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Abstract

Targeting for detecting anomalies of various sizes for
complicated normal patterns, we propose a Template-
guided Hierarchical Feature Restoration method, which in-
troduces two key techniques, bottleneck compression and
template-guided compensation, for anomaly-free feature
restoration. Specially, our framework compresses hierar-
chical features of an image by bottleneck structure to pre-
serve the most crucial features shared among normal sam-
ples. We design template-guided compensation to restore
the distorted features towards anomaly-free features. Par-
ticularly, we choose the most similar normal sample as the
template, and leverage hierarchical features from the tem-
plate to compensate the distorted features. The bottleneck
could partially filter out anomaly features, while the com-
pensation further converts the reminding anomaly features
towards normal with template guidance. Finally, anoma-
lies are detected in terms of the cosine distance between the
pre-trained features of an inference image and the corre-
sponding restored anomaly-free features. Experimental re-
sults demonstrate the effectiveness of our approach, which
achieves the state-of-the-art performance on the MVTec
LOCO AD dataset.

1. Introduction

Anomaly detection is typically treated as an out-of-
distribution detection problem, which learns the distribution
from normal samples during training and detects outliers
as anomalies during inference. Existing anomaly detection
methods have achieved promising results on the MVTec AD
benchmark [4], which is mainly composed of images with
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Figure 1: Anomaly detection on different categories. From
top to bottom: breakfast box, pushpins, splicing connectors
in MVTec LOCO AD [3], and cable, transistor in MVTec
AD [4]. From left to right: normal image, anomaly im-
age, anomaly maps of PatchCore [28], RD4AD [11] and
our method, and ground truth. The red color corresponds
to high anomaly score, whereas the blue represents low
anomaly score. Best view in color.

simple normal patterns, i.e. the material surface is uniform,
and background is clean, and only one object exists. How-
ever, in many practical applications, normal samples are
composed of multiple objects placed by rule, such as PCBs
with multiple electronic components, printed surfaces with
diverse contents and products with parts assembly. Figure 1
illustrates several examples with complicated structures and
predefined normal layout patterns. For example, a normal
breakfast box contains oatmeal, nuts, oranges, and peach,
which are carefully arranged following a certain rule. Its
complicated normal pattern creates difficulties for the exist-
ing methods to formulate its normal distribution, and conse-
quently leads to degradation on detection accuracy. More-
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over, the accurate anomaly localization is critical in practi-
cal industrial scenarios for evaluating the impact of defects
and identifying their underlying causes. Therefore, to en-
hance the usability of anomaly detection methods in various
practical scenarios, it is crucial to resolve the challenges as-
sociated with complex normal patterns and the requirements
for accurate localization.

Substantial anomaly detection methods can be catego-
rized as the embedding-based paradigm, as shown in Fig-
ure 2 (a). These methods identify anomalies based on the
patch-level dissimilarity between the input embedding fea-
ture extracted from a pre-trained network and the normal
feature distribution, through such as kNN [9, 25, 28], Maha-
lanobis distance [10, 26] or normalizing flows [30, 14, 44].
These methods rely on patch-wise feature comparison and
prefer to detect local anomalies rather than global anoma-
lies. Once the normal patterns become complicated, the cor-
responding normal distribution becomes challenging to be
formulated, which in turn harms the detection performance.

From the aspect of reconstruction quality divergence, nu-
merous reconstruction-based methods [13, 39, 16] are pro-
posed to expect perfect reconstruction on normal regions
and poor reconstruction on anomaly regions, as shown in
Figure 2 (b), where the samples could be images or features.
The reconstruction-based paradigm is highly adaptable to
normal samples with complicated distributions, making it
suitable for anomaly detection with rich diversity. How-
ever, they suffer from a significant drawback that in certain
cases they may fail to detect defects, where the anomaly re-
gions are reconstructed with similar quality as the normal
regions. Meanwhile, reconstruction-based methods often
incorporate autoencoder (AE) that involves several down-
sampling operations. Image details are susceptible to being
lost due to feature compression operations, which leads to
blurry outputs with large reconstruction error even for nor-
mal samples [16], and inevitably causes inaccurate identifi-
cation of defect locations.

To address the challenges of the complicated normal data
and the growing demand on accurate defect localization,
we propose Template-guided Hierarchical Feature Restora-
tion (THFR) network for anomaly detection, which restores
anomaly-free features. The basic idea of our method is
shown in Figure 2 (c), the image features are first com-
pressed with bottleneck structure to filter out anomaly fea-
tures at different levels, and then the distorted features are
compensated with template embedding features, which is
retrieved from template bank through image-level nearest
neighbor search. The bottleneck structure in our approach
is designed to retain the essential features that are common
to normal samples. To achieve this, we propose global bot-
tleneck and local bottleneck that respectively preserve nor-
mal semantic features and normal detailed features. We es-
tablish a template bank using multi-level embedding fea-

tures of normal samples, and retrieve the most similar sam-
ple as the template based on the cosine similarity with
the input feature. Additionally, we introduce a template-
guided compensation module that leverages relation repre-
setation between input features and template features to re-
store anomaly-free features.

Thanks to the template guidance and hierarchical com-
pensation design, our method achieves state-of-the-art per-
formance on MVTec LOCO AD [3], a dataset containing
normal patterns of rich diversity, and also achieves compet-
itive performance on MVTec AD [4], which is commonly
used as anomaly detection benchmark.

In summary, our main contributions are threefold:

• We propose a new framework to tackle the problem of
anomaly detection upon data of rich diversity, in which
the anomaly-free features with complicated distribu-
tion can be restored from the anomaly features with
the guidance of template features.

• We design bottleneck compression to retain normal
features while partially filtering out anomaly features,
and propose template-guided compensation that lever-
age template embedding features to restore the dis-
torted features towards normal.

• Extensive experiments on the standard benchmarks
demonstrate the outstanding performance of the pro-
posed method, especially for localization.

2. Related work
Unsupervised anomaly detection methods are trained on

normal samples, while testing on both normal and anomaly
samples. Classical anomaly detection methods [36, 38, 32,
42] treat the task as one class classification and focus on
defining a compact closed one-class distribution.

Embedding-based methods Embedding-based methods
use deep neural networks pre-trained on a large dataset
to extract features from an image for anomaly detection
and localization. Schirrmeister et al. [34] show that large
natural-image datasets such as ImageNet [12] can extract
more powerful features than a small application specific
dataset. SPADE [9] uses a pre-trained network with multi-
scale pyramid pooling and segments the anomalies region
via among input image features and kNN normal features.
PatchCore [28] also uses nearest neighbor to detect anomaly
and meanwhile leverages greedy coreset subsampling to
lighten memory bank. Different from methods using mem-
ory bank, PaDiM [10] abandons slow kNN algorithm and
uses Mahalanobis distance metric as an anomaly score.
There are follow-up methods [50, 17] to continue to im-
prove the effectiveness of normal features based on Maha-
lanobis distance. DifferNet [30], CFLOW [14] and Fast-
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(a) Embedding-based paradigm [9,11] (b) Reconstruction-based paradigm [8] (c) Restoration-based paradigm (ours)
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(c) Restoration-based THFR method (ours)

Figure 2: Different paradigms for anomaly detection. (a) Embedding-based methods detect anomaly based on patch-level
pre-trained feature similarity. (b) Reconstruction-based methods detect anomaly relying on the assumption that anomalies
cannot be reconstructed with good quality. (c) THFR method detects anomaly by comparison between the original and
restored anomaly-free features. It utilizes a combination of global and local bottlenecks to filter out anomaly features, known
as the G-L bottleneck, and restores distorted features with template features retrieved by image-level nearest neighbor search.

Flow [44] utilize normalizing flows to explicitly approxi-
mate the data density, and detect anomaly samples based on
their assigned likelihood. It is challenging for embedding-
based methods to model the normal distribution when the
patterns are complicated.

Reconstruction-based methods Reconstruction-based
methods are proposed based on an assumption that a model
trained on normal data only, cannot represent or recon-
struct the anomalies accurately [51, 6]. They typically
reconstruct samples from the manifold of the training data,
using generative adversarial network (GAN) [20], autoen-
coder (AE) [29], or variational autoencoder (VAE) [19].
DAGAN [37] trains autoencoder with adversarial losses as
the anomaly score of the image. RIAD [47], InTra [23],
and SCADN [41] design inpainting frameworks and train
models on masked normal data to recover the unseen
regions using context for anomaly detection. Deng et
al. [11] propose a feature reconstruction network, in which
the decoder reconstructs multi-level pre-trained features.
Ristea et al. [27] integrate the reconstruction-based func-
tionality into a generic self-supervised block to improve the
anomaly detection performance.

Nevertheless, due to the powerful representation capa-
bility of CNNs, considerable anomalies are reconstructed
as well as the normal samples, leading to hypothesis fail-
ure. Several memory augmented networks [13, 16, 22]
are proposed to enlarge the reconstruction quality gap be-
tween normal and anomaly regions. However, these learn-
able memory based methods focus on patch-wise normal
feature representation and thus fail to tackle layout anoma-
lies. Meanwhile, the down-sampling operations are com-
monly used for crucial feature extraction in reconstruction-
based methods, causing the loss of detailed information,
which harms the pixel-level anomaly localization accuracy.

Several works [2, 16] adopt skip-connection to assist the
reconstruction of details, but anomaly information is also
passed to the decoder, resulting in defect leakage.

Our method aims to restore anomaly-free features from
anomaly features instead of recognizing the reconstruction
quality gap. For more effective restoration, we filter anoma-
lies via bottleneck and recover the normal pattern and de-
tails through template-guided compensation. Note that our
method uses the image-level pre-trained features of normal
samples as templates to provide both global normal pattern
priors and detailed normal feature priors for restoration.

Distillation-based methods have recently been success-
fully applied to anomaly detection, where anomalies are
identified based on feature differences between a teacher
network pre-trained on a large dataset and a student network
trained only on normal samples using knowledge distilla-
tion [7, 5, 33, 3, 11, 40, 31]. Additionally, some researchers
have attempted to convert unsupervised anomaly detection
into a supervised learning task by augmenting normal sam-
ples with pseudo-anomalies [24, 21, 46, 35]. However,
these approaches are prone to bias towards pseudo outliers
and fail to detect a large variety of anomaly types. To im-
prove the embedding feature quality, Zou et al. [52] propose
SPD which leverage pseudo anomalies as negative sample
for contrastive self-supervised pre-training instead of super-
vised pre-trained with classification.

3. Method
The overview architecture of our proposed method is

shown in Figure 3. Our method first obtains the multi-level
embedding features of a given image using a backbone pre-
trained on ImageNet [12] as feature extractor. In the training
stage, these embedding features are treated as the targets of
feature restoration. In order to filter out the anomalies of
various sizes, the embedding features are compressed by
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Figure 3: Overview architecture of proposed Template-guided Hierarchical Feature Restoration (THFR) framework. (a)
THFR consists of one pre-trained backbone encoder, bottleneck, and a restoration decoder. Given a test image, THFR uses
ImageNet pre-trained backbone encoder to extract features for restoration target. THFR compresses input features through
bottleneck, and the compressed features are compensated by template features retrieved from the template bank using image-
level nearest neighbor search (image NNS). Finally, anomaly detection is performed in terms of the cosine distance between
restored anomaly-free features and input features. (b) Detailed network design of global bottleneck and local bottleneck.

global bottleneck (GBN) and local bottleneck (LBN).
The compression along spatial and channel dimensions

inevitably causes information loss on features. To recover
the normal pattern with compensation for the lost details,
we establish a template bank to record image-level normal
embedding features and retrieve the most similar normal
feature from the template bank through an image-level near-
est neighbor search module called image NNS, and treat the
retrieved result as template to guide feature restoration.

3.1. Bottleneck

We design global bottleneck and local bottleneck that hi-
erarchically compress the embedding features to retain the
crucial normal features at multiple levels, and thereby fil-
ter out anomaly features caused by anomalies of various
sizes. The previous reconstruction-based works [13, 16, 11]
use a fixed-scale loose bottleneck, which works on small-
scale anomalies, but underperforms when anomalies are of
large sizes. In our network, uncompressed template embed-
ding features could provide rich hierarchical normal fea-
tures while compensating the compressed features, so we
could employ the bottleneck of different tightness to effec-
tively filter anomaly features and obtain compact normal
representation.

For a given image, its multi-level pyramid features Ik ∈
RHk×Wk×Ck are extracted by pre-trained ResNet [15] and
fed into bottleneck structure for hierarchical compression,
where Hk × Wk denotes the spatial dimension, Ck is the
number of channels and k indicates the layer index with
maximum value equal to K. The input feature maps are dis-
tinct between global bottleneck and local bottleneck. Spe-
cially, the high-level feature IK is fed to global bottleneck,
while [I1, · · · , IK ] for local bottleneck.

Global bottleneck Considerable large-size anomalies re-
sult from missing or misplaced normal components [3],
which appear to be globally abnormal but locally normal,
creating difficulties for existing anomaly detection methods.
We propose global bottleneck to preserve the most represen-
tative normal semantic features and filter out the anomaly
semantic features. As shown in Figure 3 (b), global bot-
tleneck reforms the deep-level feature IK by a ResBlock
and then compress the features by global maxpooling, pro-
ducing a feature vector ZGBN ∈ R1×1×2CK . Global max-
pooling extremely compresses the feature spatially to elim-
inate the anomaly features. It could alleviate the attention
on object misalignment and instead focuses on global pat-
tern representation. Finally, we use 2×2 deconvolution [48]
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with stride 2 to upsample the compressed feature ZGBN to a
8×8 spatial feature map for succeeding feature restoration.

Local bottleneck Besides the compression on semantic
features, we introduce a trainable local bottleneck to com-
press the multi-level features to preserve the local normal
features and filter out the local anomaly features. The de-
sign of the local bottleneck follows the work [11], as shown
in Figure 3 (b). To align multi-level features, the shallow
features are downsampled through 3×3 convolution layers
with stride of 2. We concatenate multi-level representations
and fuse them by a ResBlock to obtain compressed feature
ZLBN ∈ R

HK
2 ×WK

2 ×2CK , which is fed into detail compen-
sation module for fine-grained feature restoration.

3.2. Template-guided compensation

Although the essential normal features are kept during
compression, the information loss on normal features is un-
avoidable and needs to be compensated. We leverage multi-
level normal embedding features as template to guide fea-
ture restoration. Since there is no one-to-one correspon-
dence between the positional information of input and tem-
plate features, we leverage the relationship between the in-
put and template features to guide the restoration process.
We fuse the input and template by stacking these two em-
beddings and the relation feature, and then passing them
through multiple 1×1 convolution layers. The fused feature
is fed to a series of ResBlocks for further restoration.

Template bank We construct template bank using image-
level pre-trained features extracted from N normal samples
in the all train set as B = {B1

1 , · · · , Bi
k, · · · , BN

K}, where
Bi

k represents the k-th layer template feature of the i-th nor-
mal sample in template bank. During inference, We could
reduce template bank using coreset subsampling method
[1, 8] to reduce inference time and memory usage.

Image-level nearest neighbor search Given an input
sample, we take the deepest pre-trained K-th layer feature
IK as the query to retrieve its correlated template. Image
NNS obtains the template with index t by randomly select-
ing from the template candidates which are n most similar
templates to increase the robustness during the training pro-
cess. The template selection process could be formulated as
follows:

t = random( argmin
S⊂{1,··· ,N},|S|=n

∑
i∈S

d(IK , Bi
K)), (1)

where d(·) denotes the image-level distance between input
feature query IK and template feature key Bi

K by flattening
them to vectors to compute cosine distance. S is a subset of
{1, · · · , N} denotes the indexes of n template candidates,
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Figure 4: Template-guided compensation process. We
leverage normal template feature to guide anomaly-free fea-
ture restoration with the relation representation between the
input feature and the template feature.

which are the top-n nearest neighbors of the input feature
IK . Note that, the n set to 1 during inference. Compared
with the traditional point-by-point search strategy, image
NNS not only ensures that the reference is completely nor-
mal but also improves search efficiency. The multi-level
embedding features of the template sample are used as ref-
erences in the corresponding feature level, which are de-
noted as T for simplicity.

Relation representation We use pairwise relation [49]
between input feature and template feature as additional in-
formation to restore normal feature. Specifically, we use
rIi→T j to represent the relation from the i-th feature point
of input feature to the j-th feature point of the template fea-
ture. The pairwise relation can be defined as a dot-product
affinity in the embedding spaces as:

rIi→T j = θ(Ii)⊤ϕ(T j) (2)

where θ and ϕ are two embedding functions implemented
by a 1×1 spatial convolutional layer. Similarly, we can
get the affinity from j-th feature point of template fea-
ture to i-th feature point of input feature as rT j→Ii . We
use the pair (rIi→T j ,rT j→Ii ) to describe the bi-directional
relation between i-th feature point of input feature to j-
th feature point of template feature. Then, we represent
the relation matrix R ∈ Rm×m among all the nodes,
where m is the resolution of the feature. The bi-directional
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pairwise relation vector of i-th feature point is ri =
[rIi→T{1,··· ,m} , rT i→I{1,··· ,m} ]. For example, as shown in
Figure 4, the third row and the third column of the relation
matrix, i.e. r3 = [rI3→T{1,··· ,9} , rT 3→I{1,··· ,9} ]. In this re-
lation vector, the first half channels indicate the relation that
regards the input feature point as query and template feature
point as key, while the second half indicates the relation of
reverse operation. The bi-directional pairwise relation vec-
tors of all nodes form the relation feature.

Feature compensation We leverage normal template fea-
tures to guide anomaly-free feature restoration. As shown in
Figure 4, the input compressed feature with channel size C
is projected to input embedding Ei ∈ RH×W×Ci , and the
template feature with channel size C is projected to tem-
plate embedding Et ∈ RH×W×Ct . Here, Ci represents
the channel size of input embedding, and Ct represents the
channel size of template embedding, while H and W repre-
sent the height and width of the feature maps, respectively.
The values of Ci and Ct can be adjusted with respect to
the feature compression method used. For global bottle-
neck compression, Ci is set to the original channel size C to
provide detailed information, while Ct is set to 1 to gener-
ate normal layout guidance for high-level semantic feature
compensation. For local bottleneck compression, Ci is set
to 1 to provide spatial layout guidance, and Ct is set to C
to supply detail feature for low-level feature compensation.
Then, we concatenate the input embedding Ei, the template
embedding Et and the relation feature, and passing them
through multiple 1×1 convolution layers to get the restored
feature. In order to explicitly demonstrate the effectiveness
of our method, we visualize the restored feature using a vi-
sualization network [43] in experiment.

3.3. Loss

We use the cosine distance between the pre-trained fea-
ture and restored feature as restoration loss, as it is capable
to evaluate the feature differences at multi-levels regardless
of feature dimension differences among each level. Mathe-
matically, for input feature I and restored feature Î , we cal-
culate their feature cosine distance along the channel axis
as restoration loss:

Lk = 1− I⊤k · Îk
∥Ik∥∥Îk∥

, (3)

where Lk denotes the restoration loss of k-th level.

3.4. Anomaly map

In the testing phase, we detect anomalies in terms of
the cosine distance between the pre-trained feature of an
inference image and the corresponding restored anomaly-
free feature. The restored feature tends to be close to in-
put image feature for the normal regions, and departs on

anomalies. Mathematically, we calculate pixel-wise cosine
distance to obtain a 2D anomaly map in k-th level:

Mk(h,w) = 1− (Ik(h,w))
⊤ · Îk(h,w)

∥Ik(h,w)∥∥Îk(h,w)∥
, (4)

where (h,w) denotes the position of the feature vector, and
Mk ∈ RHk×Wk . The final anomaly map is calculated as:

M =

K∑
k=1

Uk(Mk), (5)

where Uk(·) denotes the upsampling operation of k-th
anomaly map. In order to remove the noises in the score
map, we smooth anomaly map M by a Gaussian filter.

4. Experiments
4.1. Experimental setup

Datasets We evaluate the proposed method on two indus-
trial anomaly detection datasets: MVTec LOCO AD [3]
and MVTec AD [4]. MVTec LOCO AD consists of 5 real-
world sub-datasets for anomaly detection, including 1772
images for training, 304 for validation and 1568 for testing.
The normal samples in MVTec LOCO AD often have com-
plicated patterns, and the anomaly samples appear in form
of logical or structural anomalies [3]. MVTec AD dataset
consists of 15 real-world sub-datasets, with 5 categories of
textures and 10 categories of objects. It contains 3629 train-
ing images and 1725 test images. Note that all the training
images of the two datasets are normal, while some of test
images are normal and others are anomalies.

Implementation details In our experiments, anomaly de-
tection and localization are performed on one category at a
time. We resize input images to 256 × 256 for data pre-
processing and use pre-trained WideResNet50 [45] on Ima-
geNet as feature extractor, with the deepest feature level K
set to 3. To train our THFR network, we utilize Adam opti-
mizer [18] and set the learning rate to 0.005. Each model is
trained for 200 epochs with a batch size of 16 on NVIDIA
Tesla V100 GPU. We use Gaussian filter with σ = 2 to
smooth anomaly map on MVTec LOCO AD, while σ = 4
on MVTec AD. For training sample pair selection, we use
n = 1 for all categories in MVTec LOCO AD and n = 6
for all categories in MVTec AD.

Evaluation metrics To fairly compare with other meth-
ods, we follow the common evaluation metrics of each
dataset. For MVTec AD [4], we take area under the receiver
operating characteristic (AUROC) as the image-level and
pixel-level evaluation metric, and per-region-overlap (PRO)
for pixel-level evaluation metric, which can better evaluate
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Table 1: Pixel-level anomaly localization accuracy on MVTec LOCO AD dataset (sPRO) [3]. Remarkably, our approach
achieves state-of-the-art performance in four categories and the mean of all categories. Best and second-best scores are
bolded and underlined.

Method Breakfast Screw Bag Pushpins Connectors Juice Bottle Mean
S-T [5] 49.6 60.2 52.3 69.8 81.1 62.6
DRÆM [46] 49.9 49.0 49.3 67.3 80.0 59.1
CFLOW [14] 48.6 60.2 55.1 71.6 83.6 63.8
RD4AD [11] 42.2 57.4 61.4 71.3 85.1 63.5
PatchCore [28] 51.6 59.8 53.5 75.7 83.2 64.7
GCAD [3] 50.2 55.8 73.9 79.8 91.0 70.1
THFR (ours) 58.3 61.5 76.3 84.8 89.6 74.1

Table 2: Image-level anomaly detection accuracy on MVTec LOCO AD dataset (AUROC) [3]. Remarkably, our approach
achieves the state-of-the-art performance on four categories and the mean of all categories. Best and second-best scores are
bolded and underlined.

Method Breakfast Screw Bag Pushpins Connectors Juice Bottle Mean
S-T [5] - - - - - 77.3
DRÆM [46] 75.7 72.7 76.0 82.5 93.9 80.1
CFLOW [14] 77.4 73.0 76.0 82.6 95.3 80.8
RD4AD [11] 68.7 74.9 75.9 84.4 94.8 79.7
PatchCore [28] 77.1 73.3 74.1 86.0 94.6 81.0
GCAD [3] - - - - - 83.3
THFR (ours) 78.0 73.7 88.3 92.7 97.1 86.0

Table 3: Anomaly detection and localization results on
MVTec AD dataset [4], including image-level and pixel-
level AUROC, and pixel-level PRO. Best and second-best
scores are bolded and underlined. * To ensure fair compar-
ison with previous studies, CFLOW [14] is evaluated using
input images with resolution of 256x256 pixels.

Method Image Pixel Pixel(PRO)
SPADE [9] 85.5 96.0 91.7
PaDiM [10] 95.3 97.5 92.1
S-T [5] - - 91.4
DRÆM [46] 98.0 97.3 -
CFLOW * [14] 96.8 97.9 92.7
RD4AD [11] 98.5 97.8 93.9
PatchCore [28] 99.1 98.1 93.4
THFR (ours) 99.2 98.2 95.0

the performance of small size anomalies through weighting
ground-truth regions of different size equally. Following
the protocol mentioned in [5], we evaluate the PRO value
for a large number of increasing thresholds until an average
per-pixel false-positive rate of 30% for the entire dataset
is reached. For MVTec LOCO AD [3], we use AUROC
to measure image-level performance, and use saturated-per-
region-overlaps (sPRO) [3] with per-pixel false-positive rate
of 5% to evaluate pixel-level performance.

4.2. Main results

We compare the proposed model with several deep
learning-based methods for anomaly detection as base-
lines, including embedding-based methods [9, 10, 14, 28],
reconstruction-based methods [11, 46], distillation-based
methods [5, 11, 3], and data-augmented methods [46].

MVTec LOCO AD Anomaly detection results on MVTec
LOCO AD [3] are presented in Table 1 and Table 2. In
comparison with the SOTA method [3], our approach ob-
tain an absolute AUROC gain of 2.7% for the image-level
detection, and an remarkable absolute sPRO gain of 4.0%
for the pixel-level localization. Our approach achieves new
state-of-the-art performance on both detection and localiza-
tion results, and surpasses other methods by a large margin.
More detailed results will be provided in the supplementary
materials.

MVTec AD Quantitative comparison results on MVTec
AD [4] between baselines and our approach are summarized
in Table 3. For overall categories, our method produces
comparable results with the other advanced methods. Our
approach excels in achieving high accuracy on both image-
level detection and pixel-level localization at the same time.
More detailed results will be presented in the supplementary
materials.
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Normal Anomaly Recon GBN LBN G-L bottleneck THFR Anomaly map GT

Figure 5: Visualization of restored features from different restoration networks. From left to right: normal image, anomaly
image, reconstructed images from the pre-trained embedding features (Recon), restored features of restoration network only
with GBN, only with LBN, with G-L bottleneck, and with our template-guided hierarchical feature restoration framework,
anomaly map, and ground truth. The visualization results show how restoration networks progressively achieve anomaly-free
restoration with G-L bottleneck and hierarchical feature compensation.

4.3. Ablation study

To explicitly demonstrate the effectiveness of our
method, we visualize the restored features using a visual-
ization network. We investigate the effectiveness of bottle-
neck design and template-guided compensation, and study
the the influence of subsampling within the template bank.

Visualization of restored features As shown in Figure 5,
we visually compared the pre-trained feature with the re-
stored feature acquired from the network utilizing a visu-
alization network [43]. We observe that the restoration
networks employing solely local bottleneck (LBN) cannot
effectively filter out anomalies that violate complex nor-
mal rules, such as missing connector heads and absent la-
bels on the juice bottle. On the other hand, restoration net-
works with only global bottleneck (GBN) can filter out rule-
breaking anomalies, but it encounters challenges in accu-
rately restoring intricate details, such as the recovery of oat-
meal and banana slices in the breakfast box. The restoration
network with G-L bottleneck also has anomaly feature leak-
age after bottleneck compression, manifesting as anomalies
like the irregular coloration of the juice. In contrast, our
THFR network recovers anomaly-free feature through both
semantic level correction and detailed feature compensa-
tion, resulting in an effective restoration to normal of var-
ious types of anomaly areas.

Impact of bottleneck Table 4 shows anomaly detection
performance of local bottleneck and global bottleneck on
MVTec LOCO AD dataset. The dataset has a rich diversity
of data and anomalies, and the combination of local bottle-
neck and global bottleneck yields substantial enhancements
in detection and localization results. Figure 6 illustrates
that the global bottleneck primarily concentrates on filter-
ing large-size anomalies, while the local bottleneck excels
in filtering small-size anomalies.

Normal Anomaly GBN LBN GT

Figure 6: Visualization of anomaly detection results with
different bottlenecks.

Normal Anomaly W/O comp. W/ comp. GT

Figure 7: Visualization of anomaly detection results with
or without template-guided compensation. More precise lo-
calization results are obtained with template-guided com-
pensation.

G-L bottleneck vs. different defect size To access the
ability of different bottleneck designs to detect anomalies
of different sizes, we categorize defect images of LOCO [3]
into 6 groups based on their defect sizes, and compare the
performance of the restoration networks with LBN only,
GBN only, and a combination of the two on these 6 groups
in terms of anomaly localization. As shown in Figure 8,
the accuracy of anomaly localization varies with the size of
defects. LBN performs well on small defects, while GBN
exhibits superior performance on large defects. The best
performance is achieved by using a combination of LBN
and GBN across all groups.

Impact of template-guided compensation The effec-
tiveness of our compensation design, with or without com-
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Figure 8: Performance comparison of the restoration net-
works with distinct bottleneck settings on varying defect
sizes in terms of anomaly localization. We divide anomaly
samples into 6 groups based on defect sizes, and show the
percentage of each group with a bar chart.

pensation,is shown in Table 5 and Figure 7. Our compen-
sation design improves detection result by 2.8% and local-
ization result by 2.9% over the baseline on MVTec LOCO
AD, and improves detection result by 0.6%, localization re-
sult by 0.4% and localization (PRO) result by 1.1% over
the baseline on MVTec AD. By incorporating compensation
design, it is possible to enhance the precision of localiza-
tion and achieve more accurate coverage of abnormal areas.
We also investigated the impact of relation design in our
compensation module. The relation design improves detec-
tion result by 6.3% and localization result by 5.4% over the
baseline on MVTec LOCO AD, and improves detection re-
sult by 0.5%, localization result by 0.1% and localization
(PRO) result by 0.4% over the baseline on MVTec AD.

Impact of template bank subsampling The inference
time and memory usage are highly relevant to the size of
the template bank. We adopt coreset subsampling [1, 8]
to find a subset that best describes the template bank dur-
ing the testing phase. In Table 6, we compare performance
of template banks with different subsampling ratios, and
observe that subsampling has little impact on performance
of MVTec AD. Although subsampling slightly reduces the
mean detection accuracy of MVTec LOCO AD, its detec-
tion accuracy surpasses peers by a remarkable margin.

4.4. Complexity analysis

We compare inference speed and memory usage with
different methods in Table 7. The inference time is mea-
sured with Intel Xeon E5-2698v4. Because the backbones
are identical (i.e. WideResNet50 [45]), we only report com-
plexity on the additional models. We use image NNS and
template bank subsampling to improve searching efficiency
and reduce memory cost. Compared with peer works, our
method with tempalte bank subsampling to 10% obtain
competitive performance on complexity and accuracy.

Table 4: The impact of bottleneck design on MVTec LOCO
AD Dataset. Best scores are bolded.

Metrics\Bottleneck GBN LBN G-L bottleneck
Image-level 79.7 80.3 86.0
Pixel-level 55.6 66.8 74.1

Table 5: Ablation study on template compensation and re-
lation representation. Best scores are bolded.

Dataset LOCO [3] AD [4]
w/ temp. w/ rela. Image Pixel Image Pixel Pixel(PRO)

83.2 71.2 98.5 97.8 93.9
✓ 79.7 68.7 98.6 98.1 94.6
✓ ✓ 86.0 74.1 99.2 98.2 95.0

Table 6: Anomaly detection performance with template
bank subsampling at different ratios.

Dataset\Ratio 10% 25% 50% 100%

LOCO [3]
Image 85.6 86.0 86.0 86.0
Pixel 73.7 74.0 74.0 74.1

AD [4]
Image 99.1 99.2 99.2 99.2
Pixel 98.1 98.2 98.2 98.2

Pixel(PRO) 95.0 95.0 95.0 95.0

Table 7: The comparison of pre-trained based approaches
in terms of inference time (s), memory usage (MB), and
performance (image/pixel/pixel-PRO) on MVTec AD [4].

Method Inf. time Memory Performance
CFLOW [14] 0.178 947 (96.8/97.9/92.7)
RD4AD [11] 0.079 352 (98.5/97.8/93.9)
PatchCore(100%) [28] 0.149 1015 (99.1/98.0/93.3)
PatchCore(10%) [28] 0.113 102 (99.0/98.1/93.5)
Ours(100%) 0.130 1130 (99.2/98.2/95.0)
Ours(10%) 0.099 448 (99.1/98.1/95.0)

5. Conclusion

In the practical industrial scenarios, it is challenging to
identify anomalies from the complicated normal patterns,
and meanwhile precisely localize the anomalous regions of
various sizes. We propose a novel template-guided hier-
archical feature restoration network for anomaly detection.
The proposed method recovers anomaly-free features from
anomaly features by using bottleneck to filter anomaly fea-
tures, and compensating compressed features with template
retrieved from template bank. The hierarchical design bene-
fits detection upon anomalies of various sizes. Experimental
results demonstrate the effectiveness of our approach, espe-
cially on localization. Our method achieves state-of-the-art
performance on MVTec LOCO AD dataset.
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