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Abstract

Recent studies on face forgery detection have shown
satisfactory performance for methods involved in training
datasets, but are not ideal enough for unknown domains.
This motivates many works to improve the generalization, but
forgery-irrelevant information, such as image background
and identity, still exists in different domain features and
causes unexpected clustering, limiting the generalization.
In this paper, we propose a controllable guide-space (GS)
method to enhance the discrimination of different forgery
domains, so as to increase the forgery relevance of features
and thereby improve the generalization. The well-designed
guide-space can simultaneously achieve both the proper
separation of forgery domains and the large distance be-
tween real-forgery domains in an explicit and controllable
manner. Moreover, for better discrimination, we use a decou-
pling module to weaken the interference of forgery-irrelevant
correlations between domains. Furthermore, we make ad-
justments to the decision boundary manifold according to
the clustering degree of the same domain features within
the neighborhood. Extensive experiments in multiple in-
domain and cross-domain settings confirm that our method
can achieve state-of-the-art generalization.

1. Introduction
Face forgery technology [1, 2, 13] has made vigorous

development in recent years. However, these realistic forgery
faces are sometimes abused to maliciously disguise identities,
especially celebrities and politicians, causing serious social
problems. Therefore, how to reduce this risk has attracted
widespread attention from researchers.

Convolutional neural networks (CNNs) have shown excel-
lent performance in face forgery detection [10, 49, 32, 12].
According to forgery or not, this task is often formalized as
a binary classification problem, and some suitable classifica-
tion networks [32, 30] are introduced to this task. Although
they perform well in the training domain, the learned features
may be method-specific for the forgery methods within the
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Figure 1. Limitations of existing methods: features from different
domains are still clustered by forgery-irrelevant similarities (image
background, hair color, identity, etc.), proving that features still
contain forgery-irrelevant information, limiting the generalization.

training set [5], and cannot show satisfactory generalization
in unknown forgery methods.

Forgery data generated from various methods corresponds
to different forgery domains. To improve the generalization
in unknown domains, some works [22, 34, 6] study the com-
mon artifacts of various forgeries and use data augmentation
to synthesize more training data. Several other works are de-
voted to mining better discriminative features, and attention
mechanisms [47], local relation [7], and frequency informa-
tion [21, 31] are also introduced to capture better forgery
traces. SRM [26] suppresses the acquisition of color and tex-
ture via high-frequency noise, thereby solving the overfitting
to the training data. In addition, RECCE [5] copes with the
complexity of various forgery domains by learning compact
real representations based on the reconstruction. Compared
with previous methods, the exploration of common charac-
teristics and discriminative information allows the model to
learn relatively more generalized features.

Nevertheless, during training, the model tries to increase
the discrimination between real and fake features, but treats
different forgery domains (i.e. different forgery methods) as
the unified “fake” category without distinction. In common
training sets [33, 23], there are some similarities between
massive data in forgery-irrelevant information, such as hair
color, image background, and identity. Due to the uniform
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Figure 2. Comparisons of the forgery-relevance for model focusing
results at different feature purities.

fake categorization, the goal of training is only to distinguish
the fake from the real, without making further distinctions
between forgery types. As a result, as shown in Figure 1,
some features will present a clustering phenomenon based on
above forgery-irrelevant similarities (hair color, background,
identity, etc.) rather than forgery domain characteristics
that are more relevant to the forgery detection task. This
demonstrates that the learned features inevitably still contain
some forgery-irrelevant information [16].

The mixing of irrelevant information in features (i.e. the
feature purity is not high) may limit the generalization. As
shown in Figure 2 (a), in the training domain, guided by
the supervised information, the model will learn a pattern
of which features are more relevant, and show good perfor-
mance in the current domain. However, in unseen domains,
the feature distribution has a deviation. Following the origi-
nal pattern, the features that the model focuses on will con-
tain a high proportion of irrelevant information, which may
cause the model to make decisions based on the similarity
of such irrelevant information. On the contrary, as shown in
Figure 2 (b), when the feature purity is high, the irrelevant
information contained in the feature itself is less. Even if the
distribution of the unseen domain is biased, the proportion
of irrelevant information in the extracted features will be cor-
respondingly less. So we believe that higher feature purity
will help the generalization, and we also give a theoretical
proof in Appendix 1.

Based on above considerations, in this paper, instead
of treating all forgery types as a unified category, we pro-
pose a novel guide-space (GS) based framework to increase
a proper level of discrimination between different forgery
domains. In this way, by learning the differences between
forgery domains and the consistency of the same domain, the
model can further pay more attention to forgery traces. And
separating the features of different domains can reduce their
correlation in irrelevant information. The learned features
are more forgery-relevant, thus helping the generalization.

Specifically, the increase in forgery domain discrimina-
tion needs to be controlled within a certain range, because
a larger real-forgery distance should be preferably main-
tained at the same time. In this way, in unseen domains, the
forgery features will be located far away from real features
with a higher probability. Thus in our guide-space, we con-

struct the guide embeddings of the real and different forgery
domains, and make the features approach their respective
guide embeddings to actively control the compactness of
the real domain and the separation degree between different
forgery domains. Further, considering that the correlation
between different domains in terms of forgery-irrelevant sim-
ilarity will interfere with the domain distinction, we mine
this potential correlation based on the clustering results of
the self-supervised features of images, and decouple the ir-
relevant information accordingly. In addition, we design a
decision boundary manifold adjustment module (A-DBM)
based on the degree of feature aggregation, to better realize
the feature distribution defined by the guide-space.

In summary, this paper has the following contributions:

• We argue that a proper level of discrimination be-
tween different forgery domains is also important to
improve the generalization, so as to capture more
forgery-relevant information and to weaken the impact
of forgery-irrelevant information.

• We construct a guide-space to achieve the controllable
separation of both real-forgery domains and forgery-
forgery domains, and further decouple the forgery-
irrelevant correlation between different domains to re-
duce their interference on domain separation.

• We design an adjustment strategy for the decision
boundary manifold to make the features of the same
domain better clustered and compliant with the distri-
bution of the guide-space.

• Extensive experiments in multiple cross-domain set-
tings confirm that our method can realize the state-of-
the-art generalization, and achieve the cross-domain
AUC of 84.97% and 81.65% on CelebDF and DFDC.

2. Related works
Face forgery detection based on convolutional neural net-

works (CNNs) has been widely used [49, 3, 14, 39, 27, 45,
19, 29, 50]. Early works [32, 30] apply suitable classification
networks to forgery detection tasks, and achieve good per-
formance on the forgery domains presented in the training
set. However, the learned features may be more suitable for
forgery methods presented in the training set [5], and cannot
show good generalization on unknown forgery domains.

Recently, more efforts have been made to improve this
generalization. Some methods attempt to learn common
characteristics of different forgery domains. For example,
works in [22, 34, 28, 6] use data augmentation to simulate
common artifacts (blending boundary, color inconsistency,
etc.) of forgeries. SPSL [24] captures the phase spectrum
changes caused by common up-sampling operations during
the forgery process. They exhibit improved generalization,
but these common features often cover a limited variety of
forgeries. Several other studies are devoted to mining better
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Figure 3. Overview of our framework, including guide-space based controllable optimization, adjustment of decision boundary manifold
(A-DBM), and irrelevant information decoupling module.

discriminative features. To better capture forgery clues, the
attention mechanism [47, 10, 44], amplification strategy [12],
or local relationships [48, 7] between regions are studied.
Besides low-level RGB features, the frequency information
[31, 26, 17, 21] is also introduced. In addition, RECCE
[5] based on reconstruction learning tries to learn compact
representations of real data to cope with the complexity of
forgery domains. LTW [37] utilizes meta-learning to balance
the performance across multiple domains.

Ideally, for a generalized model that extracts forgery-
related information, the forgery features should be aggre-
gated according to their respective domain types rather than
forgery-irrelevant information. However, although the above
methods mine better forgery traces, they treat different
forgery domains as the uniform “fake”, which makes the
features with forgery-irrelevant similarities but belonging to
different domains still cluster together.

3. Methodology
To improve the generalization, we propose a novel guide-

space (GS) based framework, which consists of three main
schemes, i.e., guide-space based controllable optimization,
adjustment of decision boundary manifold (A-DBM), and
decoupling module for irrelevant information, as illustrated
in Figure 3. We first pre-construct an ideal guide-space, mak-
ing features closer to their guide embeddings of respective
domains. To better aggregate features of the same domain,
we adjust the decision boundary manifold by setting weights
of samples within a batch. Further, to mitigate the interfer-
ence of irrelevant correlations, we decouple these correla-
tions with the aid of self-supervised feature clustering. The
guide-space and decoupling module can benefit from each
other to make features achieve better forgery relevance. The
following subsections show details of three schemes.
3.1. Construction of guide-space

Before training, we first construct a guide-space contain-
ing guide embeddings for the real domain and different types
of forgery domains. In the subsequent training, the features

Figure 4. Visualization of the guide-space. The real guide embed-
ding gr and all forgery guide embeddings gf are at a fixed angle
θ0 (θ0 > θij), and the larger the angle θij between gf , the better.

of different domains are approached to their respective guide
embeddings to achieve distinguishability from each other.

The construction of the guide-space requires the dimen-
sion d of the face feature representation and the number of
forgery categories N in the training set. The features lie
on a hypersphere of unit length S =

{
v ∈ Rd | ∥v∥ = 1

}
.

Let gr and gf =
{
gfi

| i = 1,· · ·, N
}

represent the guide
embeddings of the real and forgery domains to be solved, re-
spectively. The visualization of gr and gf in the guide-space
is shown in Figure 4.

On the one hand, we make gr and all embeddings in gf

present a fixed large angle θ0 (a hyperparameter) to separate
real and fake features. θ0 can explicitly and actively control
the separation degree between real-forgery domains, and a
large θ0 ensures the compactness of real domain features:

e
gT
r g

fi = ecos(θ0)(i = 1, · · · , N) (1)
On the other hand, the restriction of θ0 makes the embed-

dings in gf be located in a hyperplane of d− 1 dimensions.
Then all embeddings in gf should be as far as possible from
each other, so as to increase the discrimination between
forgery domains, and weaken the similarities in forgery-
irrelevant information. This optimization is formulated as:

L

({
gfi

}N

i=1

)
=

1

N

N∑
i=1

log

N∑
j=1

e
gT

fi
g
fj

/τ
(2)
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where τ is a temperature parameter to control the scale of
distribution [38]. We first obtain gr by random initialization,
and then take Eq. (1) as the constraint of Eq. (2) and solve
this constrained optimization problem according to the La-
grangian multiplier method [4] to obtain gf . The solving
process is detailed in Appendix 2. To guarantee that the
equation is solvable, d ≥ N .

Let θij(i, j = 1, · · · , N, i ̸= j) represent the angle be-
tween gf . Adjusting θ0 can affect θij and thus adjust the
degree of separation between all embeddings. Note that θ0
is not as large as possible, because in the space with limited
dimensions, the larger θ0, the smaller θij , and the separation
θij between forgery domains also needs to be maintained.
With this well-designed guide-space, we can achieve both
the separation of forgery domains and the compactness of the
real domain. More importantly, this process is explicit and
controllable, rather than implicit and uncontrolled learning.

3.2. Controllable optimization based on guide-space
In the optimization, let {(xi, yi, ti)}Bi=1 denote a batch of

face images, where yi is the ground-truth label that marks
whether the image is fake or not, i.e., yi ∈ {0, 1}. ti refers to
the domain label, i.e., ti ∈ [0, N ], where for real faces, ti =
0, and for fake faces, ti represents the forgery category label
to which it belongs. The forgery detection model consists of
a feature encoder F (·) followed by a binary classifier h(·).

Based on the pre-calculated guide embeddings in Sec.
3.1, we make the features of each domain close to their
respective guide embeddings, so as to achieve the separa-
tion between real-forgery domains and between forgery-
forgery domains. Let vi denote the feature of image xi

extracted by F (·), G denote the set of all guide embeddings,
G =

{
gr, gfi

| i = 1,· · ·, N
}

, and the loss function can be
formulated as:

Lguide = −
B∑
i=1

λi log
ev

T
i g∗

i /τ∑
vj∈V ∪G ev

T
i vj/τ

(3)

where λi is the weight of the current data xi in the loss
calculation relative to the data within a batch, and in gen-
eral, the loss is the average of each data, i.e., λi = 1/B.
g∗i is the guide embedding corresponding to xi. g∗i ={

gr if ti = 0
g
fj
(j = Φ(ti)) if 1 ≤ ti ≤ N

. Φ(·) is the relation

function between forgery domains and forgery guide embed-
dings. At each iteration, we compute the average feature
for each forgery domain. According to the distance between
each average feature and the guide embedding, we use Hun-
garian algorithm [20] to perform nearest-neighbor matching,
and denote this matching relationship as Φ(·). V is a set that
stores a large number of features (detailed in Sec. 3.4).

Besides, we also use the traditional binary cross-entropy
loss as a basic optimization goal:

Figure 5. Four cases in the calculation of the confidence. For each
center point, inward arrows indicate that classes are consistent, and
outward arrows indicate class inconsistencies. The thickness of the
arrow reflects the value of the coefficient µ in Eq. (5).

Lce = −
B∑
i=1

λi (yi log pi + (1− yi) log (1− pi)) (4)

where pi is the predicted score obtained by the binary classi-
fier h(·). λi is the weight consistent with Eq. (3).

3.3. Adjustment of decision boundary manifold
Furthermore, we design a module to adjust the decision

boundary manifold (A-DBM). By focusing on some poorly
performing samples within a batch, we strive to achieve the
aggregation of features of the same domain, resulting in
a better decision boundary manifold that conforms to the
guidance of the guide-space.

Here, we define a metric called confidence to indicate
the credibility of the model decision, which is calculated by
the aggregation degree of the same domain features in the
neighborhood of each feature point, and this process can be
visualized in Figure 5. For a sample whose neighbors in the
feature space belong to the same domain (Figure 5 (a)), the
model prediction tends to be reliable and is assigned high
confidence; while for the sample densely adjacent to other
classes, it may be located in an area where another class is
clustered, and tends to be mis-predicted as another class with
high probability, corresponding to a low confidence (Figure
5 (c) and (d)). For the points around the decision boundary,
the model decision has uncertainty and the confidence is at
the median (Figure 5 (b)).

Specifically, for each image feature vi, we calculate its
similarity with each point in the feature set V , and then take
the k points with the highest similarity as its neighbors Ki

to obtain the adjacency relationship of the feature points.
According to the aggregation degree of the same class of
features within the neighbors, the confidence ci of each data
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xi can be formulated as:

ci =
1

|Ki|
∑

vj∈Ki

(
1ti=tj − µ · 1ti ̸=tj

)
· εij (5)

where εij refers to the similarity between vi and vj , and
εij = 1

2 (1 + vivj). µ is an adjustment coefficient. If xi is
a real image, neighbors that are inconsistent with its class
all belong to various fake categories with equal importance,
i.e., µ = 1. However, if xi is a forgery image, the class in-
consistency includes two situations of real and other forgery
domains. It is more important to separate it from the real
data than to separate it from data of other forgery domains,
so µ = 1 for the former and µ = 0.5 for the latter.

Based on the confidence, we can find samples that per-
form poorly according to the aggregation degree of features
of the same domain. Then we assign higher attention (i.e.,
higher weight λi in Eq. (3) and (4)) to these low-confidence
samples to improve their clustering effect, resulting in a
better decision boundary manifold. Given confidence ci
(i ∈ [B]) of data within a batch, λi can be formulated as:

λi = softmax (−ci) (6)

3.4. Decoupling module for irrelevant information
In order for features to be more forgery-relevant, we de-

sign a decoupling module to alleviate the interference of irrel-
evant information on distinguishing different domains. Be-
fore training, we first mine the potential correlation between
images of the given training data. We use a self-supervised
model [25] pre-trained on face pictures to perform feature
extraction on the training set. The self-supervised features
have a certain degree of general representation ability for
images. Then we cluster the features [9] to find correlations
between the data, as shown in the decoupling module of Fig-
ure 3. If features of different forgery domains are gathered
into the same cluster, it proves that they have strong similari-
ties in forgery-irrelevant information and need to be focused
on in training to be separated. Conversely, if the features of
the same domain belong to different clusters, they should be
pulled closer to make features more related to forgery.

Let ρi denote the cluster label of each instance xi,
we first construct a sample set V +

i that needs to be
pulled closer and a sample set V −

i that needs to be
pushed away. V +

i = {vj ∈ V | ti = tj , ρi ̸= ρj}, V −
i =

{vj ∈ V | ti ̸= tj , ρi = ρj}. We randomly select n+ and
n− features from V +

i and V −
i respectively to participate

in the calculation, and the corresponding feature set can be
denoted as Ṽ +

i and Ṽ −
i (Ṽ +

i ⊂ V +
i , Ṽ −

i ⊂ V −
i ). The fea-

ture candidate set V = {(xj , yj , tj)}Qj=1, which is a queue
of dynamic accumulation of multiple batch features, with
the current batch enqueued and the oldest batch dequeued.
This V with larger size Q than the batch size allows better
sampling in a broader and comprehensive selection scope.

On the one hand, we push away samples in Ṽ −
i that

belong to different domains from xi but are clustered by
irrelevant information. This separation helps to reduce the
irrelevant information contained in the features. Based on
KCL [18] loss, the pushing loss is denoted as:

Lpush =

B∑
i=1

λi ·
1

1 + n−

∑
v−
j ∈Ṽ −

i

log
ev

T
i v−

j /τ∑
vj∈V ∪G ev

T
i vj/τ

(7)

On the other hand, we pull the samples in Ṽ +
i closer. This

closeness due to the same domain rather than the similarity
of irrelevant information implies an increase in the forgery-
relevance of the features. The pulling loss is :

Lpull = −
B∑

i=1

λi ·
1

1 + n+

∑
v+
j ∈Ṽ +

i

log
ev

T
i v+

j /τ∑
vj∈V ∪G ev

T
i vj/τ

(8)

In summary, our overall loss can be formulated as:

L = γ1 · Lguide + γ2 · Lce + γ3 · Lpull + γ4 · Lpush (9)

where λi is calculated by Eq. (6), and γ is the scale factor.

4. Experiments
4.1. Experimental settings
Datasets: We conduct experiments on three benchmark
public forgery datasets: 1) FaceForensics++(FF++) [33]
contains four forgery methods (i.e., Deepfakes (DF) [1],
Face2Face (F2F) [42], FaceSwap (FS) [2], and NeuralTex-
tures (NT) [41]) with three image qualities including raw,
high quality (HQ) and low quality (LQ). 2) CelebDF [23]
contains real videos of 59 celebrities and corresponding
high-quality fake videos generated by the improved forgery
techniques. 3) Deepfake Detection Challenge (DFDC) [11]
is a more challenging dataset that comes with the compe-
tition, with many manipulation and perturbation methods.
Metrics: Following works in [47, 5, 24, 44, 26], we use
Accuracy score (Acc) and Area Under the Receiver Operat-
ing Characteristic Curve (AUC) as the metrics to evaluate
the performance. Between the two, we pay more attention to
the AUC results, since the Acc values are affected by specific
thresholds and data balance.
Implementation Details: In our experiments, we use
EfficientNet-B4 (EN-B4) [40] as the backbone when not
otherwise specified. In the guide-space, θ0 = 120◦. For
A-DBM, we adjust λi from the 10-th epoch, and before
that, λi = 1/B. k = |Ki| = 55 in Eq. (5). In decoupling,
the self-supervised model is trained under SimMIM [46]
framework, and the number of clusters is 500. n+ and n−

are both 10. In Eq. (9), γ1 = 1, γ2 = 0.5, γ3 = 0.01, and
γ4 = 0.005. The temperature parameter τ = 1. During the
training, the batchsize B = 256, and the size Q of the set
V is 5120. The maximum number of epochs is 60. More
details on hyper-parameters are shown in Appendix 3, and
the analysis of computational cost introduced by the method
is shown in Appendix 4.
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Methods FF++ (HQ) FF++ (LQ)

Acc AUC Acc AUC

Xception [32] 95.04 96.30 84.11 92.50
F3-Net (Xception) [31] 97.31 98.10 86.89 93.30
EN-B4 [40] 96.63 99.18 86.67 88.20
MAT (EN-B4) [47] 97.60 99.29 88.69 90.40
SPSL [24] 91.50 95.32 81.57 82.82
RFM [44] 95.69 98.79 87.06 89.83
Local-relation [7] 97.59 99.56 91.47 95.21
RECCE [5] 97.06 99.32 91.03 95.02
CD-Net [36] 98.75 99.90 88.12 95.20

Ours 99.24 99.95 92.76 96.85

Table 1. In-domain comparisons on FF++ dataset. Results contain
Acc (%) and AUC (%) of high quality (HQ) and low quality (LQ).

4.2. In-Domain evaluations
We first verify the detection ability of our method against

in-domain forgery methods (i.e., methods contained in the
training set) on FF++ dataset. We train on both HQ and LQ
image qualities using the four included forgery methods, and
Table 1 lists the performance comparisons between ours and
some current state-of-the-art methods.

It can be seen that our method achieves the best perfor-
mance on HQ and LQ with AUC of 99.95% and 96.85%,
respectively, confirming that our method is effective for both
high-quality and low-quality data. On the HQ dataset, the
AUC of our method is 1.16% higher than that of RFM which
enlarges the model’s attention by erasing sensitive areas.
F3-Net [31], SPSL [24], and CD-Net [36] consider the fre-
quency domain information, and ours are all ahead of them.
On the LQ dataset, our AUC is 6.45% higher than that of
MAT [47] using the attention mechanism. Local-relation [7]
fusing RGB and frequency domain information achieves the
sub-optimal performance with the AUC of 95.21%, while
ours is still 1.64% higher than that.

Although the above methods use attention, frequency
information, local consistency, etc. to learn more generalized
features, the supervision of binary classification makes the
semantic and texture features still exist in the feature space.
In contrast, our method increases the discrimination between
domains through the guide-space, and decouples forgery-
irrelevant information from features, so as to learn more
forgery-relevant representations.

4.3. Cross-domain evaluations for generalization
To verify the generalization of our method, we train the

models using four forgery methods on the HQ dataset of
FF++, and then test the cross-domain generalization on
CelebDF and DFDC. We compare with many state-of-the-art
methods, such as DCL [38] using the contrastive learning
(CL), F3-Net [31], SRM [26], Local-relation [7] consider-
ing frequency domain information, UIA-ViT [50] based on

Methods CelebDF DFDC

Xception [32] 66.91 67.93
F3-Net (Xception) [31] 71.21 72.88
EN-B4 [40] 66.24 66.81
MAT(EN-B4) [47] 76.65 67.34
Face X-ray [24] 74.20 70.00
RFM [44] 67.64 68.01
SRM [26] 79.40 79.70
Local-relation [7] 78.26 76.53
RECCE [5] 77.39 76.75
LTW [37] 77.14 74.58
DCL [38] 82.30 76.71
UIA-ViT [50] 82.41 75.80

Ours 84.97 81.65
Table 2. Cross-domain comparisons of generalization based on
AUC (%). We train the detection model on the HQ dataset of FF++
and then test it on CelebDF and DFDC.

the transformer, LTW [37] based on the meta-learning, and
reconstruction-learning based RECCE [5]. The correspond-
ing AUC results are shown in Table 2.

The AUC of our method on CelebDF and DFDC is
84.97% and 81.65%, respectively, outperforming other meth-
ods listed in Table 2. For CL-based methods, DCL focuses
on the real-fake discrimination , achieving AUC of 82.30%
and 76.71% on CelebDF and DFDC, while we further en-
hance the discrimination of different domains (real-fake,
fake-fake), and AUCs are 2.67% and 4.94% higher than it,
respectively. For frequency-based methods, ours is 5.57%
ahead of SRM [26] on CelebDF. For recent transformer-
based UIA-ViT, our AUC leads by 2.56% and 5.85% on
Celeb-DF and DFDC, respectively. Although RECCE [5]
also learns the common compact representations of real faces
through reconstruction learning, its AUCs on the two datasets
are 77.39% and 76.75%, which are lower than ours. Unlike
implicit learning in RECCE, we explicitly control how com-
pact the real representation is by controlling the angle θ0
between the real and forgery embeddings in the guide-space.
So coupled with the efforts that we also focus on the discrim-
ination between different forgery domains to capture more
forgery-related traces, we can achieve better performance.

4.4. Ablation study
In this section, we conduct detailed studies of each mod-

ule involved in the method. The evaluation of generalization
follows two settings: 1) Cross-test within FF++: training
with three methods within FF++ and testing on the remaining
one; 2) From FF++ to others: training on the four forgery
methods of FF++ and testing on CelebDF and DFDC.
Methods to distinguish different forgery domains: We
first analyze methods of enhancing the forgery domain dis-
crimination to verify our superiority based on the guide-
space. The training result based on binary cross-entropy
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Train Set F2F FS NT DF FS NT FF++ (HQ)

Test Set DF (HQ) DF (LQ) F2F (HQ) F2F (LQ) CelebDF DFDC

Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

Lce−2 91.97 92.48 91.46 96.71 84.44 91.17 91.37 96.49 62.93 66.24 62.16 66.81
Lce−(1+N) 93.83 95.59 92.34 97.32 83.91 91.15 91.08 96.42 65.06 67.74 65.16 68.58
Lguide 94.21 95.76 93.96 97.79 85.54 92.33 90.42 96.87 66.02 70.72 67.67 71.47

w/o Lguide 93.07 96.91 93.62 97.64 87.85 93.56 95.72 98.67 68.59 76.42 69.37 75.12
w/o Lpull&Lpush 95.82 98.15 95.73 98.59 90.26 94.19 95.90 99.08 71.52 79.13 72.85 78.04
w/o Lpull 97.12 98.87 96.62 99.11 92.65 95.82 96.17 99.32 71.63 80.25 73.09 78.98
w/o Lpush 97.46 99.39 97.71 99.57 93.14 97.50 96.91 99.49 71.94 81.78 73.55 79.26
w/o A-DBM 96.03 97.40 96.47 98.79 91.28 96.35 95.87 99.02 72.12 78.92 70.23 77.15

ours 98.92 99.81 98.72 99.89 95.76 98.92 97.96 99.68 73.19 84.97 74.83 81.65

Table 3. Ablation results in two settings: 1) Cross-test within FF++ (left); 2) From FF++ to others (right). The upper part compares the three
losses that increase the discrimination of different domains; the lower part shows the performance after removing each module of the method.

(Lce−2) loss is an experimental baseline. On this basis, we
compare the performance of using multi-class cross-entropy
(Lce−(1+N)) loss, where the number of classes is the number
of forgery domains N plus 1. The performance comparisons
of Lce−2, Lce−(1+N), and our Lguide under two experimen-
tal settings are shown in the upper part of Table 3. For the
cross-test within FF++, we experiment on both HQ and LQ
datasets. Due to space limitations, we here show the results
of DF and F2F as the test set, and the remaining results of
FS and NT are shown in Appendix 5.1.

It can be seen that the AUC of our guide-method Lguide

achieves optimal performance among the three losses at
all of these settings. Especially on CelebDF and DFDC,
AUCs are 4.48% and 4.66% higher than Lce−2, and 2.98%
and 2.89% higher than Lce−(1+N). For Lce−(1+N), it has
improved performance over Lce−2 in most cases, but in
some cases, it is the opposite, for example, Acc and AUC
on F2F(HQ) are 0.53% and 0.02% lower than Lce−2. This
shows that simply uncontrolled separation of several forgery
domains in Lce−(1+N) is sometimes not feasible, because
it treats the real and forgery domain as equal classes, so
that the distances between real-forgery and between forgery-
forgery are equal. However, we expect the separation of real-
forgery to be much greater than forgery-forgery to achieve
the compactness of the real domain representation. Our
guide method can achieve this by actively controlling the
angle between the real and forgery guide embeddings, so it
can achieve the optimal performance.

Importance of different modules: We mainly study the
guide embedding (Lguide), the decoupling module (Lpull,
Lpush), and the boundary adjustment (A-DBM) included in
the method, and examine the importance by removing the
corresponding module from the overall method. The results
are shown in the lower half of Table 3, and the remaining
results of FS and NT are shown in Appendix 5.2.

Overall, removing the guide method (w/o Lguide) has

Backbone CelebDF DFDC

Acc AUC Acc AUC

Xception 64.09 66.91 62.16 67.93
Xception+Ours 69.31 76.46 66.29 75.21

Resnet50 62.47 67.08 64.16 67.68
Resnet50+Ours 71.92 77.05 70.69 74.03

DPN68 64.86 70.78 64.16 67.72
DPN68+Ours 72.73 80.09 68.98 77.25

VGG19 67.18 71.31 68.17 72.56
VGG19+Ours 74.91 81.89 71.54 78.75

Table 4. Generalization when using other backbones. Models are
trained on FF++(HQ) and tested on CelebDF and DFDC.

the greatest impact, e.g., the AUC on CelebDF is reduced
from 84.97% to 76.42%. Although the decoupling module
can also achieve the separation of different domains and
the closeness of the same domain, it lacks predefined guide
vectors and cannot actively control the degree of separation
between domains. The performance also drops significantly
when the decoupling module is removed (w/o Lpull&Lpush),
demonstrating the importance of alleviating the association
of irrelevant information for features. Based on the results,
removing the pulling set (w/o Lpull) has a greater negative
impact than removing the pushing set (w/o Lpush), for ex-
ample, on CelebDF, AUCs decrease by 4.72% and 3.19%,
respectively. The boundary module works well in all exper-
imental settings, especially with 6.05% and 4.5% increase
of AUC on CelebDF and DFDC after using it. In addition,
under the left setting (1) of Table 3, the performance com-
parison of our method with other SOTA methods is shown
in Appendix 5.3.
Generalization when using other backbones: Besides
EfficientNet-B4 [40], our method can also be used in other
backbone networks. Table 4 lists the performance of our
method under Xception [32], Resnet50 [15], DPN68 [8] and
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θ0 θij
CelebDF DFDC

Acc AUC Acc AUC

90◦ 109◦ 69.22 74.95 66.34 74.82
100◦ 107◦ 70.19 77.86 71.74 76.95
110◦ 100◦ 72.58 81.07 73.91 79.23
120◦ 90◦ 73.19 84.97 74.83 81.65
130◦ 78◦ 71.32 80.83 73.56 80.19
140◦ 63◦ 70.78 79.05 71.29 78.46
150◦ 48◦ 70.20 78.52 70.96 77.87

Table 5. The value of θij(1 ≤ i, j ≤ N) and the corresponding
generalization performance when θ0 takes different values.

VGG19 [35]. The models are trained on FF++ (HQ) and
tested on CelebDF and DFDC. Compared with the original
training, the performance on two datasets has improved after
using our training method, e.g., AUCs of the four models
on CelebDF are improved by 9.55%, 9.97%, 9.31%, and
10.58%, respectively. This demonstrates that our method
has good adaptability and can be combined with various
backbone networks to achieve better performance.

4.5. Analysis and visualization
Predefined θ0 in guide-space: When constructing the
guide-space, we pre-define the angle θ0 of real-forgery do-
mains, and maximize the forgery-forgery domain separation
θij(1 ≤ i, j ≤ N). θij can be equal when d ≥ N . However,
in the limited feature space, θ0 and θij have a trade-off, i.e.,
a large θ0 means that the corresponding θij will be small.
We study the effect of different θ0, and the corresponding
θij and the generalization results are listed in Table 5.

Ideally, we expect θ0 > θij , and θij is as large as possi-
ble. In Table 5, the optimum performance is achieved when
θ0 = 120◦, and the corresponding θij = 90◦. θ0 is larger
than θij , and the forgery-forgery is orthogonal, realizing the
separation of each other. When we decrease θ0 to 90◦, θij
increases to 109◦, and the performance drops significantly,
e.g., the AUC of CelebDF decreases from 84.97% to 74.95%.
At this time, although the forgery-forgery distinction is en-
hanced, the real and forgery domains are too close, which
will limit the generalization. Conversely, when we increase
θ0 to 150◦ , the real-forgery distance is increased, but the
forgery-forgery θij is reduced to 48◦. As a result, the dis-
crimination between forgery domains is weakened, and the
AUC on CelebDF drops to 78.52%.
Visualizations of t-sne: In Figure 7, we visualize the fea-
ture space using t-sne [43], comparing the effect of binary
cross-entropy (CE-2) with our method. For CE-2, the points
of the forgery domains are messily mixed together without
being distinguished by forgery domains. Instead, the fea-
tures of ours are clustered according to the domain type,
indicating that the learned features are more forgery-related.
Visualizations of heatmaps: Identity is one of the forgery-
irrelevant similarities existed between different domains. In

Figure 6. The heatmap comparisons of binary cross-entropy (CE-2)
and our method. Forgery artifacts are marked in red frames.

Figure 7. The t-sne comparisons of binary cross-entropy (CE-2)
and our method.

Figure 6, we compare the heatmaps for images of different
forgery domains with the same identity when using CE-2
and our method. When using CE-2, different domains are
treated as the same fake, resulting in the model focusing on
similar regions. As shown in the second line of Figure 6,
the concern areas are concentrated in the middle of the face
rather than their respective forgery traces, indicating that the
model is still perturbed by similarities of the same identity.
However, in the third line, our method focuses on respective
forgery traces of different forgeries, which shows that our
method mitigates the interference of these similarities and
learns better forgery-related information. More heatmaps
are shown in Appendix 6.

5. Conclusion
In this paper, we proposed a novel guide-space based

framework to improve the generalization of face forgery
detectors. The well-designed guide-space can achieve sep-
arations of both real-forgery domains and forgery-forgery
domains in a controllable manner, so as to capture more
forgery-related information and ensure a large distance be-
tween real and fake representations simultaneously. Fur-
thermore, we used a decoupling module to reduce the inter-
ference of forgery-irrelevant inter-domain correlations for
domain discrimination. In addition, we designed a decision
boundary adjustment module to make the features better
follow the guidance of the guide-space. Extensive cross-
domain experiments demonstrate the better generalization
of our method.
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