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Abstract

Existing skeleton-based action recognition methods typ-
ically follow a centralized learning paradigm, which
can pose privacy concerns when exposing human-related
videos. Federated Learning (FL) has attracted much
attention due to its outstanding advantages in privacy-
preserving. However, directly applying FL approaches to
skeleton videos suffers from unstable training. In this pa-
per, we investigate and discover that the heterogeneous hu-
man topology graph structure is the crucial factor hinder-
ing training stability. To address this limitation, we pio-
neer a novel Federated Skeleton-based Action Recognition
(FSAR) paradigm, which enables the construction of a
globally generalized model without accessing local sensi-
tive data. Specifically, we introduce an Adaptive Topol-
ogy Structure (ATS), separating generalization and person-
alization by learning a domain-invariant topology shared
across clients and a domain-specific topology decoupled
from global model aggregation. Furthermore, we explore
Multi-grain Knowledge Distillation (MKD) to mitigate the
discrepancy between clients and server caused by distinct
updating patterns through aligning shallow block-wise mo-
tion features. Extensive experiments on multiple datasets
demonstrate that FSAR outperforms state-of-the-art FL-
based methods while inherently protecting privacy.

1. Introduction

Skeleton-based action recognition is a valuable research
area with widespread applications in many fields [15, 10,
43] such as human-robot interaction, intelligent security
surveillance, and video understanding. Recent advance-
ments in deep neural networks [41, 38] have shown signif-
icant progress in learning discriminative spatial and tempo-
ral features from skeleton sequences. Though successful,
these methods heavily rely on massively centralizing hu-
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Figure 1. Illustration of Vanilla FSAR. Each client optimizes a
local model with non-shared and sensitive local skeleton videos,
while the server obtain a global model by aggregating local model
parameters without assessing any data. The client-server collabo-
rative learning is iterative to yield a global feature representation
for out-of-the-box deployment with privacy protection.

man skeleton videos, which directly and effectively pose
privacy concerns due to the exposure of human-related in-
formation, like motion patterns, behavior tendencies, and
personal identity. For instance, Liao et al. [24, 23] have
developed algorithms to identify individuals based on their
body structures and walking styles. Therefore, centralized
collection of such sensitive data exacerbates the risk of pri-
vacy disclosure for each local user site. In response to the
increasing awareness of personal data protection, decentral-
ized training techniques are being developed, with federated
learning being a powerful approach. Thus in this work, we
explore the application of federated learning to skeleton-
based action recognition for privacy-preserving of skeleton
data, which has rarely been investigated before.

Federated Learning (FL) is a collaborative learning ap-
proach that aims to collectively learn from multiple decen-
tralized edge devices or clients while preserving the security
and privacy of local data [30, 22]. However, many effec-
tive FL techniques are image-based tasks, such as person
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(a) PKU I (b) NTU 60

Figure 2. Under the federated-by-dataset scenario, directly com-
bining skeleton-based action recognition tasks with FL paradigms
(blue ones) suffer from training instability due to the non-IID data
distribution and heterogeneous human topology graph structures.

re-identification [44], medical image segmentation [8], and
vision language navigation [48]. To introduce FL schemes
into the skeleton-based action recognition task, we follow
the standard client-server architecture [30, 12] and con-
struct a vanilla Federated Skeleton-based Action Recogni-
tion (Vanilla FSAR) paradigm. As shown in Fig. 1, we
consider multiple local clients having independent and non-
overlapping category labels. Each client is optimized with
non-shared local data under the orchestration of a central
server. The generalized server model is learned by aggregat-
ing the local model parameters without accessing sensitive
local data. Under this paradigm, vanilla FSAR optimizes
a generic feature space from multiple and non-shared data
silos while maintaining data privacy.

Due to the non-euclidean nature of skeleton data, Graph
Convolution Networks (GCNs) have been effective mod-
els for skeleton-based tasks. One of the notable efforts
is ST-GCN [46] which models spatial temporal graph of
skeleton sequences based on human topology structures.
Compared to CNN- or RNN-based methods, ST-GCN and
its variants [3, 19, 28] achieve superior performance on
skeleton-based action recognition. Without loss of gener-
ality, we apply FL approaches to the ST-GCN model via
the above client-server collaboration training paradigm as
the straightforward solution to address the privacy and se-
curity concerns. Nevertheless, the direct combination can
suffer from slow convergence and considerable fluctuations,
as shown in Fig. 2, which obstructs the model from generat-
ing feature representation suitable for efficient deployment
with privacy protection. Apart from the non-Independently
Identically Distribution (non-IID) [47] of data from differ-
ent clients, we identify the heterogeneous graph topologies
across clients as a critical trigger for this phenomenon. This
structured element is dataset-specific, causing local models
of different clients to gradually diverge from each other dur-
ing local training. It is known as the client drift in traditional
FL [13], which can drastically damage the training perfor-
mance of global model when the data similarity decreases.

In light of this, we introduce FSAR, a novel bench-
mark for Federated Skeleton-based Action Recognition, to
address the aforementioned client drift issues, especially

for skeleton data. In FSAR, instead of finding one global
model that fits the data distribution of all clients, an Adap-
tive Topology Structure (ATS) is proposed to inject modu-
lated and customized elements into each client model. The
ATS learns the commonality of shared structure to improve
the stability of FL training, and preserves the unique struc-
ture of their own data to prevent current clients from be-
ing affected by other clients with different dataset scales,
respectively. Moreover, we adopt learnable factors to au-
tomatically balance both topology structures on each client
data since smaller datasets are more susceptible to large-
scale datasets. Apart from this, data heterogeneity across
clients caused by various source domains also jeopardize
the training stability and accuracy. Generally, the features
extracted by the shallower layer contain universal informa-
tion (e.g., the connection between different joints), and the
deeper features hold semantic information related to action
labels (which is personalized and client-specific). There-
fore, a Multi-grain Knowledge Distillation (MKD) mech-
anism is further developed to reduce the feature variation
of shallow layers, which decreases client divergences with
respect to the server model and facilitates client-server com-
munication on generalized messages.

By leveraging both ATS and MKD, FSAR achieves
remarkable performance and provides practical solutions
for federated learning in skeleton-based action recognition.
The contributions are summarized as follows:

• We pioneer in introducing FL into skeleton-based ac-
tion recognition and present a novel benchmark FSAR
to address privacy concerns for the first time.

• We identify the heterogeneous graph topology struc-
ture as a major obstacle that causes training instability
for skeleton data, and explore a novel Adaptive Topol-
ogy Structure (ATS) to facilitate collaborative train-
ing between decentralized clients by learning domain-
invariant and domain-specific topologies.

• The innovative Multi-grain Knowledge Distillation
(MKD) mechanism is then explored by aligning shal-
low features to mitigate client-server divergence and
further boost the accuracy.

• Extensive experiments validate the effectiveness of
FSAR and demonstrate that it achieves significant im-
provements over SOTA FL-based methods on several
benchmark datasets with local data privacy protected.

2. Related Work
2.1. Skeleton-based Action Recognition

Skeleton-based Action Recognition aims to predict the
action classes from skeleton sequences, whose joint coor-
dinates are predicted from raw RGB video data by exist-
ing estimation algorithms. Earlier approaches [9, 42] focus
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Figure 3. Overview of the proposed Federated Skeleton-based Action Recognition (FSAR). The local clients are optimized with our
proposed Adaptive Topology Structure (ATS) and Multi-grain Knowledge Distillation (MKD) modules on private data and then perform the
client-server collaborative learning iteratively: (i) clients train local models; (ii) clients upload parameters to server; (iii) server aggregates
model parameters; (iv) clients download the aggregated models. Moreover, the ATS module extracts the intrinsic structure information of
heterogeneous skeleton data, and the MKD module bridges the divergence between the clients and the server.

on manually designing hand-crafted features and joint rela-
tionships, where the essential semantic connectivity of the
human body is ignored. Benefiting from the great repre-
sentation ability of deep learning, some works rearrange the
skeleton data into a grid-shaped structure and feed it directly
into RNN [17, 39] or CNN [4, 27] architectures. Nowadays,
inspired by human skeleton data being a natural topologi-
cal graph, Graph Convolutional Networks (GCNs) [6, 2, 7]
have been adopted to exploit the underlying structure of
joints. ST-GCN [46] is one of the most representative
works, which introduces a spatio-temporal graph convolu-
tional network to model the graph representation of each
skeleton and capture temporal dynamics. However, due
to privacy concerns, contemporary centralized skeleton ac-
tion recognition methods are significantly constrained by
the limited scale of datasets available on the central server.
In this paper, we broaden the utility of these methods be-
yond centralized settings to improve quality and security.

2.2. Federated Learning Algorithms

Federated Learning is a decentralized learning frame-
work that can train a global server model by aggregat-
ing the parameters of local clients [30]. Empirical works
focus on better parameter aggregating strategies to allevi-
ate feature drift caused by various domains and collabora-
tively transmit knowledge. FedAVG [30] proposes to aggre-
gate the local model via a weight-based mechanism. Fed-
Prox [21] introduces a proximal term to restrict the local
updates to be closer to the global model. MOON [20] uti-
lizes the similarity between model representations to cor-
rect the local training. FedAGM [14] improves the stability
and convergence of the server aggregation by sending the

clients an accelerated model estimated with the global gra-
dient. FedEMA [49] updates local models adaptively using
an exponential moving average update of the global model,
where the decay rate is dynamically measured by model di-
vergence. Directly combining skeleton-based action recog-
nition methods with the FL paradigms will encounter con-
vergence problems due to the topological graph structures
of the human body varying considerably among various
source domains. Existing FL optimization algorithms fail
to effectively tackle the above issues, while our proposed
FSAR shows superiority in this respect.

2.3. Action Recognition with Federated Learning

Federated Learning schemes [12, 22] have been explored
in many computer vision tasks, such as medical image seg-
mentation [45], person re-identification [40], and others.
When applying this paradigm to human action recognition
tasks, GraFehty [34] constructs a similarity graph for each
user to apply a GCN-based federated learning architecture
to capture the inter-relatedness and closeness of human ac-
tivities for classification tasks. Mondal et al. [31] propose
to transform time series sensor data into a graphical repre-
sentation by taking non-overlapping time windows and ag-
gregating the feature values of each time window. Rehman
et al. [33] and Dave et al. [5] propose self-supervised learn-
ing frameworks under the FL paradigms for video action
representation learning. The above FL-based action recog-
nition methods mainly focus on exploring the relationship
between local data among clients or utilizing RGB data as
input. Unlike them, our method focuses on addressing the
heterogeneity of the human skeleton topology graphs from
different datasets domains.
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3. Methodology
3.1. Preliminary

In this work, we adopt the ST-GCN [46] architecture as
the local model since it performs well in capturing spatio-
temporal relationships for skeleton videos. We first give a
brief description of this basic backbone.

Spatial Graph. The input skeleton video x ∈ RT×V

is first projected into hidden space, where T and V denote
the number of frames per video and joints per person, re-
spectively. The human skeleton topology graph is first con-
structed as G = (V,A), where V = {vi}Vi=1 is the set
of V skeleton joints, and A ∈ RV×V is the weighted ad-
jacent matrix determining the connections between joints.
Aij = 0 if vi and vj are not connected, otherwise Aij ̸= 0.
Followed by a spatial graph convolutional network, the in-
put is operated as follows:

fout =

Sv∑
s

Ws(finAs)⊙Ms, (1)

where f denotes the features, Sv is the kernel size of the
spatial dimension (empirically set as 3). Ms is the attention
map controlling the importance of each vertex, and Ws is
the convolution parameters.

Temporal Filter. After obtaining the structured infor-
mation along the spatial dimension, a temporal convolu-
tional filter is then employed to capture the motion patterns.

3.2. Vanilla FSAR

Overview. We first establish the Vanilla Federated
Skeleton-based Action Recognition (Vanilla FSAR) bench-
mark under the FL paradigms [30], as depicted in Fig. 1.
Suppose there are N clients and one central server, where
each client possesses its own private dataset and local
model. We optimize local client models with non-shared
datasets and transfer their model parameters to the central
server for aggregation. The updated server model is then
broadcast to each individual client for the next round. This
client-server collaborative learning is performed iteratively
to learn a generalized central model.

Client updates. For the i-th (i ∈ N ) client, it is
equipped with a backbone Ψ(Wr

i,k) to project the input
skeleton video into motion feature hi:

hi = Ψ(Wr
i,k;x), (2)

whereWr
i,k is the parameters of backbone in the k-th local

iteration of r-th global communication round. Then the fea-
ture is fed into classifier Φi(·) of the i-th client to produce
the final output ŷ, i.e., ŷ = Φi(hi). Following the iterative
parameter updating mechanism in federated learning [30],
the client model is optimized using SGD with a learning

Client #N

NUNINA

Client #1

1A 1I 1U

Figure 4. Illustration of ATS. A captures joint connection, I shares
generalized structures, while U retains personalized knowledge.

rate η. Hence, theWr
i,k at the k-th iteration are updated:

Wr
i,k+1 ←Wr

i,k − η∇Wr
i,k, (3)

where∇Wr
i,k is the set of gradient updates of the i-th client

at the k-th local iteration of the r-th global round.
Server updates. Through K local iterations for updat-

ing client parameters, the server aggregates model parame-
ters from clients to update the central backbone:

Wr+1
g ←

N∑
i=1

ni

n
Wr

i,K , (4)

whereWr
g is the parameter of central backbone. ni

n denotes
the proportion of the data volume of the current client to
the total data volume. Then, the central backbone is used
to reinitialize clients in the next round Wr+1

i,0 ← Wr+1
g .

During inference, we combine the central backbone with
the local classifier to perform action recognition.

Limitations of Vanilla FSAR. As shown in blue curves
in Fig. 2 , Vanilla FSAR encounters training instability.
Apart from the statistical heterogeneity caused by imbal-
anced distributions between clients, it still suffers from the
following limitations: (i) Insufficient knowledge mining for
intrinsic human skeleton topology structures. (ii) Omission
of the divergence between client and server. Thus, we pro-
pose two key modules in Section 3.3 and Section 3.4 to
inject skeleton-linked-closely information into client-server
communication under FL settings.

3.3. Adaptive Topology Structure

The most crucial element in combining skeleton-based
tasks with FL paradigms is the aforementioned human
topology graphs, where the heterogeneous structures of the
skeleton are closely related to the dataset. Therefore, we
propose an Adaptive Topology Structure (ATS) module for
modeling skeleton videos to facilitate the server model cap-
ture inductive biases inherent in the topology graph from
non-IID dataset domains.

Apart from the manually set and domain-specific adja-
cent matrix A, we introduce two more matrices to formu-
late ternary (A, I,U) to mine generalized and personalized
human skeleton topology at the same time. The projection
function in Eq. (1) is then revised as:

fout =

Sv∑
s

Wsfin(αAs + βIs + γUs), (5)
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Figure 5. Visualization of the CKA similarities of different level
ST-GCN blocks from clients (coordinate axes refer to the No. of
clients). The deeper the block is, the fewer similarities they gain.

where α, β, and γ are coefficients to determine the impor-
tance of each matrix.

Inflected Matrix (IM). I ∈ RV×V is introduced to al-
leviate the large training fluctuations caused by data hetero-
geneity by facilitating each client learning various skeleton
joint connections from other clients progressively. IM has
the same dimension as A but is embodied with trainable
parameters. For each client and the central server, IM is up-
dated in accordance manner of Eq. (3) and Eq. (4) with
client-server collaborative training:

Iri,k+1 ← Iri,k − η∇Iri,k, (6)

Ir+1
g ←

N∑
i=1

ni

n
Iri,K . (7)

Unique Matrix (UM). U ∈ RV×V is further introduced
to avoid the current client being influenced by other clients
when their dataset scales vary significantly, by retaining
personalized skeleton topology at the local. Unlike IM, UM
updates individually, without communication or aggrega-
tion at the server. Namely, the parameters of UM are ex-
cluded from the global server and kept in local clients only.

Notice that our proposed IM and UM are explicitly de-
signed for addressing the client drift issues in FL tasks, dif-
ferent from previous works [36, 37], which use attention
mechanisms to capture connections between joints for each
individual dataset. As shown in Fig. 4, IM participates in
aggregation and is shared across clients to learn domain-
invariant topology and transmit common skeleton connec-
tions. Furthermore, UM is preserved locally to maintain
client-specific topology and prevent current clients from be-
ing affected by other datasets largely.

3.4. Multi-grained Knowledge Distillation

We visualize the Centered Kernel Alignment (CKA)
similarities [16] in Fig. 5, finding that the divergence of fea-
tures between clients from deeper blocks gets much more
considerable than shallower ones. This enlightens us to
propose Multi-grain Knowledge Distillation (MKD) mech-
anism by taking the shallow block-wise features from the
central server model as teacher knowledge to supervise the
local training of individual clients. In this way, the shallow
blocks of the client model get generalized while the deep
retain personalized.
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Figure 6. Illustration of MKD module. Both the client and server
models are divided into M exclusive blocks based on the depths
and the motion feature sizes. The central server model is taken
as the empirical teacher to supervise the local client training via
shallow block-wise feature alignment.

As shown in Fig. 6, the multi-grain stream is introduced
apart from the original local stream. Instead of directly
applying feature-level supervision between the server and
clients, MKD gradually adopts the shallow blocks of server
model to replace the corresponding blocks of client mod-
els and feeds the shallow features from the server into the
bottom block of the client. Then, the predictions of this
combined network are used to be teacher supervision sig-
nals. Since the server model is shared for different clients,
directly requiring similar outputs between clients and their
corresponding teacher supervision predictions can align the
shallow representations of client models.

More specifically, given the input skeleton sequence x
and the i-th client model, the local stream extracts the mo-
tion features h. For the multi-grain stream, we use the first
m blocks of the server model to produce the middle-layer
feature fg,m, which will be fed into the shared bottom block
of the i-th client to obtain the teacher representations h̄m.
Finally, h and h̄m are fed into the i-th client classifier to pre-
dict their probabilities. To align the shallow representations
of client models, we require each client to achieve a similar
prediction with the teacher representations h̄m. Therefore,
the multi-grain knowledge distillation loss is defined as fol-
lows for the client model additionally:

LKD =

m̄∑
m=1

KL(Φi(h̄m),Φi(h)), (8)

where m̄ denotes the granularity of the feature we want to
align, KL(·) is Kullback Leibler divergence, and Φi(·) is
the i-th client classifier.

Accordingly, the overall classification loss is formulated
as a combination of losses in two streams as follows:

LCE = CE(Φi(h), y) +

m̄∑
m=1

CE(Φi(h̄m), y), (9)

where y is truth-label, and CE(·) is Cross Entropy. Note
that the server model does not contain UM but only IM. It
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Table 1. Comparison with different combinations of Vanilla FSAR and existing FL optimization methods, ablation studies for different
proposed modules, and performance with different baseline models. * Vanilla FSAR utilizes the FedAVG [30] for aggregation.

Backbone Model Client (Linear-Accuracy, %)

PKU MMD I PKU MMD II NTU RGB+D 60 NTU RGB+D 120 UESTC

STGCN [46]

Vanilla FSAR* 77.77 48.89 81.08 74.77 80.91
FedProx [21] 76.85 (-0.92) 47.81 (-1.08) 81.37 (+0.29) 75.32 (+0.55) 80.88 (-0.03)
FedBN [22] 78.13 (+0.36) 46.49 (-2.40) 78.45 (-2.63) 72.89 (-1.88) 79.72 (-1.19)
FedAGM [14] 78.05 (+0.28) 49.13 (+0.24) 81.56 (+0.48) 76.00 (+1.23) 79.27 (-1.64)
MOON [20] 75.69 (-2.08) 46.88 (-2.01) 79.45 (-1.63) 73.70 (-1.07) 81.48 (+0.57)
FSAR (Ours) 81.96 (+4.19) 56.30 (+7.41) 91.30 (+10.22) 84.31 (+9.54) 91.88 (+10.97)
FSAR w/o ATS 79.73 (+1.96) 52.38 (+3.49) 84.45 (+3.37) 76.83 (+2.06) 84.56 (+3.65)
FSAR w/o MKD 81.36 (+3.59) 53.83 (+4.94) 89.50 (+8.42) 83.34 (+8.57) 90.33 (+9.42)

CTR-GCN [1] Vanilla FSAR* 81.85 51.87 82.91 76.48 81.37
FSAR (Ours) 84.19 (+2.34) 59.04 (+7.17) 91.64 (+8.73) 84.91 (+8.43) 92.60 (+11.23)

MST-GCN [2] Vanilla FSAR* 79.01 50.14 81.98 74.93 80.89
FSAR (Ours) 82.48 (+3.47) 57.45 (+7.31) 90.07 (+8.09) 83.53 (+8.60) 91.53 (+10.64)

MS-G3D [29] Vanilla FSAR* 78.17 51.89 80.15 75.02 81.26
FSAR (Ours) 82.83 (+4.66) 57.98 (+6.09) 90.98 (+10.83) 84.84 (+9.82) 91.79 (+10.53)

makes sense since the IM is obligated to alleviate the diver-
gence between client and server while the UM is endowed
to retain personalized information locally.

3.5. Optimization Strategy

During training, we use momentum averaging strat-
egy [14] to accelerate the model training. Apart from
the global gradient-guided updates, a regularization term is
added for each client by calculating the L2−norm between
the parameters of the current client and central server:

LReg =
1

2
||Wr

g −Wr
i,k||2. (10)

Therefore, in each client-server communication round,
the individual i-th client is trained in an end-to-end manner
using the combination of the above losses:

L(Wi) = λ1LCE + λ2LKD + λ3LReg, (11)

where λ1, λ2 and λ3 are the coefficients to balance the loss.

4. Experiments
4.1. Datasets and Federated Scenarios

We evaluate our method on widely-used datasets of var-
ious scales for skeleton-based action recognition:

NTU RGB+D [35, 26] is a large-scale human action
recognition dataset. The NTU 60 contains 56,880 skeleton
action sequences, performed by 40 volunteers and catego-
rized into 60 classes. The NTU 120 extends NTU 60 with
additional 57,367 skeleton sequences over 60 extra action
classes. In total 113,945 samples over 120 classes are per-
formed by 106 volunteers.

PKU MMD [25] contains 20,000 action sequences cov-
ering 51 action classes. It consists of two subsets. PKU I
is an easier version for action recognition, while PKU II is
more challenging with more noise caused by view variation.

UESTC [11] is a newly built dataset for arbitrary-view
action analysis. There are a total of 25,600 sequences of 40
action classes performed by 118 subjects.

We conduct our experiments under the standard
federated-by-dataset scenario, where each client constructs
its own private dataset and then collaboratively conducts
federated learning with the central server. This conforms to
the definition of non-IID data distribution properties. Dur-
ing inference, we combine the central server backbone with
local client classifiers to perform action recognition. Fur-
thermore, we employed adaptated-to-unseen-dataset sce-
nario to analyze the generalization of our FSAR. Specif-
ically, we randomly select four of the total five datasets
for training the global model and then test the server back-
bone on the remaining one unseen dataset. We use Linear-
Accuracy and KNN-Accuaracy evaluation protocols for the
above two scenarios, respectively.

4.2. Implementation Details

All the experiments are conducted in the PyTorch [32]
framework. For data pre-processing, we resize each skele-
ton sequence to the length of 50 frames and adopt the code
of Yan et al. [46] for data augmentations. Cross-subject
evaluation protocol is adopted for NTU and PKU datasets.
For the backbone network ST-GCN, the batch size is 128,
the feature dimension is 128, and the channel is 1/4 of the
original setting. For optimization, we use SGD with mo-
mentum (0.9) and weight decay (0.0001) for local clients
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(a) PKU II (b) NTU 120 (c) UESTC

Figure 7. Comparison of Linear-Accuracy test curves between FSAR (purple), FSAR w/o MKD (green), and FSAR w/o ATS (orange). The
results are reported on PKU II (left), NTU 120 (middle), and UESTC (rigth) datasets. Our proposed FSAR achieves faster convergence
and higher accuracy on all datasets.

Table 2. KNN-Accuracy (%) on unseen datasets. Unseen dataset
refers to the individual one dataset used for testing, where the re-
maining four datasets are used for training the global model.

Settings Unseen datasets (KNN-Accuracy, %)

PKU I PKU II NTU 60 NTU 120 UESTC

Vanilla FSAR 75.81 45.18 81.62 71.51 84.89
FSAR (Ours) 78.39 48.83 82.33 73.04 87.66

Table 3. Linear-Accuracy (%) with respect to different combina-
tions of the proposed IM and UM matrices in the ATS module. The
incorporation of two matrices improves the performance greatly. ∗
denotes that the coefficients are learnable instead manually set.
α β γ PKU I PKU II NTU 60 NTU 120 UESTC

1 0 0 77.77 48.89 81.08 74.77 80.91
1 1 0 79.19 50.76 82.41 78.35 84.32
1 0 1 81.23 53.40 83.38 78.23 89.68
1 1 1 82.31 55.93 83.50 78.13 91.20
∗ ∗ ∗ 82.79 57.02 84.77 79.41 91.33

training. The overall FSAR model is trained with the local
epoch K = 1 and the total communication rounds R = 300.
The loss weights are set as λ1 = λ2 = 1 and λ3 = 0.1.

4.3. General Results

Comparison with FL methods. In Table 1, we replace
the aggregation strategy FedAVG [30] in Vanilla FSAR
with common FL optimization algorithms: FedProx [21],
FedBN [22], MOON [20], and FedAGM [14]. Results show
that most of the existing FL algorithms are beneficial for im-
proving the performance of Vanilla FSAR, while the gains
from them are limited. The accuracy gains they bring are
almost around 2%. This is because these algorithms lack
the consideration of handling heterogeneous skeleton struc-
tures. On the contrary, by revisiting human topology graphs
and disentangling specific skeleton joint connection knowl-
edge, our FSAR built by ATS and MKD outperforms vary-
ing combinations of FL methods under the same settings.
The test accuracy has a clear improvement of 10.97% on the
UESTC dataset, which indicates the effectiveness of FSAR
under the federated learning paradigms.

Scalability to advanced backbones. To thoroughly val-
idate the scalability of FSAR, three advanced backbones

Client: #PKU I Client: #NTU 60

IM
U

M

(e) Round = 1 (f) Round = 300 (g) Round = 1 (h) Round = 300

(a) Round = 1 (b) Round = 300 (c) Round = 1 (d) Round = 300

Figure 8. Visualization of the adjacent matrices IM and UM in the
ATS module. There exist considerable variations in the similarity
of the UM between clients (PKU I, NTU 60) at different training
rounds (round 1, round 300), while small for that of the IM.

are employed: CTR-GCN [1], MST-GCN [2], and MS-
G3D [29]. Table 1 demonstrates that the improvement of
FASR is still significant with stronger baselines, indicating
its potential and extensibility under different settings.

Generalization to unseen datasets. Table 2 demon-
strates the superiority of FSAR when directly testing the
globally generalized model on the unseen dataset, compared
with Vanilla FSAR, which neglects to deal with heteroge-
neous human typologies. Results indicate that FSAR is ca-
pable of learning a generalized global model under privacy
protections, which can serve as a strong feature extractor for
action representation on other datasets.

4.4. Ablation Studies

Effectiveness of different components. As shown
in Table 1, we investigate the effects of each module in our
model via ablation studies. Compared with FSAR w/o ATS,
FSAR w/o MKD can obtain more gains on average, 8.42%
on NTU 60, 8.57% on NTU 120, and 9.42% on UESTC,
which means that ATS brings slightly more benefit than
MKD. The test accuracy curves between different methods
in Fig. 2 and Fig. 7 also illustrate that the accession of ATS
and MKD largely alleviates the problem of convergence
of the training process, since the server aggregates human
topology structures from different datasets in an acquirable
manner progressively. The above significant enhancements
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Table 4. Variation of coefficients (∆) of the matrices in the ATS
module, when they are set learnable and dataset-specific (α = β =
γ = 1 are set as initialization). The variations of γ and β are large
in PKU II and NTU 120, respectively.

Coefficient PKU I PKU II NTU 60 NTU 120 UESTC Max/Min ∆

α 1.13 0.77 1.10 0.91 0.85 (-0.23/-0.09)
β 0.95 1.01 0.90 0.67 0.86 (-0.33/+0.01)
γ 0.86 1.27 0.85 1.07 1.11 (-0.27/+0.07)
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Figure 9. Ablation studies of different grains of feature from global
model considered as previous knowledge to distill clients. Both
federated settings achieve the best performance when b = 2.

in both numerical comparison and testing curves indicate
the significance of mining heterogeneous skeleton topology
and decreasing the client-server divergence.

Performance of ATS. We analyze the effectiveness of
IM and UM both qualitatively and quantitatively. From Ta-
ble 3, we can conclude that the UM alone does not gain
much for the model, while combined with IM, it further
boosts the performance and increases stability. The acces-
sion of UM and IM improves 4.54% and 7.04% on PKU I
and PKU II datasets, respectively. When changing the fac-
tors in Eq. (5) from manually set to learnable, the model
can further boost the performance. Table 4 reveals that
smaller datasets PKU II is equipped with larger factors
for IM (β = 1.01), contrast with larger dataset NTU 120
(β = 0.67), which avoids training fluctuations caused by
heterogeneity from large datasets and thus achieving more
gains (48.89% to 57.02%). We can also find that the γ on
PKU II and the β on NTU 120 vary a lot during the training
(∆γ = −0.27 and ∆β = −0.33). It can be inferred that
γ is beneficial for the small-size dataset by enhancing the
personalized matrix, and β serves the same via weakening
the generalized matrix from the large-size dataset. Further-
more, Fig. 8 demonstrates that the similarity of UM be-
tween different clients varies a lot before training (e, g) and
after training (f, h), while IM has slight variation. This indi-
cates that IM better mines shared topology graph structures
while UM retains personalized knowledge locally.

Performance of MKD. Fig. 9 reports how the number
of blocks we align impacts the performance. No loss of
generality, we federate PKU I with UESTC and PKU I with
NTU 60 to demonstrate the gains. The results show that
aligning features from the first two shallow blocks can boost
performance most, which achieves an accuracy of 94.3% on
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Figure 10. Visualization of the loss landscape. Compared with
Vanilla FSAR, FSAR has a much smoother surface, explaining its
superiority in convergence and training stability.

UESTC and 90.8% on NTU 60 for the above two settings.
This indicates that using different grains of features from
shallow blocks of the global model as the teacher knowl-
edge can lead the local model in the right direction. How-
ever, aligning deeper blocks cannot bring further improve-
ments (like b = 3) since deeper features are client-relevant,
and these personalized attributes should be retained locally.

4.5. Qualitative Analysis

To analyze why FSAR can achieve better training sta-
bility and convergence than Vanilla FSAR, we further plot
the loss landscape [18] of these two models in Fig. 10. The
figure demonstrates that FSAR has a much smoother loss
landscape than Vanilla FSAR, which indicates that the pro-
posed heterogeneous skeleton topology mining and shallow
motion features distilling mechanisms can help the individ-
ual clients learn more information about others during the
client-server communications. This alleviates the negative
effect caused by client drift, which further helps the model
to find the optimal faster and gain better convergence.

5. Conclusion

This paper takes the lead in introducing FL into skeleton-
based action recognition task and present a new paradigm
FSAR. We first investigate and discover that the heteroge-
neous human topology graph structure is the crucial factor
hindering training stability. To this end, we introduce an
Adaptive Topology Structure module to extract the intrin-
sic structure of skeleton topology which alleviates unstable
training. Furthermore, the Multi-grain Knowledge Distilla-
tion mechanism is developed to bridge the divergence be-
tween the local clients and the central server. Our proposed
benchmark and method provide practical solutions for FL
in skeleton-based action recognition and pave the way for
future research in this area, which positively contributes to
social privacy protection. Limitations. There is still room
of improvement to adaptively select the depth of feature in
MKD for distillation instead of manually set.
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