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Abstract

Most existing neural network pruning methods hand-
crafted their importance criteria and structures to prune.
This constructs heavy and unintended dependencies on
heuristics and expert experience for both the objective and
the parameters of the pruning approach. In this paper, we
try to solve this problem by introducing a principled and
unified framework based on Information Bottleneck (IB)
theory, which further guides us to an automatic pruning ap-
proach. Specifically, we first formulate the channel pruning
problem from an IB perspective, and then implement the IB
principle by solving a Hilbert-Schmidt Independence Crite-
rion (HSIC) Lasso problem under certain conditions. Based
on the theoretical guidance, we then provide an automatic
pruning scheme by searching for global penalty coefficients.
Verified by extensive experiments, our method yields state-
of-the-art performance on various benchmark networks and
datasets. For example, with VGG-16, we achieve a 60%-
FLOPs reduction by removing 76% of the parameters, with
an improvement of 0.40% in top-1 accuracy on CIFAR-10.
With ResNet-50, we achieve a 56%-FLOPs reduction by re-
moving 50% of the parameters, with a small loss of 0.08%
in the top-1 accuracy on ImageNet. The code is available
at https://github.com/sunggo/APIB.

1. Introduction
Convolutional Neural Networks (CNNs) [27] have

gained great success in computer vision applications such

*Corresponding author.
†Equal contribution.

as image classification [17, 51], objective detection [13, 44]
and segmentation [37, 4]. However, the high and yet still
increasing demands on computing power and memory foot-
print limit their deployment on edge devices, such as mobile
phones or wearable devices. Therefore, many model com-
pression technologies are proposed to compress and accel-
erate networks including network pruning [16], parameter
quantization [5] and knowledge distillation [22]. Among
these methods, network pruning has been recognized as
an effective tool to support model deployment by reduc-
ing the redundancy of neural networks. Prevalent pruning
methods can be roughly categorized into weight pruning,
channel pruning, and N:M sparsity. Weight pruning, also
called unstructured pruning, removes individual weight in
weight matrix [10, 7, 28, 16], which requires specific hard-
ware or software and has limited application. Channel prun-
ing [20, 23, 36, 63] breaks this limit by pruning the entire
channels and filters, which is more versatile on hardware.
N:M sparsity optimizes the sparsity of DNNs so that only
N weights are non-zero for every continuous M weights.
[67, 65], which also requires specific hardware capabilities
to accelerate the networks. In this paper, we focus on chan-
nel pruning because of its high adaptability on devices.

The core of channel pruning, which distinguishes dif-
ferent approaches, consists of two aspects: (1) method of
channel selection; (2) design of pruning ratio.

Channel Selection. Typical channel pruning methods
propose their criteria to measure the importance of channels
or filters, such as Norm-based [39, 30, 18], Gradient-based
[35, 55], Rank-based [34], BN-based [36], Activation-based
[38, 23] and so on. Some other methods [15, 3, 9] assign de-
signed masks or gates for channels as their importance indi-
cators. However, most of these methods have two problems.
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First, they are based on heuristics and lack theoretical guid-
ance. Second, They only focus on the inherent properties of
individual channels or feature maps, which cannot reason-
ably interpret network pruning from a global perspective.
In this paper, we introduce a novel view from an Informa-
tion Bottleneck (IB) perspective to channel selection, which
supplies the theoretic support for channel pruning and pro-
vides a global view across channels.

IB [53] aims to extract the relevant information that an
input random variable X contains about an output random
variable Y . Let X̃ denote the compressed representation
of X . Then the goal of filter pruning is to find the X̃ that
preserves the most “relevant” part of X with respect to Y .
And the IB is a metric designed to measure this “relevance,”
even in a non-linear case. In other words, we propose to find
the optimal representation X̃ via minimizing the following
IB objective

I(X; X̃)− βI(X̃;Y )

where β is a positive Lagrange multiplier that trades off
the complexity of the compression process I(X; X̃), and
the amount of the preserved relevant information, I(X̃;Y ).
While it is ultimately desired to perform a joint optimization
on all the layers, as the first trial in this direction, in this pa-
per we perform this IB optimization on each unpruned layer
to make it tractable. Then in our context, for a single layer
in our method, X denotes the original input feature maps
and Y denotes the output feature maps, X̃ represents the
pruned input feature maps.

However, because the computation of IB involves den-
sity estimation in high dimensional space, in most practical
cases, it is computationally infeasible to compute. In this
paper, we use HSIC Bottleneck (HB) to approximate esti-
mate IB. HSIC Bottleneck [40] is an implementation of IB
principle by replacing the mutual information terms in the
IB objective with HSIC [14]. In contrast to mutual infor-
mation, HSIC can provide a robust computation and does
not require density estimation. Thus HB is usually used as
an alternative to IB in previous works [40, 43, 59]. And
we then prove the equivalence between the HSIC Bottle-
neck and HSIC Lasso for the first time, which inspires us to
utilize the HSIC Lasso to solve channel pruning in a princi-
pled way. HSIC Lasso [61] is a kernel-based nonlinear fea-
ture selection algorithm with the main concept of minimum
redundancy and maximum relevancy (MRMR). It only in-
volves sampled-based Gram matrices, so the prohibitively
expensive density estimation could be avoided. As will be
shown below, we could use HSIC Lasso to substitute the IB
objective under certain circumstances. With further exper-
iments on the application of HSIC Lasso on filter pruning,
we found more unique properties of HSIC Lasso: (1) as the
batch size increases, the channels selected by HSIC Lasso
are almost unchanged; (2) many existing channel pruning
methods have highly similar channel selection results, e.g.

L1 norm, L2 norm [30], FPGM [18], BN-based [36] and
Taylor-FO, Taylor-SO [41]. However, the HSIC Lasso can
find better channels than the consensus of existing methods.

Pruning Ratio Design. Most pruning methods assume
the pruning ratio of each layer a given parameter and thus
depend on expert experience to achieve good performance.
Our approach solves this problem by treating the pruning
ratio for each layer as a prediction output. Specifically, we
design a global penalty coefficient λ∗ to control the sparsity
level, which is shared by all the convolution layers and acts
as the coefficient of the HSIC Lasso regularization item.
Given a target number of parameters or FLOPs, the target
can be achieved by an automatic search for the value of λ∗.
The details are illustrated in Sec. 3.3.

We summarize our contributions as follows:

• We interpret channel pruning based on Information
Bottleneck theory, which provides theoretic guidance
for network pruning, and hints at the limitation of
Norm-based approaches. To our best knowledge, this
is the first paper to build the relation between input
feature maps and output feature maps based on the In-
formation Bottleneck principle.

• For the first time, we prove the equivalence between
HB optimization objective and HSIC Lasso, which
paved the path for utilizing HSIC Lasso to prune net-
works based on IB principle.

• We demonstrate that HSIC Lasso-based pruning yields
an excellent performance on various benchmarks, with
stability and a surprising difference in the chosen chan-
nels from other pruning methods.

We conduct extensive experiments on three benchmarks:
CIFAR-10, CIFAR-100 [26] and ImageNet [46]. We
test various representative networks such as VGG [49],
MobileNet-V2 [47], GoogleNet [51] and ResNet [17].
Many Experiments demonstrate that our method has supe-
rior performance than other SOTA pruning methods in both
model acceleration and compression.

2. Related Work
Channel Pruning. Weight pruning and N:M sparsity

require specific devices and are unfriendly to hardware.
Channel pruning has no extra requirement and thus be-
comes a prevalent pruning method to reduce the redundancy
of networks. Typical channel pruning methods propose an
importance criterion to measure the importance of channels.
Li et al. [30] utilize L1 norm to indicate the importance
of channels and consider smaller-norm-less-important. [18]
prunes the centered filters in geometric space. [35] calcu-
lates the mean gradient of features and considers the feature
with a higher mean gradient is more important. Lin et al.
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Figure 1. The overview of our proposed method. For each single layer, K̄ denotes the sum of the centered Gram matrices for input
features X , and L̄ denotes the centered Gram matrix for output features Y . Then we optimize the HSIC Lasso loss by Eq. 3. The sparsity
coefficient α of unimportant channel tends to be zero.

[34] use the rank of the feature map as the importance crite-
rion, they consider that a low-rank feature map contains less
information. However, their method lacks theory basis and
ignores the value of information content. [36] uses γ of ac-
cording BN layer as the importance score of each channel.
Hu et al. [23] propose a measure called APOZ to evaluate
the importance of each neuron based on the percentage of
zero activation. [55] integrates SNIP [29] and Grasp [56]
into channel pruning and measures the importance of chan-
nels by connection sensitivity and gradient flow. [15, 3, 9]
assign a mask or gate for each channel, then update their
values during the training stage. On the one hand, most
of these methods are heuristic and lack theoretic guidance,
they cannot interpret channel pruning from a theoretical and
global perspective. On the other hand, these methods man-
ually design pruning ratio, which depends on expert experi-
ence and is prone to be trapped in sub-optimal solutions.

Information Bottleneck Principle. The Information
Bottleneck (IB) [53] method is an information theoretic
principle to extract the output-variables-relevant informa-
tion in input variables. [54] analyzes the Deep Neural Net-
work (DNN) based on the Information Bottleneck theory.
There are some works that apply IB to network pruning.
[66] utilize the IB theory to find the pruning ratio of each
layer, but they still use heuristic pruning criteria, such as
L1 norm [30] or FPGM [18]. [42] proposed a new objec-
tive called NIB to replace origin cross-entropy loss. How-
ever, NIB aims to prune individual weight and thus is not
friendly to hardware. [48] explores removing filters based
on the Mutual Information (MI) between features and la-
bels, [58, 6] use variation Information Bottleneck to com-
press networks. However, these methods cannot recover
their performance after pruning.

3. Method

Notation. Given a pre-trained model M with N con-
volution layers, let C denote a single convolution layer of
M . We change the dimension of the input feature map of
C from (n, d, hx, wx) to (n, f = dhxwx), i.e. X ∈ Rn×f ,
where n is batch size. Then we convert the shape of output
feature maps of C from (n, c, hy, wy) to (n, g = chywy),
i.e. Y ∈ Rn×g . Let p = hxwx, then X is written in the
form of block matrix, i.e., X = [U1, U2, . . . , Ud], where
Uk(1 ≤ k ≤ d) ∈ Rn×p denotes the k-th channel tensor of
X . Therefore, the pruned input features (which is sparse)
are represented as X̃ = [α1U1, α2U2, ..., αdUd] ∈ Rn×f ,
where αk indicates whether the k-th channel is redundant.
If αk is zero, the k-th channel can be pruned, otherwise,
αk is one indicating that k-th channel can be retained. Our
pruning method aims to find and measure the redundant and
output-irrelevant channels in X . After pruning, both filters
that produce these redundant channels in the previous con-
volution layer and the input channels that take these redun-
dant channels as input in the next convolution layer both can
be removed.

The calculation of Information Bottleneck (IB) can be
challenging for several reasons [40, 66]. Firstly, many
binning-based algorithms are prone to the curse of dimen-
sionality, which means that different choices of bin size can
result in different outcomes. Secondly, introducing a varia-
tional distribution [1] to approximate a true distribution can
create new sources of noise. To overcome these issues, this
paper utilizes HSIC Bottleneck to approximate the IB ob-
jective and proves the equivalence between HB optimiza-
tion and HSIC Lasso. This enables the application of HSIC
Lasso to channel pruning based on the IB principle. More-
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over, we propose an automatic pruning scheme that searches
for the optimal penalty coefficient λ∗. An overview of our
method is depicted in Fig. 1.

3.1. Information Bottleneck Objective

For each single layer of M , we formulate our IB objec-
tive as:

min−I(X̃;Y ) + γI(X; X̃) (1)

where X̃ denotes the pruned input features and γ is a
trade-off parameter between the representation complexity
I(X; X̃) and the amount of preserved output-relevant in-
formation I(X̃;Y ). We thus interpret channel pruning as
attempts to find the optimal pruned input features that pre-
serve the most “relevant” parts of origin input features with
respect to output features.

We then use HSIC Bottleneck [40] to approximate IB by
replacing mutual information in Eq. 1 with HSIC. Our IB-
based optimation objective can be written as:

min−HSIC(X̃, Y ) + γHSIC(X̃,X) (2)

Similar to IB, HB can remove the redundant information in
input X and retain the useful information related to output
Y meanwhile. During the pruning process, optimization of
Eq. 2 is performed layer by layer via HSIC Lasso to ensure
that crucial information is preserved within each layer.

3.2. HSIC Lasso

Hilbert-Schmidt Independence Criterion (HSIC) Lasso
[61] is a kernel-based nonlinear feature selection approach
that captures input-output nonlinear dependencies. We
prove that HSIC Lasso has an equivalent relationship with
HB, detailed proof processes are given in Sec. 3.4. The op-
timization objective of HSIC Lasso is defined as:

min
α∈Rd

1

2
||L̄−

d∑
k=1

αkK̄
(k)||2Frob + λ||α||1, (3)

s.t. α1, . . . , αd ≥ 0,

where K̄(k) = ΓK(k)Γ is the centred Gram matrix for the
k-th channel tensor Uk of X , Γ = In - 1

n1n1n
T ; In de-

notes the n-dimensional identity matrix; 1n is denoted as
the n-dimensional vector whose elements are all 1; K(k)

represents the Gram matrix; K(k)
i,j = K(U i

k, U j
k ) is the ker-

nel of U i
k and U j

k ; U i
k ∈ Rp represents the vector of the i-th

sample on the k-th channel. Similarly, L̄ = ΓLΓ is the cen-
tered Gram matrix of output feature Y ; L is also a Gram
matrix; Li,j = K(Y i, Y j) is the kernel of Y i and Y j , and
Y i ∈ Rg denotes the output feature of the i-th sample; α is
the non-negative sparsity coefficient, and λ is the coefficient
of the regularization item to control the sparsity level of α.

Algorithm 1: HSIC Lasso
input : Channel threshold Ω; Penalty coefficient λ;

Pretrained model M with N convolution layers;
output: Optimized pruned model M∗

Initial M∗ ← Copy of M ;
for layer q = 2 to N do

dq ← Number of input channels in q-th layer;
if dq ⩾ Ω then
{αi}dqi=1 ← Optimize α by Eq. 3;
Remove i-th channels in q-th layer of M∗ If
αi = 0;

end
end
return M∗;

The first item of Eq. 3 is rewritten as:

1

2
||L̄−

d∑
k=1

αkK̄
(k)||2F =

1

2
HSIC (Y, Y )−

d∑
k=1

αkHSIC (Uk, Y )

+

d∑
k=1

d∑
l=1

αkαlHSIC (Uk, Ul) ,

(4)
where HSIC(Uk, Y ) = tr

(
K̄(k)L̄

)
is a kernel-based in-

dependence measure; tr(·) is the trace of matrix. If the
k-th channel tensor Uk has a strong dependence on out-
put feature Y , HSIC(Uk, Y ) has a high value. Accord-
ingly, αk takes a large value. If Uk is independent on
Y , HSIC(Uk, Y ) and αk tend to zero. Thus, the output-
irrelevant channels can be eliminated by HSIC Lasso.
Moreover, if Uk and Ul have strong dependences on each
other, HSIC(Uk, Ul) is high and thus either of αk and αl

tends to zero, which tends to remove the redundant chan-
nels. Our proposed HSIC Lasso pruning algorithm is sum-
marized in Alg. 1.

3.3. Automatic Pruning

In this section, we illustrate how our approach utilizes
HSIC Lasso to prune networks automatically. We propose
to set a hyper-parameter λ∗ as the global penalty coefficient.
λ∗ is shared by all convolution layers in a CNN as the coef-
ficient of the HSIC Lasso regularization item, so as to con-
duct a fair comparison. By increasing λ∗, more zero-value
channels will exist in each layer, and the size of the model
tends to shrink accordingly. In contrast, if we decrease λ∗,
more preserved channels will appear in each layer, and the
FLOPs and parameters of pruned model tend to increase.
We thus can regard the model size as a monotonically de-
creasing function of λ∗. The model size can be adjusted by
searching the value of λ∗.

If given target FLOPs or parameters, the upper bound is
Tu and the lower bound is Tl. Meanwhile, we set a channel
number threshold, Ω, and define that each pruned layer has
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Algorithm 2: APIB
input : Pretrained model M ; Channel threshold Ω;

compressed FLOPs/Params range [Tl, Tu];
output: Optimized pruned model M∗

Initial λl = 0, λu = 10−6;
t← FLOPs or Params of M ;
while t > Tl do

M∗ = HSICLasso(λu,M,Ω);
t← FLOPs or Params of M∗;
λu = λu ∗ 2;

end
while t ̸∈ [Tl, Tu] do

λ∗ = λu+λl
2

;
M∗ = HSICLasso(λ∗,M,Ω);
t← FLOPs or Params of M∗;
if t < Tl then

λr = λ∗;
else if t > Tu then

λl = λ∗;
end

end
return M∗;

at least Ω preserved channels. If the number of preserved
channels is lower than Ω, we stop pruning in this layer;
so that Ω prevents the network capacity from damage. If
the model size (FLOPs or parameters) of the current pruned
model is larger than Tu, we decrease the model size by in-
creasing λ∗. If the current pruned model size is smaller than
Tl, we increase the network size by decreasing λ∗. We re-
peat the above two steps until the current pruned model size
satisfies our expectations. In practice, we use a simple bi-
nary search algorithm to quickly search the appropriate λ∗.
For simplicity, we call our approach APIB. Our proposed
automatic pruning method is summarized in Alg. 2.

3.4. Theoretical Analysis

In this section, we first provide proof of the equivalent
relationship between HB objective and HSIC Lasso, so as to
demonstrate that we can use HSIC Lasso to prune networks
based on the IB principle. Then, we further provide new
corollaries to prove that Norm-based pruning actually only
optimizes the first item of Eq. 2, leading to a sub-optimal
solution.

HB and HSIC Lasso. Note that the input features can
be written as a block matrix, i.e., X = [U1, U2, . . . , Ud].
Eq. 2 is then expanded as:

− HSIC(X̃, Y ) + γHSIC(X̃,X)

= −
d∑

k=1

α2
ktr(UkU

T
k Y Y T ) +

d∑
k=1

d∑
l=1

γlα
2
ktr(UkU

T
k UlU

T
l ),

(5)

where we generalize γ to a vector i.e. γl = γ, the value of α
is zero or one, and thus Eq. 5 can be rewritten as :

−
d∑

k=1

αktr(UkU
T
k Y Y T ) +

d∑
k=1

d∑
l=1

γlαktr(UkU
T
k UlU

T
l ),

If the hyper-parameter γl is chosen to variable 1
2αl, then we

have:

−
d∑

k=1

αktr(UkU
T
k Y Y T ) +

1

2

d∑
k=1

d∑
l=1

αlαktr(UkU
T
k UlU

T
l )

= −
d∑

k=1

αkHSIC(Uk, Y ) +
1

2

d∑
k=1

d∑
l=1

αlαkHSIC(Uk, Ul)

(6)
If we ignore the constant item, Eq. 6 is the same as Eq. 4.
Therefore, while minimizing Eq. 4, we are also minimiz-
ing Eq. 2, then, the proof of the equivalence between HSIC
Lasso and HSIC Bottleneck is completed.

HB vs. Other Criteria. We also analyze other pruning
criteria from the standpoint of information theory. Norm-
based pruning is the most prevalent pruning method includ-
ing L1 norm, L2 norm, FPGM, and so on. Norm-based
pruning methods tend to prune almost identical filters with
the smallest norm [24]. Although Norm-based pruning is
widely used to measure the importance of filters, our analy-
sis reveals the limitation of the Norm-based criteria.

Corollary 1 Norm-based Pruning algorithm is equivalent
to maximizing the HSIC(X̃, Y ) between the pruned input
features X̃ and output features Y .

Proof: We assume the kernel of HSIC is a linear one, Then
we have:

HSIC (X;Y ) = tr((ΓX)(ΓX)T (ΓY )(ΓY )T ) (7)

where Γ = In - 1
n1n1

T
n ; In denotes the n-dimensional iden-

tity matrix; 1n is denoted as the n-dimensional vector whose
elements are all 1. Note that, ΓX is the centered X, and ΓY
is the centered Y ; thus Eq. 7 is simplified as:

HSIC(X;Y ) = tr(XXTY Y T )

= ||Y TX||2Frob

(8)

where X and Y are centralized matrices; Xi = Xi - 1
n

∑
i

Xi denotes the i-th sample of X; Yi = Yi - 1
n

∑
i Yi denotes

the i-th sample of Y ; and n denotes the sample size.
Based on Eq. 8, if we maximize the HSIC(X̃,Y ) be-

tween the pruned input features X̃ and output features Y ,
we are actually maximizing the distance between X̃TY
and the zero matrix. We assume the current layer is a
fully-connected layer, we then have Y = WTX , where
W is the weight matrix, X denotes origin input features.
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Model Method Baseline Top-1 Acc. Pruned Top-1 Acc. FLOPs ↓ Params. ↓ ∆Top-1 Acc.

VGG-16

L1[30] 93.96% 93.40% 34% 64% −0.56%
FPGM[18] 93.96% 93.54% 36% - −0.42%
GDP[15] 93.89% 93.99% 31% - +0.10%

EEMC[64] 93.36% 93.63% 56% - +0.27%
APIB (ours) 93.68% 94.08% 60% 76% +0.40%
CPMC[62] 93.68% 93.40% 66% - −0.28%
PGMPF[3] 93.68% 93.60% 66% - −0.08%

APIB (ours) 93.68% 94.00% 66% 78% +0.32%

ResNet-56

Hrank[34] 93.26% 93.17% 50% 42% −0.09%
DLRFC[21] 93.06% 93.57% 53% 55% +0.51%
SRR-GR[60] 93.38% 93.75% 54% - +0.37%
APIB (ours) 93.26% 93.92% 54% 50% +0.66%

FTWT[9] 93.26% 92.63% 66% - −0.63%
FSM[8] 93.26% 92.76% 68% 68% −0.50%

APIB (ours) 93.26% 93.29% 67% 66% +0.03%
DECORE[2] 93.26% 90.85% 81% 85% −2.41%
APIB (ours) 93.26% 91.53% 81% 83% −1.73%

ResNet-110

Hrank[34] 93.50% 93.36% 58% 59% −0.14%
DECORE[2] 93.50% 93.50% 61% 64% −0.00%

MPF[19] 93.68% 93.38% 63% - −0.30%
EPruner[33] 93.50% 93.62% 65% 76% +0.12%
APIB (ours) 93.50% 94.41% 63% 65% +0.91%
DECORE[2] 93.50% 92.71% 77% 80% −0.79%
APIB (ours) 93.50% 93.37% 77% 82% −0.13%

GoogleNet

Hrank[34] 95.05% 94.53% 55% 55% −0.52%
FSM[8] 95.05% 94.72% 63% 56% −0.33%

EPruner[33] 95.05% 94.99% 64% 67% −0.06%
APIB (ours) 95.05% 95.29% 63% 77% +0.24%

Table 1. Pruning results of VGG-16, ResNet-56, ResNet-110 and GoogleNet on CIFAR-10.

X̃ = W̃TX , W̃ represents the mask of input features.
Thus we have:

maxHSIC(X̃,Y ) ⇐⇒ max||X̃
T
Y ||2F

⇐⇒ max||XT W̃WTX||2F
⇐⇒ max||W̃WT ||2F ,

(9)

where X is orthogonalized. Norm-based pruning aims to
maximize the norm of unmasked weights. Thus we prove
that Norm-based pruning is equivalent to minimizing the
first item of Eq. 2, i.e., maximizing the output-relevant in-
formation in pruned input features, but ignores the opti-
mization of the second item of Eq. 2, i.e., fails to min-
imize the information that pruned input features contain
about origin input features. Thus in Sec. 4, we can observe
those Norm-based pruning methods cause sub-optimal per-
formances.

4. Experiments and Analysis
In order to demonstrate the efficiency of our proposed

method in both the model compression and acceleration, we
conduct extensive experiments to validate many represen-
tative CNNs, including VGG, MobileNet-V2, ResNet, and
GoogleNet, on three benchmarks: CIFAR-10, CIFAR-100,
and ImageNet. We also conduct ablation experiments to
further explore APIB.

4.1. Experimental Settings

Training Settings. We train all models by using SGD
with 0.9 momentum. For CIFAR-10 and CIFAR-100, our
initial learning rate is 0.1 and decayed by the cosine anneal-
ing schedule. The weight decay coefficient is set to 2×10−4

and batch size is set to 256. After pruning, we train VGG,
ResNets, and GoogleNet for 300 to 350 epochs. For Ima-
genet, our initial learning rate is set to 0.01 and also decayed
by the cosine annealing schedule. The weight decay coeffi-
cient is set to 1×10−4 and batch size is set to 128. We train
ResNet-50 and MobileNet-V2 for 150 epochs.

Evaluation Metric. We use the reduction ratio of
FLOPs (Float Points Operations) and parameters to eval-
uate the effectiveness of pruning methods in both model ac-
celeration and compression. Then we provide their Top-1
accuracy to measure their performance on specific tasks.

4.2. Experiments on CIFAR

VGG on CIFAR-10. Tab. 1 presents the results of our
experiments on CIFAR-10 using VGG-16. The norm-based
pruning method, L1 [30], underperforms and fails to re-
cover accuracy after pruning. In contrast, our proposed
APIB outperforms state-of-the-art methods with similar
pruning ratios, achieving the highest top-1 accuracy gain
when reducing 60% FLOPs and 76% parameters. Specifi-
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Model Method Baseline Top-1 Acc. Pruned Top-1 FLOPs ↓ Params. ↓ ∆Top-1 Acc.

ResNet-50

DPFPS[45] 76.15% 75.55% 46% - −0.60%
Random[31] 76.15% 75.13% 49% 54% −1.02%

CC[32] 76.15% 75.59% 53% - −0.66%
MFP[19] 76.15% 74.86% 54% - −1.29%

SCOP[52] 76.15% 75.26% 55% - −0.89%
NPPM[11] 76.15% 75.96% 56% - −0.19%
LRF-60[25] 76.15% 75.71% 56% 54% −0.44%
APIB (ours) 76.15% 76.07% 56% 50% −0.08%
DECORE[2] 76.15% 72.06% 61% - −4.09%

Hrank[34] 76.15% 71.98% 62% 62% −4.17%
APIB(ours) 76.15% 75.37% 62% 58% −0.78%

MobileNet-V2
DMC[12] 71.80% 68.37% 46% - −3.43%
APS[57] 71.80% 68.96% 48% - −2.84%

APIB(ours) 71.80% 69.51% 51% 48% −2.29%

Table 2. Pruning results of ResNet-50 and MobileNet-V2 on ImageNet.

cally, APIB reduces 66% FLOPs and increases top-1 accu-
racy from 93.68% to 94.00%, demonstrating an improve-
ment of 0.32%. In comparison, other pruning methods all
experience varying degrees of top-1 accuracy loss.

ResNet-56 on CIFAR10. Tab. 1 displays the experi-
mental results of applying APIB and several state-of-the-
art pruning methods to ResNet-56 on CIFAR-10. Notably,
APIB outperforms all other methods in terms of top-1 ac-
curacy, achieving the largest gain when reducing FLOPs by
around 54%. Even when removing 67% of FLOPs, APIB
still manages to maintain an improvement in top-1 accuracy.
Conversely, other methods such as FSM [8] and FTWT [9]
suffer a decrease in top-1 accuracy when pruning. Addition-
ally, APIB continues to yield state-of-the-art performance
of 91.53% top-1 accuracy when reducing FLOPs by 81%
and parameters by 83%.

ResNet-110 on CIFAR-10. We also validate the effec-
tiveness of our method on ResNet-110, which has a deeper
structure than ResNet-56, on CIFAR-10. The results are
shown in Tab. 1, where APIB achieves a 63% FLOPs re-
duction and a 0.91% gain in top-1 accuracy, outperforming
other state-of-the-art methods with similar FLOPs reduc-
tion ratios. Even when 77% FLOPs and 82% parameters
are removed, our APIB only suffers a small loss of 0.13%
in top-1 accuracy. In contrast, there is a significant drop in
top-1 accuracy for DECORE [2].

GoogleNet on CIFAR-10. We also evaluate the perfor-
mance of APIB on GoogleNet, which has a multi-branch
structure. The results, as shown in Tab. 1, demonstrate that
APIB outperforms other pruning methods. APIB achieves
a top-1 accuracy of 95.30% with 63% FLOPs reduction
and 77% parameters reduction, even surpassing the base-
line model with an improvement of 0.24% in top-1 accu-
racy. However, other methods, such as EPruner [33] and
FSM [8], fail to recover the accuracy after pruning.

The experimental results on CIFAR-100 can be found in
supplementary.

4.3. Experiments on ImageNet

ResNet-50 on ImageNet. As shown in Tab. 2, under
around 55% FLOPs reduction, APIB can reach the 76.07%
top-1 accuracy and merely suffers a small loss of 0.08% in
top-1 accuracy. However, all other SOTA methods, such
as DPFPS [45], SCOP [52], MPF [65], CC [32], NPPM
[11], LRF [25] and Random Pruning [31], fail to work on.
DECORE [2] and Hrank [34], decrease a lot in top-1 accu-
racy after removing around 62% FLOPs. In contrast, our
APIB has an obviously better performance.

MobileNet-V2 on ImageNet. We perform experiments
on ImageNet using MobileNet-V2 and the results are pre-
sented in Tab. 2. The pruned network obtained using APIB
shows better performance compared to DMC [12] and APS
[57] with a similar reduction in FLOPs. These results
demonstrate that APIB is also effective for compressing
lightweight models.

4.4. Ablation Study

Stability of HSIC Lasso. We prove the equivalent re-
lationship between the HB Objective and HSIC Lasso in
Sec. 3.4, then we employ HSIC Lasso to prune networks
by applying the Information Bottleneck principle. HSIC
Lasso prunes filters by sparsifying input features in a struc-
tural manner. We further investigate the impact of sample
size, i.e., the number of feature maps on the pruning re-
sults of HSIC Lasso. We observe that as the sample size
increases, those selected filters are almost unchanged, in-
dicating that the dependence relationship between features
tends to be stable. we record the pruning results for hidden
layers in ResNet-20, ResNet-44, ResNet-56, and ResNet-
110. In Fig. 2, if the number of feature maps is large than
256, the selected filters are almost unchanged.

Influence of sample sizes. To better understand the ef-
fect of sample sizes on the final accuracy of pruned models,
we conduct experiments during the pruning stage. Our test
subjects include ResNet-20, ResNet-44, ResNet-56, and
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Figure 2. Pruned and preserved filter statics from different convolution layers and networks on CIFAR-10. For each sub-figure, the X-axis
represents the indices of filters and the Y-axis represents the number of batch sizes. White denotes preserved filters and blue denotes pruned
filters.
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Figure 3. The final accuracy of the pruned model under differ-
ent sample sizes. We test ResNet-20, ResNet-44, ResNet-56, and
ResNet-110 on CIFAR-10.

ResNet-110 [17] on CIFAR-10 [26], with results presented
in Fig. 3. We vary the sample sizes during the pruning stage
to obtain the different compressed models, and then train
these networks under the same settings. We can observe that
as the sample size increases, the accuracy of pruned mod-
els becomes more stable. When the sample size is larger
than 256, the performance of the pruned model is almost
unchanged, indicating the stability of our APIB.

Selection of kernel. The kernel function of HSIC
LASSO plays an important role for the results of pruning.
In this paper, We compare some kernels listed in Tab.3 by
conducting ablation experiments on the CIFAR-10 dataset
using VGG16 and ResNet-56 to explore the impact of dif-
ferent kernels on pruned results. As shown in Tab. 4, The
Gaussian and Laplacian kernels exhibit very similar accu-
racy, outperforming both the linear and sigmoid kernels.

Hypeparameter Ω selection. Ω decides the minimal
number of channels in each layer after pruning. A high Ω
reduces pruning potential and may even fail to achieve the
target sparsity when the sparsity ratio is high, while a low
Ω can cause excessive pruning and decreased performance.
E.g., with a sparsity ratio of 95%, the VGG-16 achieves a
0.39% higher accuracy with a Ω of 5 compared to a Ω of 10,

Kernel Details of kernel function

Gaussian K (x, y) = exp
(
− ||x−y||2

2σ2

)
Laplacian K (x, y) = exp

(
− ||x−y||

σ

)
Linear K (x, y) = xT y + c

Sigmoid K (x, y) = tanh
(
axT + c

)
Table 3. Kernel functions of HSIC LASSO.

Model Kernel Accuracy FLOPs ↓

VGG-16

Gaussian 93.83% 66%
Laplacian 93.93% 66%

Linear 92.39% 66%
Sigmoid 86.13% 66%

ResNet-56

Gaussian 93.92% 54%
Laplacian 93.99% 54%

Linear 93.39% 54%
Sigmoid 92.54% 54%

Table 4. Ablation study on kernel function.

and a 0.4% higher accuracy compared to a Ω of 1. Similarly,
for ResNet-56 with a pruning ratio of 85%, a Ω of 3 yields a
0.3% performance improvement compared to a Ω of 1. And
a Ω of 5 doesn’t achieve the desired sparsity ratio. Setting
the Ω to 0 may result in complete pruning of a layer, caus-
ing layer collapse and rendering the model non-functional.
For GoogleNet, the pruned model with a Ω of 9 has a better
performance than those with higher or lower Ω at a sparsity
of 77%. In conclusion, selecting the appropriate Ω actually
depends on model size and sparsity ratio.

APIB vs. Other Criteria. In Sec. 3.4, we analyze
Norm-based pruning from the standpoint of the IB theory
and reveal that Norm-based criteria only focus on optimiz-
ing HSIC(X̃;Y ), but ignore optimizing HSIC(X̃;X).
Many results in Sec. 4 show that Norm-based pruning
has a poor performance. We conduct an experiment to
compare the channel selection results of different pruning
criteria and calculate their similarity ratio in the same
layer. In the i-th layer, the similarity ratio is defined as:
similarity ratioi (A,B) = |A∩B|

|A| , where A is the pre-
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Figure 4. We compare different criteria in (a) 1-th convolution layer, (b) 8-th convolution layer and (c) 13-th convolution layer of VGG-16
on CIFAR-10. Deeper color represents a lower similarity ratio.

served filter set of method A; and B denotes the preserved
filter set of method B, in the i-th layer. Fig. 4 shows the
pruning results of the Bn-based and Taylor[41] are highly
similar to the ones of Norm-based methods. However, there
is a significant difference in chosen channels for APIB,
which provides experimenta support for our analysis.
However, the reason why the discarded filters of Taylor and
BN-based methods are similar to the ones of Norm-based
pruning, especially in shallower and deeper layers, is still
unclear, which needs further studies in the future.

4.5. Extension to post-training pruning

We extend APIB to post-training pruning without fine-
tuning. Compared to other baselines, APIB shows an obvi-
ous superiority. In Tab.5, at a sparsity level of 10%, pruned
VGG-16 with APIB achieves a accuracy of 92.44%, which
is significantly higher than L1, FPGM, and Hrank. At a
sparsity level of 30%, pruned VGG16 with APIB achieves
a higher accuracy of 91.84% compared to Hrank, while L1
and FPGM have already fallen below 30% accuracy.

Method sparsity accuracy
APIB 10% 92.44
Hrank 10% 86.98

L1 10% 83.18
FPGM 10% 84.80
APIB 30% 91.84
Hrank 30% 40.24

Table 5. The results of post-training pruning.

4.6. Extension to data-free pruning

we conducted experiments and found APIB can be ex-
tended as a data-free method by generating images ran-
domly as inputs. For example, the pruned VGG16 achieved
94.04% accuracy on CIFAR-10 at a pruning rate of 60%,
which is almost identical to the original result (94.08%).
Similarly, the pruned ResNet50 achieved 70.76% accuracy

on ImageNet at a pruning ratio of 76%, which is very close
to the non-data-free result (70.67%).

4.7. Time cost comparison

Pruning with APIB takes several tens of seconds to a
few minutes. APIB significantly reduces pruning time com-
pared to Hrank and CHIP[50], which calculate rank or chan-
nel independence based on feature maps. The experimental
results can be found in supplementary.

5. Conclusion
We propose a novel automatic pruning method called

APIB that applies the Information Bottleneck (IB) princi-
ple to network pruning, achieving excellent performance
on various benchmarks. Unlike previous heuristics-based
pruning methods, APIB provides theoretical guidance for
network pruning. Furthermore, we prove the equivalent re-
lationship between HSIC Bottleneck and HSIC Lasso for
the first time, which lays the foundation for utilizing HSIC
Lasso to prune networks based on the IB principle. We also
interpret Norm-based pruning from the perspective of In-
formation Bottleneck, revealing its limitation. In the future,
we plan to further investigate the relationship between other
pruning criteria and APIB from the standpoint of informa-
tion theory.
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