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Abstract

A common architectural choice for deep metric learn-
ing is a convolutional neural network followed by global
average pooling (GAP). Albeit simple, GAP is a highly
effective way to aggregate information. One possible
explanation for the effectiveness of GAP is considering
each feature vector as representing a different seman-
tic entity and GAP as a convex combination of them.
Following this perspective, we generalize GAP and pro-
pose a learnable generalized sum pooling method (GSP).
GSP improves GAP with two distinct abilities: i) the
ability to choose a subset of semantic entities, effec-
tively learning to ignore nuisance information, and ii)
learning the weights corresponding to the importance of
each entity. Formally, we propose an entropy-smoothed
optimal transport problem and show that it is a strict
generalization of GAP, i.e., a specific realization of the
problem gives back GAP. We show that this optimization
problem enjoys analytical gradients enabling us to use it
as a direct learnable replacement for GAP. We further
propose a zero-shot loss to ease the learning of GSP.
We show the effectiveness of our method with extensive
evaluations on 4 popular metric learning benchmarks.
Code is available at: GSP-DML Framework

1. Introduction

Distance metric learning (DML) addresses the prob-
lem of finding an embedding function such that the
semantically similar samples are embedded close to
each other while the dissimilar ones are placed rel-
atively apart in the Euclidean sense. Although the
prolific and diverse literature of DML includes various
architectural designs [9, 24,33], loss functions [39], and
data-augmentation techniques [47, 55], many of these
methods have a shared component: a convolutional neu-
ral network (CNN) followed by a global pooling layer,
mostly global average pooling (GAP) [39].

Common folklore to explain the effectiveness of GAP

†Affiliated with OGAM-METU during the research.

is considering each pixel of the CNN feature map as
corresponding to a separate semantic entity [14]. For
example, spatial extent of one pixel can correspond to
a "tire" object making the resulting feature a represen-
tation for "tireness" of the image. If this explanation is
correct, the representation space defined via output of
GAP is a convex combination of semantically indepen-
dent representations defined by each pixel in the feature
map. Although this folklore is later empirically studied
in [64,70,71, and references therein] and further verified
for classification in [13, 62], its algorithmic implications
are not clear. If each feature is truly representing a
different semantic entity, should we really average over
all of them? Surely, some classes belong to the back-
ground and should be discarded as nuisance variables.
Moreover, is uniform average of them the best choice?
Aren’t some classes more important than others? In
this paper, we try to answer these questions within
the context of metric learning. We propose a learnable
and generalized version of GAP which learns to choose
the subset of the semantic entities to utilize as well as
weights to assign them while averaging.

In order to generalize the GAP operator to be learn-
able, we re-define it as a solution of an optimization
problem. We let the solution space to include 0-weight
effectively enabling us to choose subset of the features
as well as carefully regularize it to discourage degen-
erate solution of using all the features. Crucially, we
rigorously show that the original GAP is a specific case
of our proposed optimization problem for a certain re-
alization. Our proposed optimization problem closely
follows optimal transport based top-k operators [6] and
we utilize its literature to solve it. Moreover, we present
an algorithm for an efficient computation of the gradi-
ents over this optimization problem enabling learning.
A critical desiderata of such an operator is choosing sub-
set of features which are discriminative and ignoring the
background classes corresponding to nuisance variables.
Although supervised metric learning losses provide guid-
ance for seen classes, they carry no such information
to generalize the behavior to unseen classes. To enable
such a behavior, we adopt a zero-shot prediction loss
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as a regularization term which is built on expressing
the class label embeddings as a convex combination of
attribute embeddings [7, 62].

In order to validate the theoretical claims, we design
a synthetic empirical study. The results confirm that
our pooling method chooses better subsets and improve
generalization ability. Moreover, our method can be
applied with any DML loss as GAP is a shared com-
ponent of them. We applied our method on 6 DML
losses and test on 4 datasets. Results show consistent
improvements with respect to direct application of GAP
as well as other pooling alternatives.

2. Related Work

Our contributions. Briefly, our contributions in-
clude that i) we introduce a general formulation for
weighted sum pooling, ii) we formulate local feature se-
lection as an optimization problem which admits closed
form gradient expression without matrix inversion, and
iii) we propose a meta-learning based zero-shot regu-
larization term to explicitly impose unseen class gen-
eralization to the DML problem. We now discuss the
works which are most related to ours.

Distance Metric Learning (DML). Primary
thrusts in DML include i) tailoring pairwise loss terms
[39] that enforces the desired intra- and inter-class prox-
imity constraints, ii) pair mining [47], iii) generating
informative samples [12, 27, 34, 55], and iv) augment-
ing the mini-batches with virtual embeddings called
proxies [53,58]. To improve generalization; learning the-
oretic ideas [8,15,31], disentangling class-discriminative
and class-shared features [33, 45], intra-batch feature
aggregation [32,52], ranking surrogates [43], and further
regularization terms [4,20,25,48,65] are utilized. To go
beyond of a single model, ensemble [24,50,63,68,69] and
multi-task based approaches [38, 46] are also used. Dif-
ferent to them, we propose a learnable pooling method
generalizing GAP, a shared component of all of the
mentioned works. Hence, our work is orthogonal to all
of these and can be used jointly with any of them.

Prototype-based pooling. Most related to ours
are trainable VLAD [2,66] and optimal transport based
aggregation [28,37]. Such methods employ similarities
to the prototypes to form a vector of aggregated lo-
cal features for each prototype and build ensemble of
representations. Although their embeddings enjoy ℓ2
metric for similarity, they typically have very large sizes
limiting their applicability for DML. Recently, reduc-
ing the dimension of VLAD embedding via non-linear
transforms is addressed for DML [22]. Nevertheless,
such methods still map a set of features to another set
of features without discarding any and do not provide a
natural way to aggregate the class-discriminative subset

of the features. On the contrary, our pooling machine
effectively enables learning to select discriminative fea-
tures and maps a set of features to a single feature that
is distilled from nuisance information.

Attention-based pooling. CroW [21], Trainable-
SMK [54], and CBAM [59] reweight the CNN features
before pooling. They build on feature magnitude based
saliency, assuming that the backbone functions must
be able to zero-out nuisance information. Yet, such a
requirement is restrictive for the parameter space and
annihilation of the non-discriminative information might
not be feasible in some problems. Similarly, attention-
based weighting methods DeLF [41], GSoP [11] do not
have explicit control on feature selection behavior and
might result in poor models when jointly trained with
the feature extractor [41]. Differently, our method uni-
fies attention-based feature masking practices (e.g ., con-
volution, correlation) with an efficient-to-solve optimiza-
tion framework and lets us do away with engineered
heuristics in obtaining the masking weights (e.g ., nor-
malization, sigmoid, soft-plus) without restricting the
solution space.

Optimal transport (OT) based operators. OT
distance [5] to match local features is used as the DML
distance metric instead of ℓ2 in [67]. Despite effective,
replacing ℓ2 with OT increases memory cost for im-
age representation as well as computation cost for the
distance computation. Different to them, we shift OT
based computation in pooling (i.e., feature extraction)
stage while having OT’s merits and hence, do not affect
the memory and computation costs of the inference by
sticking to ℓ2 metric. Moreover, our feature selection
and aggregation formulation has close relation to OT [5]
based top-k [61], ranking [6] and aggregation [28,37,40]
operators which are not effectively applied to DML be-
fore. Their aggregation is built on concatenating the
feature ensembles resulting in very large embedding
sizes. What makes our method different is the unique
way we formulate the feature selection problem to fuse
aggregation into it (see Appendix for technical details).
Our selection operator allows computationally appeal-
ing and matrix inversion free gradient computation
unlike its OT based counterparts [36].

3. Preliminaries

Consider the data distribution pXxY over X xY where
X is the space of data points and Y is the space of labels.
Given iid. samples from pXxY as {(xi, yi)}, distance
metric learning problem aims to find the parameters θ
of an embedding function e(·; θ) : X → Rd such that the
Euclidean distance in the space of embeddings is consis-
tent with the label information where d is the embed-
ding dimension. More specifically, ∥e(xi; θ)− e(xj ; θ)∥2
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Figure 1: Sketch of the method, where Z=[zi]i (4.3) and GSP vectors (4.1) are coloured w.r.t. their class label.

is small whenever yi = yj , and large whenever yi ̸= yj .
In order to enable learning, this requirement is repre-
sented via loss function l((xi, yi), (xj , yj); θ) (e.g ., con-
trastive [60], triplet [51], multi-similarity [57]).

The typical learning mechanism is gradient descent
of an empirical risk function defined over a batch of
data points B. To simplify notation throughout the
paper, we will use b = {b(i) | xi, yi ∈ B}i to index the
samples in a batch. Then, the typical empirical risk
function is defined as:

LDML(b; θ) :=
1

|b|2
∑
i∈b

∑
j∈b

l((xi, yi), (xj , yj); θ) . (3.1)

We are interested specific class of embedding func-
tions where a global average pooling is used. Specifically,
consider the composite function family e = g ◦ f such
that g is pooling and f is feature computation. We
assume a further structure over the functions g and f .
The feature function f maps the input space X into
Rwxhxd where w and h are spatial dimensions. Moreover,
g performs averaging as;

g(f(x; θ)) =
1

w · h
∑

i∈[w·h]
fi , (3.2)

where [n]=1, . . . , n and we let fi∈Rd denote ith spatial
feature of f(x; θ) to simplify notation. In the rest of
the paper, we generalize the pooling function g into a
learnable form and propose an algorithm to learn it.

4. Method

Consider the pooling operation in (3.2), it is a sim-
ple averaging over pixel-level feature maps (fi). As we
discuss in Sec. 1, one explanation for the effectiveness
of this operation is considering each fi as correspond-
ing to a different semantic entity corresponding to the
spatial extend of the pixel, and the averaging as convex
combination over these semantic classes. Our method is
based on generalizing this averaging such that a specific

subset of pixels (correspondingly subset of semantic
entities) are selected and their weights are adjusted
according to their importance.

We generalize the pooling (3.2) in Sec. 4.1 by formu-
lating a feature selection problem in which we prioritize
a subset of the features that are closest to some trainable
prototypes. If a feature is to be selected, its weight will
be high. We then formulate our pooling operation as a
differentiable layer to facilitate the prototype learning
along with the rest of the embedding function parame-
ters in Sec. 4.2. We learn the prototypes with class-level
supervision, however in metric learning, learned repre-
sentations should generalize to unseen classes. Thus,
we introduce a zero-shot prediction loss to regularize
prototype training for zero-shot setting in Sec. 4.3.

4.1. Generalized Sum Pooling as a Linear Program

Consider the pooling function g with adjustable
weights as g(f(x; θ);ω) =

∑
i∈[n] pifi where n = w h.

Note that, pi=1/n corresponds to average pooling. Infor-
mally, we want to control the weights to ease the metric
learning problem. Specifically, we want the weights cor-
responding to background classes to be 0 and the ones
corresponding to discriminative features to be high.

If we were given representations of discriminative se-
mantic entities, we could simply compare them with the
features (fi) and choose the ones with high similarity.
Our proposed method is simply learning these repre-
sentations and using them for weight computations.
We first discuss the weight computation part before
discussing learning the representations of prototypes.

Assume that there are m discriminative semantic
entities which we call prototypes with latent representa-
tions ω = {ωi}i∈[m] of appropriate dimensions (same as
fi). Since we know that not all features ({fi}i∈[n]) are
relevant, we need to choose a subset of {fi}i∈[n]. We
perform this top-k selection process by converting it
into an optimal transport (OT) problem.

Consider a cost map cij = ∥ω̄i 9 f̄j∥2 which is an
m (number of prototypes) by n (number of features)
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matrix representing the closeness of prototypes ωi and
features fj after some normalization ū = u/max{1,∥u∥2}.
We aim to find a transport map π which re-distributes
the uniform mass from features to prototypes. Since
we do not have any prior information over features, we
also consider its marginal distribution (importance of
each feature to begin with) to be uniform. As we need
to choose a subset, we set µ∈[0, 1] ratio of mass to be
transported. The resulting OT problem is:

ρ∗, π∗ =argmin
ρ,π⩾0

∑
ij cijπij s.to ρj+Σiπij=

1
n

Σijπij=µ
. (P1)

Different to typical OT literature, we introduce decision
variables ρ to represent residual weights to be discarded.
Specifically modelling discarded weight instead of en-
forcing another marginalization constraint is beneficial
beyond stylistic choices as it allows us to very efficiently
compute gradients. When the introduced transport
problem is solved, we perform weighting using residual
weights as:

g(f(x; θ);ω) =
∑

i pifi =
∑

i

1/n−ρ∗
i

µ fi . (4.1)

Given set of prototypes {ωi}i∈[m], solving the prob-
lem in (P1) is a strict generalization of GAP since
setting µ = 1 recovers the original GAP. We formalize
this equivalence in the following claim.

Theorem 4.1. If µ = 1, the operation in (4.1) reduces
to global average pooling in (3.2).

We defer the proof to Appendix. Having generalized
GAP to a learnable form, we introduce a method to
learn the prototypes {ωi}i∈[m] in the next section.

4.2. GSP as a Differentiable Layer

Consider the generalized form of pooling, defined
as solution of (P1), as a layer of a neural network.
The input is the feature vectors {fi}i∈[n], the learnable
parameters are prototype representations {ωi}i∈[m], and
the output is residual weights ρ∗. To enable learning, we
need partial derivatives of ρ∗ with respect to {ωi}i∈[m].
However, this function is not smooth. More importantly
it requires the µ parameter to be known a priori.

We use a toy example to set the stage for rest of the
formulation. Consider a 10x10x3 feature map visualized
as RGB-image in Fig. 2 and corresponding two proto-
types with representations (1, 0, 0) (red) and (0, 0, 1)
(blue). The true µ = 0.5 since the half of the image
corresponds to red and blue, and other half is back-
ground class of green. Consider an under-estimation of
µ = 0.2, the global solution (shown as linear program-
ming) is explicitly ignoring informative pixels (part of
red and blue region). To solve this issue, we use entropy

smoothing which is first introduced in [5] to enable fast
computation of OT. Consider the entropy smoothed
version of the original problem in (P1) as:

ρ(ε), π(ε) = argmin
ρ,π⩾0

ρj+Σiπij=1/n
Σijπij=µ

∑
ij cijπij+

1
ε (H(π)+H(ρ)), (P2)

and obtain pooling weights by replacing ρ∗ with ρ(ε) in
(4.1), where H(u) := Σiui log ui.

Figure 2: The resul-
tant pooling weights
(higher the darker) of
different problems.

When smoothing is
high (ε→0), the resulting
solution is uniform over
features similar to GAP.
When it is low, the result
is similar to top-k like be-
havior. For us, ε controls
the trade-off between pick-
ing µ portion of the fea-
tures that are closest to
the prototypes and includ-
ing as much features as
possible for weight trans-
fer. We further visualize
the solution of the entropy
smoothed problem in Fig. 2 showing desirable behavior
even with underestimated µ.

Beyond alleviating the under-estimation of µ prob-
lem, entropy smoothing also makes the problem strictly
convex and smooth. Thus, the solution of the problem
enables differentiation and in fact, admits closed-form
gradient expression. We state the solution of (P2) and
its corresponding gradient in the following propositions
and defer their proofs to Appendix.

Proposition 4.2. Given initialization t(0) = 1, con-
sider the following iteration:

ρ(k+1) = 1/n (1 + t(k) exp(9εc)⊺1m)91,

t(k+1) = µ (1⊺
m exp(9εc)ρ(k+1))91

where exp and (·)91 are element-wise and 1m is m-
dimensional vector of ones. Then, (ρ(k), t(k)) converges
to the solution of (P2) defining transport map via
π(k) = t(k) exp(9εc)Diag(ρ(k)).

Proposition 4.3. Consider any differentiable loss
function L as a function of (ρ, π). Given gradients
∂L
∂ρ and ∂L

∂π , with (ρ, π) is the solution of (P2). Let
q = ρ⊙ ∂L

∂ρ +(π⊙ ∂L
∂π )

⊺1m and η = (ρ⊙ ∂L
∂ρ )

⊺1n 9n q⊺ρ,
the gradient of L with respect to c reads:

∂L
∂c

= 9ε
(
π ⊙ ∂L

∂π
− nπDiag

(
q − η

19µ9nρ⊺ρ

)
ρ
)
, (4.2)

where ⊙ denotes element-wise multiplication.
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Proposition 4.2 and 4.3 suggest that our feature se-
lective pooling can be implemented as a differentiable
layer. Moreover, Proposition 4.3 gives a matrix inver-
sion free computation of the gradient with respect to
the costs unlike optimal transport based operators [36].
Thus, the prototypes, ω, can be jointly learned with
the feature extraction efficiently.

4.3. Cross-batch Zero-shot Regularization

We formulated a prototype based feature pooling
and learn the prototypes using class labels. Simply clas-
sifying the labels as prototypes is a degenerate solution.
We rather want the prototypes to capture transferable
attributes so that the learning can be transferred to
the unseen classes as long as the attributes are shared.
Learning with prototype based pooling shapes the em-
bedding geometry in such a way that we have clusters
corresponding to the prototypes in the embedding space.
We want such clusters to have transferable semantics
rather than class-specific information. To enable this,
we now formulate a mechanism to predict class embed-
ding vectors from the prototype assignment vectors and
use that mechanism to tailor a loss regularizing the
prototypes to have transferable representations.

Our feature selection layer should learn discrimina-
tive feature prototypes ω using top-down label informa-
tion. Consider two randomly selected batches (b1, b2) of
data sampled from the distribution. If the prototypes
are corresponding to discriminative entities, the weights
transferred to them (i.e., marginal distribution of pro-
totypes) should be useful in predicting the classes and
such behavior should be consistent between batches
for zero-shot prediction. Formally, if one class in b2
does not exist in b1, a predictor on class labels based
on marginal distribution of prototypes for each class
of b1 should still be useful for b2. DML losses do not
carry such information. We thus formulate a zero-shot
prediction loss to enforce such zero-shot transfer.

We consider that we are given an embedding vector
υi for each class label i, i.e., Υ = [υi]i∈[c] for c-many
classes. We are to predict such embeddings from the
marginal distribution of the prototypes. In particular,
we use linear predictor A to predict label embeddings
as υ̂ = Az where z is the normalized distribution of the
weighs on the prototypes;

z = 1
µ

∑
i π

(ε)
i where π(ε) = [π

(ε)
i ]i∈[n] . (4.3)

If we consider the prototypes as semantic vectors of
some auxiliary labels such as attributes similar to zero-
shot learning (ZSL) [7, 18, 62], then we can interpret
z as attribute predictions. Given attribute predictions
{zi}i∈b and corresponding class embeddings for a batch

b we fit the predictor as;

Ab= argmin
A=[ai]i∈[m]

∑
i∈b ∥Azi 9υyi∥22+ ϵ

∑
i∈[m] ∥ai∥22 , (P3)

which admits a closed form expression enabling back
propagation Ab = Υb (Z

⊺
b Zb + ϵI)91Z⊺

b where Υb =
[υyi

]i∈b, Zb = [zi]i∈b. In practice, we are not provided
with the label embeddings Υ = [υi]i∈[c]. Nevertheless,
having a closed-form expression for Ab enables us to
exploit a meta-learning scheme like [3] to formulate a
zero-shot prediction loss to learn them jointly with the
rest of the parameters.

Specifically, we split a batch b into two1 as b1 and
b2 such that classes are disjoint. We then estimate
attribute embeddings Abk according to (P3) using one
set and use that estimate to predict the label embed-
dings of the other set to form zero-shot prediction loss.
Formally, our loss becomes:

LZS(b; θ) =
1

|b2|
∑
i∈b2

log
(
1 +

∑
j∈[c]

e(υj9υyi
)⊺A1 zi

)
+ 1

|b1|
∑
i∈b1

log
(
1 +

∑
j∈[c]

e(υj9υyi
)⊺A2 zi

)
,

(4.4)

i.e., rearranged soft-max cross-entropy where Ak=Abk

with the abuse of notation, and θ = {θf , ω,Υ} (i.e.,
CNN parameters, prototype vectors, label embeddings).

We learn attribute embeddings (i.e., columns of A)
as sub-task and can define such learning as a differ-
entiable operation. Intuitively, such a regularization
should be useful in better generalization of our pooling
operation to unseen classes since attribute predictions
are connected to prototypes and the local features. We
combine this loss with the metric learning loss using λ
mixing (i.e., (19λ)LDML + λLZS) and jointly optimize.

4.4. Implementation Details

Embedding function. For the embedding function
f(·; θ) we use ResNet20 [17] for Cifar [30] experiments,
and ImageNet [49] pretrained BN-Inception [19] for the
rest. We exploit architectures until the output before
the global average pooling layer. We add a per-pixel
linear transform (i.e., 1x1 convolution), to the output
to obtain the local embedding vectors of size 128.

Pooling layer. For baseline methods, we use global
average pooling. For our method, we perform param-
eter search and set the hyperparameters accordingly.
Specifically, we use 64- or 128-many prototypes depend-
ing on the dataset. We use ε=0.5 for proxy-based losses
and ε=5.0 for non-proxy losses. For the rest, we set
µ=0.3, ϵ=0.05, λ=0.1 and we iterate until k=100 in
Proposition 4.2. The embedding vectors upon pooling
are ℓ2 normalized to have unit norm.

1Although we considered the simplest form which already
worked well, repeating this splitting process can be beneficial.
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Figure 3: Behavior analysis of GSP: (a) GAP vs GSP in aggregating features. The tokens represent learned
embedding vectors, and the samples are derived from their aggregation. (b) Experiments on Cifar Collage dataset:
(b.1) presents the results, while (b.2) displays sample train and test images along with their attention maps in terms
of pooling weights. Distilled denotes baseline performance on non-collage dataset, excluding the shared classes.

5. Experiments

We start our empirical study with a synthetic study
validating the role of GAP in learning and the impact of
GSP on the feature geometry. We further examine the
effectiveness of our generalized sum pooling in metric
learning for various models and datasets. We further
perform ablation studies for the implications of our
formulation as well as effects of the hyperparameters.
We share the implementation details and the complete
Tensorflow [1] code base in the supplemental materials.

5.1. Analysis of the Behavior

Synthetic study. We designed a synthetic empirical
study to evaluate GSP in a fully controlled manner. We
considered 16-class problem such that classes are defined
over trainable tokens. In this setting, tokens correspond
to semantic entities but we choose to give them a specific
working to emphasize that they are trained as part of the
learning. Each class is defined with 4 distinct tokens and
there are also 4 background tokens shared by all classes.
For example, a "car" class would have tokens like "tire"
and "window" as well as background tokens of "tree"
and "road". We sampled class representations from
both class specific and background tokens according to
a mixing ratio µ̃ ∼ N (0.5, 0.1). Such a 50-many feature
collection corresponds to a training sample (i.e., we are
mimicking CNN’s output with trainable tokens). We
then obtained global representations using GAP and
GSP. We visualize the geometry of the embedding space
in Fig. 3-(a) along with the DML performances. With
GAP, we observe overlapping class convex hulls resulting
in poor DML performance. However, GSP gives well
separated class convex hulls, further validating that it
learns to ignore background tokens.

Selective pooling. We further extended this syn-
thetic study to image domain by considering the 20
super-classes of Cifar100 dataset [30] where each has
5 sub-classes. For each super-class, we split the sub-
classes for train (2), validation (1), and test (2). We
consider 4 super-classes as the shared classes and com-
pose 4x4-stitched collage images for the rest 16 classes
(see supplementary material for details). In particular,
we sample an image from a class and then sample 3
images from shared classes (Fig. 4). We used ResNet20
backbone pretrained on Cifar100 classification task and
followed the implementation explained in Sec. 4.4. We
provide the evaluation results in Fig. 3-(b). GSP and
the proposed zero shot loss effectively increase MAP@R.
We also provide sample train and test images to show-
case that our pooling can transfer well to unseen classes.

Figure 4: Sample generation for Cifar Collage dataset
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Zero-shot regularization. We also evaluated the
zero-shot prediction performance of the attribute vec-
tors. We trained on Cifar10 dataset with 8 prototypes
using ProxyNCA++ [53] (PNCA) loss with and with-
out LZS. We then extracted attribute histograms for
each class and visualized them in Fig. 5. We observe
transferable representations with LZS and we visually
show in Fig. 5 that the semantic entities represented
by the prototypes transfer across classes. We quanti-
tatively evaluated such behavior by randomly splitting
the classes into half and apply cross-batch zero-shot
prediction explained in Sec. 4.3. Namely, we fit A in
(P3) for one subset and used it to predict the class
embeddings for the other set. We pre-computed class
embeddings from the dataset as the class mean. To
this end, our evaluation assesses generalization of both
the features and the prototypes. We used MAP with
both ℓ2 distance and cosine similarity in our evaluation.
We repeated the experiment 1000 times. We observe
in Fig. 5 that zero-shot performance of the prototypes
learned with LZS is substantially superior. We also see
that our feature aggregation method enables approxi-
mate localization of the semantic entities. Recent ZSL
approaches [18, 62] can provide attribute localization
and share a similar spirit with our method. However, at-
tribute annotations must be provided for those methods
whereas we exploit only class labels to extract attribute-
like features. Thus, our method can be considered as
an attribute-unsupervised alternative to them.

Figure 5: Comparing the distributions of the learned 8
prototypes across classes of Cifar10 dataset with and
without LZS. Pooling weights are coloured according
to the dominant prototype at that location.

5.2. Deep Metric Learning Experiments

We largely rely on the recent work explicitly study-
ing the fair evaluation strategies for metric learning
[10,39,47]. Specifically, we follow the procedures pro-
posed in [39] to evaluate our method as well as the
other methods. We additionally follow the relatively
old-fashioned conventional procedure [42] for the eval-
uation of our method and provide those results in the
supplementary material. We provide full detail of our
experimental setup in the supplementary material for
complete transparency and reproducibility.

Datasets. CUB [56], Cars196 [29], In-shop [35], and
SOP [42] with typical DML data augmentation [39].

Evaluation metrics. We report mean average pre-
cision (MAP@R) at R where R is defined for each query
and is the total number of true references of the query.

Hyperparameters. We use Adam [26] optimizer
with learning rate 1095, weight decay 1094, batch size
32 (4 per class). We train 4-fold: 4 models (1 for each
3/4 train set partition).

Evaluation. Average performance (128D) where
each of 4-fold model is trained 3 times resulting in
realization of 34=81 different model collections. In our
results we provide mean of 81 evaluations.

Baselines. We implement our method on top of
and compare with Contrastive (C2): Contrastive with
positive margin [60], MS : Multi-similarity [57], Triplet :
Triplet [51], XBM : Cross-batch memory [58] with con-
trastive loss [16], PNCA: ProxyNCA++ [53], PAnchor :
ProxyAnchor [23].

5.2.1 Results

We compared our method (GSP) against direct appli-
cation of GAP with 6 DML methods in 4 datasets.
We also evaluated 14 additional pooling alternatives
on Ciffar Collage and CUB datasets. We provide the
tabulated results in supplementary material. Based on
CUB performances, we picked generalized mean pooling
(GeMean) [44] and DeLF [41] to compare against in
4 DML benchmarks. We also evaluated max pooling
(GMP) and its combination with GAP as we typically
observe GAP+GMP in the recent works [23, 53, 55, 58].
We also applied our method with GMP (GMP+GSP)
and with GeMean (GeMean+GSP) to show that per
channel selection is orthogonal to our method and thus,
GSP can marginally improve those methods as well.

We present the tabulated evaluation results in Tab. 2,
while Fig. 6 provides a concise summary of the relative
MAP@R orderings of the methods employing 128D em-
beddings. We observe consistent improvements upon
direct application of GAP in all datasets. On the aver-
age, we consistently improve the baselines ≈1% points
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Figure 6: Summary of relative improvements: Each mark without a dashed line represents a baseline DML loss
using GAP, unless stated otherwise. Similar losses are color-coded. Dashed lines indicate performance changes
when replacing GAP with the associated pooling method (mark with the dashed line). Pooling methods applied on
top of GMP or GMean are combined with them instead of replacing.

in MAP@R. Our improvement margins are superior to
ones of attention based DeLF pooling. We improve
state-of-the-art (SOTA) XBM method up to 2% points,
which is a good evidence that application of GSP is not
limited to loss terms but can be combined with different
DML approaches. We also consistently improve GMP
and GeMean pooling methods in all datasets, yet an-
other evidence that our method can be combined with
max pooling based methods.

We additionally evaluated our method with different
architectures and methods in conventional setting [42]
for the comparison with SOTA. The tabulated results
are provided in supplementary material (§ 1.1), where
we observe that we achieve SOTA performances with
XBM [58] and LIBC [52] methods.

5.2.2 Ablations

Effect of LZS. We empirically showed the effect of
LZS on learned representations in Sec. 5.1. We fur-
ther examined the effect of LZS quantitatively by en-
abling/disabling it. We also evaluated its effect without
GSP by setting µ=1 where we used GAP with attribute
vectors. The results are summarized in Tab. 1 show-
ing that both components improve the baseline and
their combination brings the best improvement. We
observe similar behavior in Cifar Collage experiment

Table 1: Effects of LZS and GSP with C2 loss

MAP@R

SOP In-shop CUB Cars196

LZS GSP 512D 128D 512D 128D 512D 128D 512D 128D

45.85 41.79 59.07 55.38 25.95 20.58 24.38 17.02
✓ 46.78 42.66 59.46 55.50 26.25 20.85 25.54 17.88

✓ 46.60 42.55 59.38 55.43 26.49 21.08 25.54 17.67
✓ ✓ 46.81 42.84 60.01 55.94 27.12 21.52 26.25 18.31

(Fig. 3-(b)) where the effect of LZS is more substantial.
Computation efficiency. Through a series of k it-

erations, our pooling mechanism utilizes lightweight
matrix-vector products to determine the pooling
weights. While back propagation can be achieved
through automatic-differentiation, it can become compu-
tationally intensive as k increases for certain problems.
However, our pooling mechanism boasts a desirable
feature of having a closed-form gradient expression for
its backward computation, resulting in minimal scaling
of computation load as k increases, as evidenced by our
analysis in Fig. 7. We further provided the inference
times for various k in supplementary material (§ 1.5).

Effect of µ. As outlined in Sec. 4.2, GSP is similar
to top-k operator with an adaptive k thanks to entropy
smoothing. We empirically validated such behavior by
sweeping µ parameter controlling top-k behavior. The
results, plotted in Fig. 7, show similar performance for
lower µ values, with a decrease as µ increases, possibly
due to overestimation of the foreground ratio. Hence a
suggested value for µ is 0.3.

Figure 7: Efficiency of closed-form gradient (left) and
effect of µ (right). Shaded regions represent ∓std.
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6. Conclusion

We proposed a learnable and generalized version of
GAP. Our proposed generalization GSP is a trainable
pooling layer that selects the feature subset and re-
weight it during pooling. To enable effective learning of
our layer, we also proposed a cross-batch regularization
improving zero-shot transfer. With extensive empirical
studies, we validated the effectiveness of the proposed

pooling layer in various DML benchmarks. We also
established and empirically validated a valuable link
between the computed transport maps for pooling and
the prototypes, enabling attribute learning via meta-
learning without explicit localized annotations. We
believe such a connection is interesting, and has poten-
tial to offer pathways for enhanced embedding learning
for DML as well as unsupervised attribute learning.

Table 2: Comparison with the existing methods for the retrieval task on SOP, In-shop, CUB, Cars. Experimental
setting follows MLRC [39]. ∓ denotes 1 std. Red: the best, Blue: the second best, Bold: the loss term specific best.

Dataset → SOP In-shop CUB Cars196

Dim. → 512D 128D 512D 128D 512D 128D 512D 128D

Method↓ P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R P@1 MAP@R

C1+

GAP 69.29
∓0.11

40.40
∓0.15

65.15
∓0.10

36.50
∓0.11

80.11
∓0.19

50.32
∓0.14

75.83
∓0.14

46.42
∓0.13

63.32
∓0.57

23.49
∓0.31

56.34
∓0.35

19.37
∓0.29

78.01
∓0.38

22.87
∓0.33

65.61
∓0.59

16.06
∓0.14

XBM+GAP 76.54
∓0.32

48.58
∓0.47

73.22
∓0.48

44.55
∓0.57

87.76
∓0.26

57.53
∓0.41

85.26
∓0.37

54.40
∓0.45

65.56
∓0.48

25.65
∓0.24

57.48
∓0.41

20.27
∓0.19

83.55
∓0.35

27.53
∓0.22

72.17
∓0.30

18.98
∓0.17

XBM+GSP 77.88
∓0.18

50.65
∓0.28

74.84
∓0.19

46.69
∓0.28

88.33
∓0.19

58.55
∓0.29

85.95
∓0.21

55.30
∓0.21

67.00
∓0.49

26.05
∓0.15

58.89
∓0.49

20.60
∓0.16

83.31
∓0.22

27.88
∓0.23

73.04
∓0.39

19.26
∓0.19

C2+

GAP 74.20
∓0.23

45.85
∓0.31

70.54
∓0.19

41.79
∓0.26

86.47
∓0.15

59.07
∓0.21

83.42
∓0.12

55.38
∓0.13

67.35
∓0.50

25.95
∓0.21

58.87
∓0.36

20.58
∓0.13

80.96
∓0.48

24.38
∓0.58

69.55
∓0.42

17.02
∓0.31

GSP 74.91
∓0.12

46.81
∓0.17

71.43
∓0.11

42.84
∓0.14

86.90
∓0.17

60.01
∓0.29

83.57
∓0.18

55.94
∓0.17

68.85
∓0.41

27.12
∓0.27

60.42
∓0.36

21.52
∓0.16

82.83
∓0.27

26.25
∓0.34

71.40
∓0.27

18.31
∓0.22

DeLF 74.59
∓0.15

46.54
∓0.19

45.53
∓0.18

42.47
∓0.17

86.65
∓0.16

59.20
∓0.22

83.51
∓0.09

55.36
∓0.12

68.66
∓0.32

27.06
∓0.18

59.85
∓0.18

21.42
∓0.16

81.85
∓0.41

24.77
∓0.38

69.95
∓0.38

17.32
∓0.25

GeMean 74.92
∓0.13

46.99
∓0.15

71.53
∓0.11

43.12
∓0.12

86.62
∓0.15

59.12
∓0.19

83.83
∓0.09

55.70
∓0.12

68.79
∓0.36

27.12
∓0.19

60.37
∓0.30

21.50
∓0.15

82.43
∓0.60

25.27
∓0.63

70.23
∓0.55

17.41
∓0.45

GeMean+GSP 75.32
∓0.08

47.69
∓0.13

71.93
∓0.10

43.71
∓0.13

86.94
∓0.15

59.98
∓0.21

84.35
∓0.19

56.34
∓0.14

69.11
∓0.49

27.56
∓0.18

60.81
∓0.34

21.84
∓0.19

83.62
∓0.36

26.98
∓0.31

72.38
∓0.28

19.05
∓0.22

GMP 74.09
∓0.15

46.13
∓0.19

69.68
∓0.20

41.31
∓0.22

86.38
∓0.12

59.04
∓0.10

83.04
∓0.13

54.89
∓0.07

68.13
∓0.40

26.43
∓0.21

58.99
∓0.34

20.66
∓0.18

81.83
∓0.62

25.11
∓0.72

69.05
∓0.61

17.08
∓0.47

GMP+GAP 74.71
∓0.11

46.70
∓0.15

70.83
∓0.10

42.38
∓0.15

86.58
∓0.16

59.22
∓0.18

83.41
∓0.12

55.37
∓0.15

67.88
∓0.48

26.63
∓0.23

59.24
∓0.32

20.88
∓0.17

82.14
∓0.40

25.66
∓0.44

69.81
∓0.38

17.62
∓0.32

GMP+GSP 75.08
∓0.1

47.12
∓0.17

71.18
∓0.15

42.80
∓0.18

86.79
∓0.16

59.43
∓0.28

83.86
∓0.15

55.76
∓0.19

68.47
∓0.58

27.49
∓0.36

60.19
∓0.41

21.69
∓0.35

82.54
∓0.46

26.30
∓0.43

71.03
∓0.48

18.24
∓0.29

MS+

GAP 72.81
∓0.14

44.19
∓0.21

69.09
∓0.10

40.34
∓0.16

87.01
∓0.20

58.79
∓0.37

83.87
∓0.21

54.85
∓0.34

65.43
∓0.46

24.95
∓0.15

57.57
∓0.27

20.13
∓0.12

83.73
∓0.34

27.16
∓0.43

72.54
∓0.43

18.73
∓0.31

GSP 73.05
∓0.11

44.72
∓0.17

69.44
∓0.15

40.87
∓0.19

88.28
∓0.21

60.49
∓0.24

85.28
∓0.19

56.62
∓0.26

65.50
∓0.33

25.09
∓0.21

57.39
∓0.15

20.34
∓0.22

84.27
∓0.35

28.58
∓0.40

73.74
∓0.32

19.91
∓0.31

Triplet+

GAP 74.54
∓0.24

45.88
∓0.30

69.41
∓0.38

40.01
∓0.39

85.99
∓0.36

59.67
∓0.46

81.75
∓0.38

54.25
∓0.45

64.11
∓0.66

23.65
∓0.40

55.62
∓0.46

18.54
∓0.31

77.58
∓0.60

22.67
∓0.58

64.61
∓0.59

15.74
∓0.34

GSP 75.59
∓0.23

47.35
∓0.32

70.65
∓0.20

41.38
∓0.22

86.75
∓0.27

60.85
∓0.47

82.74
∓0.33

55.54
∓0.46

66.09
∓0.52

24.80
∓0.33

57.12
∓0.42

19.38
∓0.25

78.93
∓0.30

23.44
∓0.29

65.81
∓0.35

16.14
∓0.21

PNCA+

GAP 75.18
∓0.15

47.11
∓0.16

72.15
∓0.06

43.57
∓0.08

87.26
∓0.14

57.43
∓0.14

84.86
∓0.08

54.41
∓0.10

65.74
∓0.51

25.27
∓0.23

58.19
∓0.36

20.63
∓0.20

82.33
∓0.25

26.21
∓0.22

70.75
∓0.18

18.61
∓0.08

GSP 75.68
∓0.11

47.74
∓0.14

72.37
∓0.06

43.95
∓0.06

87.35
∓0.10

57.65
∓0.12

85.13
∓0.10

54.68
∓0.08

65.80
∓0.38

25.48
∓0.25

58.20
∓0.22

20.75
∓0.19

82.70
∓0.27

26.93
∓0.18

71.55
∓0.32

19.20
∓0.17

DeLF 75.29
∓0.09

47.44
∓0.11

72.05
∓0.06

43.62
∓0.07

87.19
∓0.11

57.44
∓0.16

84.55
∓0.04

54.13
∓0.10

65.42
∓0.34

25.31
∓0.16

57.98
∓0.24

20.51
∓0.14

82.37
∓0.35

26.63
∓0.22

71.06
∓0.27

18.81
∓0.14

GeMean 75.64
∓0.09

47.82
∓0.09

72.75
∓0.07

44.43
∓0.06

87.63
∓0.10

57.88
∓0.13

85.48
∓0.14

55.14
∓0.12

66.33
∓0.33

25.74
∓0.20

58.52
∓0.39

20.71
∓0.20

83.83
∓0.29

27.44
∓0.15

72.14
∓0.28

19.16
∓0.12

GeMean+GSP 75.89
∓0.11

48.17
∓0.12

72.91
∓0.04

44.61
∓0.06

87.64
∓0.10

58.12
∓0.16

85.58
∓0.07

55.25
∓0.08

67.39
∓0.53

26.19
∓0.26

59.39
∓0.40

21.31
∓0.21

83.09
∓0.25

27.96
∓0.30

71.95
∓0.27

19.74
∓0.19

GMP 74.43
∓0.08

46.33
∓0.08

70.80
∓0.07

42.24
∓0.08

86.94
∓0.13

56.79
∓0.13

84.53
∓0.08

53.86
∓0.09

65.74
∓0.51

25.36
∓0.29

57.61
∓0.38

20.33
∓0.29

83.06
∓0.33

26.96
∓0.27

71.19
∓0.25

18.92
∓0.15

GMP+GAP 75.19
∓0.09

47.26
∓0.11

71.97
∓0.04

43.55
∓0.06

87.21
∓0.14

57.34
∓0.15

84.95
∓0.09

54.42
∓0.10

65.91
∓0.35

25.56
∓0.26

57.92
∓0.37

20.68
∓0.20

82.92
∓0.41

26.92
∓0.36

71.33
∓0.22

18.95
∓0.19

GMP+GSP 75.41
∓0.12

47.50
∓0.12

72.10
∓0.07

43.73
∓0.09

87.43
∓0.10

57.68
∓0.14

85.10
∓0.10

54.70
∓0.08

66.14
∓0.48

25.85
∓0.23

58.12
∓0.32

20.96
∓0.18

83.46
∓0.31

27.12
∓0.21

72.04
∓0.39

19.38
∓0.20

PAnchor+

GAP 76.48
∓0.19

48.08
∓0.26

73.50
∓0.14

44.33
∓0.20

88.02
∓0.21

58.02
∓0.25

85.83
∓0.18

54.98
∓0.22

68.04
∓0.41

26.20
∓0.21

59.91
∓0.34

20.94
∓0.15

85.26
∓0.31

27.14
∓0.20

75.08
∓0.23

19.15
∓0.13

GSP 77.13
∓0.16

49.05
∓0.22

74.07
∓0.13

45.07
∓0.17

88.10
∓0.11

58.44
∓0.14

85.97
∓0.06

55.34
∓0.13

68.40
∓0.45

26.59
∓0.25

60.80
∓0.31

21.44
∓0.17

86.46
∓0.39

28.43
∓0.33

75.88
∓0.25

19.90
∓0.20
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