network com-
plexity. As a result, DeLiRa establishes a new state of the
art in the ScanNet benchmark, outperforming methods that
rely on explicit priors from pre-trained depth networks and
noisy supervision, while also enabling real-time depth and
view synthesis from novel viewpoints.
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